Lógica Quântica
 Lecture notes and exercise sheet 7
 Categorical quantum mechanics

Rui Soares Barbosa

2022-2023

Daggers, scalars, and linearity

Let \mathbf{C} be a monoidal category. Recall that a scalar is an arrow $s: I \longrightarrow I$.
Exercise 1. Given a scalar $s: I \longrightarrow I$ and an arrow $f: A \longrightarrow B$, the scalar multiplication is the arrow $s \bullet f: A \longrightarrow B$ given by

$$
A \cong I \otimes A \xrightarrow{s \otimes f} I \otimes B \cong B .
$$

Show the following properties, where s, t are scalars and f, g arbitrary morphisms (of the appropriate types):
(a) $\operatorname{id}_{I} \bullet f=f$
$(\mathrm{b}) s \bullet(t \bullet f)=(s \circ t) \bullet f$
(c) $(t \bullet g) \circ(s \bullet f)=(t \circ s) \bullet(g \circ f)$
$(\mathrm{d})(t \bullet f) \otimes(s \bullet g)=(t \circ s) \bullet(f \otimes g)$
Definition 1. A dagger on a category \mathbf{C} is a functor $\dagger: \mathbf{C}^{\mathrm{op}} \longrightarrow \mathbf{C}$ that is involutive and identity on objects. A dagger category is a category equipped with a dagger.

Exercise 2. Show that relational converse yields a dagger in Rel.
Definition 2. A superposition rule is a binary operation $(f, g) \longmapsto f+g$ defined over arrows $f, g: A \longrightarrow B$ between any object A, B such that:

- $f+g=g+f$
- $(f+g)+h=f+(g+h)$
- for all A, B there is $u_{A, B}: A \longrightarrow B$ such that $f+u=f$ for all f
- $\left(g+g^{\prime}\right) \circ f=(g \circ f)+\left(g^{\prime} \circ f\right)$
- $g \circ\left(f+f^{\prime}\right)=(g \circ f)+\left(g \circ f^{\prime}\right)$
- $u_{C, B}=f \circ u_{C, A}$
- $u_{A, D}=u_{B, D} \circ f$

Exercise 3. Let \mathbf{C} be a category with a zero object 0 and a superposition rule. Show that, for all objects $A, B, u_{A, B}=0_{A, B}$, where $0_{A, B}$ is the unique arrow $A \longrightarrow 0 \longrightarrow B$.

Exercise 4. Let \mathbf{C} be a category with zero object and a superposition rule.
(a) Show that the notion of biproduct from sheet 2 agrees with the following (more traditional) definition: a biproduct of objects A_{1} and $S A_{2}$ is an object $A_{1} \oplus A_{2}$ equipped with arrows $\iota_{j}: A_{j} \longrightarrow A_{1} \oplus A_{2}$ and $\pi_{j}: A_{1} \oplus A_{2} \longrightarrow A_{j}$ satisfying

$$
\begin{aligned}
& i d_{A_{j}}=\pi_{j} \circ \iota_{j} \\
& 0_{A_{k}, A_{j}}=\pi_{j} \circ \iota_{k}(j \neq k) \\
& i d_{A_{1} \oplus A_{2}}=i_{1} \circ p_{1}+i_{2} \circ p_{2}
\end{aligned}
$$

(b) Show that if \mathbf{C} has biproducts then it has a unique superposition rules.

Dagger compact closed categories

Exercise 5. Show that:

- Trace is cyclic.
- If $s: I \longrightarrow I$ is a scalar, then $\operatorname{Tr}(s)=s$
- $\operatorname{Tr}(f \otimes g)=\operatorname{Tr}(f) \otimes \operatorname{Tr}(g)$
- $\operatorname{Tr}\left(f^{\dagger}\right)=\operatorname{Tr}(f)^{\dagger}$

Exercise 6. Recall the definition of transpose. Show that the transpose $f \longmapsto f^{T}$ is involutive and contravariantly functorial.
Exercise 7. An arrow $f: A \longrightarrow A$ is positive if there is an arrow $h: A \longrightarrow B$ such that $f=h^{\dagger} \circ h$. Show that:
(a) If f is positive, then $\operatorname{Tr}(f)$ is positive.
(b) If f, g are positive then $\operatorname{Tr}(g \circ f)$ is positive.

Exercise 8. Interpret the teleportation protocol in Rel using the sets $2=\{0,1\}$, cup $\eta:\{*\} \longrightarrow 2 \times 2$ defined by choosing the pairs $(0,0)$ and $(1,1)$ to constitute the image of $*$. Note that this can be interpreted as classical encrypted communication using a one-time pad.

Monoids, comonoids, dagger Frobenius structures

Exercise 9. Let $\left(A, m_{1}: A \otimes A \longrightarrow A, u_{1}: I \longrightarrow A\right)$ and $\left(A, m_{2}: A \otimes A \longrightarrow A, u_{2}: I \longrightarrow A\right)$ be monoids on the same object in a symmetric monoidal category and suppose that

$$
m_{1} \circ\left(m_{2} \otimes m_{2}\right)=m_{2} \circ\left(m_{1} \otimes m_{1}\right) \circ\left(\mathrm{id}_{A} \otimes \sigma_{A, A} \otimes \mathrm{id}_{A}\right)
$$

Show that
(a) $u_{1}=u_{2}$
(b) $m_{1}=m_{2}$
(c) m_{1} is commutative

Exercise 10. A state $a: I \longrightarrow A$ is copyable by a comonoid (A, m, u) if $m \circ a=a \otimes a$ (up to the unique iso $I \cong I \otimes I)$. Show that the states copyable by a commutative dagger Frobenius structure in FHilb form an orthogonal basis, and moreover that speciality of the structure implies orthonormality of the basis.

Exercise 11. Let A have a dagger Frobenius structure. Show how one can use it to define cups and caps for the object A satisfying the snake equations.
Exercise 12. Show that two commutative dagger Frobenius structures are complementary if and only if the corresponding bases $\left\{e_{i}\right\},\left\{f_{j}\right\}$ are complementary with $\left\langle e_{i} \mid f_{j}\right\rangle\left\langle f_{j} \mid a e_{i}\right\rangle=1$.

Exercise 13. Show that two commutative dagger Frobenius structures on the same object are complementary if and only if $\left(c_{2} \otimes \mathrm{id}\right) \circ\left(i d \otimes c_{1}\right)$ is unitary.

