Lógica Quântica
 Lecture notes and exercise sheet 5

 Curry-Howard-Lambek correspondence

 Curry-Howard-Lambek correspondence}

Rui Soares Barbosa

2022-2023

Natural deduction system for intuitionistic logic

Formulae are built out of basic propositions with binary connectives \wedge (conjunction) and \supset (implication). A sequent is a judgement of the form

$$
\Gamma \vdash A
$$

where A is a formula and $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\}$ a finite set of formulae. We write Γ, A for $\Gamma \cup\{A\}$. The sequent above is meant to assert that A can be proved from assertions in Γ. Proofs are constructed using the following rules:

$$
\begin{gathered}
\overline{\Gamma, A \vdash A} \mathrm{Id} \\
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge-\mathrm{I} \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \wedge-\mathrm{E}_{1} \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \wedge-\mathrm{E}_{2} \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset-\mathrm{I} \quad \frac{\Gamma \vdash A \supset B \quad \Gamma \vdash A}{\Gamma \vdash B} \supset-\mathrm{E}
\end{gathered}
$$

Exercise 1. Give proofs of:
(a) $\vdash(A \wedge B) \supset A$
$(\mathrm{b}) \vdash((A \supset B) \wedge(B \supset C)) \supset(A \supset C)$
$(\mathrm{c}) \vdash(A \supset(B \supset C)) \supset(B \supset(A \supset C))$
$(\mathrm{d}) \vdash(A \supset(B \supset C)) \supset((A \supset B) \supset(A \supset C))$
Definition 1. A proof rule

$$
\frac{\Gamma_{1} \vdash A_{1} \quad \cdots \quad \Gamma_{k} \vdash A_{k}}{\Delta \vdash B}
$$

is said to be admissible if whenever there are proofs of each $\Gamma_{i} \vdash A_{i}(i=1, \ldots, n)$, there is a proof of $\Delta \vdash B$.

If a proof is admissible then it can be added to a proof system without altering whether a sequent is provable.

Exercise 2. Show that the following rules are admissible:
(a) $\frac{\Gamma \vdash A}{\Gamma, C \vdash A}$ Weakening
(b) $\frac{\Gamma \vdash A \quad \Delta, A \vdash B}{\Gamma, \Delta \vdash B} \mathrm{Cut}$

Simply-typed lambda-calculus

Let BaseTypes be a set of base types. Let Var be a countable set of variables. Types and terms in the simply-typed λ-calculus are given by the following syntax

$$
\begin{aligned}
\operatorname{Var} \ni x, y, \ldots & \\
\text { Types } \ni A, B, \ldots & ::= \\
\text { Terms } \ni t, u, \ldots & ::= \\
& x|t u| \lambda x . t|\langle t, u\rangle| \pi_{1} t \mid \pi_{2} t
\end{aligned}
$$

A typing judgement has the form

$$
\Gamma \vdash t: A
$$

where $\Gamma=\left\{x_{1}: A_{1}, \ldots, x_{k}: A_{k}\right\}$ is a type assignment to a finite set of variables, called a typing context. The judgement $\Gamma \vdash t: A$ asserts that the term t is given type A in the context Γ.

Typing judgements are derived by the following typing rules:

$$
\begin{gathered}
\stackrel{\Gamma, x: A \vdash x: A}{ } \mathrm{Id} \\
\frac{\Gamma \vdash t: A \quad \Gamma \vdash u: B}{\Gamma \vdash\langle t, u\rangle: A \times B} \wedge-\mathrm{I} \\
\frac{\Gamma \vdash t: A \times B}{\Gamma \vdash \pi_{1} t: A} \wedge-\mathrm{E}_{1} \quad \frac{\Gamma \vdash t: A \times B}{\Gamma \vdash \pi_{2} t: B} \wedge-\mathrm{E}_{2} \\
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x . t: A \longrightarrow B} \wedge-\mathrm{I} \quad \frac{\Gamma \vdash t: A \longrightarrow B}{\Gamma \vdash t u: B} \\
\end{gathered}
$$

Exercise 3. Give (if possible) the most general type for the following lambda terms:
(a) $\lambda x \cdot \lambda y \cdot x y$
(b) $\lambda x \cdot \lambda y \cdot \lambda z \cdot x(y z)$
(c) $\lambda x \cdot \lambda y \cdot x$
(d) $\lambda x \cdot \lambda y \cdot\langle x, \lambda z \cdot y\rangle$
(e) $\lambda x \cdot x$
(f) $\lambda x \cdot \lambda y \cdot x y y$
(g) $\lambda x \cdot x x$

Could you automate this exercise?
Exercise 4. Compute β-reductions of the following terms:
(a) $(\lambda x . \lambda y . y x) w(\lambda z . z)$
(b) $(\lambda x \cdot \lambda y \cdot x y y)(\lambda z \cdot \lambda w \cdot\langle z, w\rangle)\left(\pi_{1}\langle\lambda w \cdot w, v\rangle\right)(\lambda x).(\lambda y . y y)$

Exercise 5. Show that in the untyped λ-calculus, the term

$$
\Omega=(\lambda x . x)(\lambda x . x)
$$

has an infinite β-reduction sequence. Is it typable?
Exercise 6. Consider the formula $((A \supset B) \supset A) \supset A$
(a) Check its validity by truth tables.
(b) Is there a natural deduction proof of this formula? Equivalently, is there lambda-term of this type (for some types A, B)?

Exercise 7. What are the corresponding λ-terms to the proofs in 1.

Cartesian-closed categories

Definition 2. Let \mathbf{C} be a category with binary products, and let A, B be objects of \mathbf{C}. An exponential or hom-object is an object $A \Rightarrow B$ of \mathbf{C} together with an arrow ev $A, B:(A \Rightarrow B) \times A \longrightarrow B$ satisfying the following universal property: for any arrow $g: C \times A \longrightarrow B$ there is a unique arrow $\Lambda(g): C \longrightarrow A \Rightarrow B$ satisfying

$$
e v_{A, B} \circ\left(\Lambda(g) \times \mathrm{id}_{A}\right)=g .
$$

Exercise 8. If $A \Rightarrow B$ exists, what is $\Lambda\left(e v_{A, B}\right)$ equal to?
Exercise 9. Show that the uniqueness requirement in the definition of exponential can be replaced by an equational requirement:

$$
\text { for all } h: C \longrightarrow(A \Rightarrow B), \quad \Lambda\left(e v_{A, B} \circ\left(h \times \mathrm{id}_{A}\right)\right)=h .
$$

Exercise 10. Recall that a poset (P, \leq) can be seen as a category.
(a) Show that a Boolean algebra (seen as a posetal category) is cartesian closed.
(b) A subset $S \subseteq P$ is downwards-closed if $x \leq y$ and $y \in S$ implies $x \in P$. Let $D(P)$ be the poset of downwards-closed subsets of P, ordered by inclusion. Show that $D(P)$ is indeed a poset, and that (as a category) it has products.
(c) Show that $D(P)$ is cartesian closed with the following definition of exponential object: given $S, T \in D(P)$,

$$
(S \Rightarrow T):=\{x \in P \mid y \leq x \text { and } y \in S \text { implies } y \in T\} .
$$

Definition 3. A category \mathbf{C} is cartesian closed if:

- it has a terminal object $\mathbf{1}$;
- any pair of objects A, B have a product $A \times B$;
- any pair of objects A, B have an exponential $A \Rightarrow B$.

Exercise 11. Let \mathbf{C} be cartesian closed. Assume you are given interpretations $\llbracket A \rrbracket, \llbracket B \rrbracket, \ldots$ of A, B, \ldots as objects of \mathbf{C}.
(a) Give the interpretations of the (typable) terms from exercise 3
(b) Give interpretations of the terms in exercise 4 and of their reducts, and verify these yield the same arrow.

Exercise 12. Use the lambda calculus to show that the objects $A \Rightarrow(B \Rightarrow C)$ and $(A \times B) \Rightarrow C$ are isomorphic in any cartesian closed category.

