Lógica Quântica
 Assessment 1

2022-2023

Part 1

Definition 1. Given a linear map $f: H \longrightarrow K$ between Hilbert spaces H and K, its adjoint is the unique linear map $f^{\dagger}: K \longrightarrow H$ such that, for all $v \in H$ and $w \in K$,

$$
\langle f(v), w\rangle=\left\langle v, f^{\dagger}(w)\right\rangle
$$

Exercise 1. Show that this construction is functorial, i.e. it defines a functor $(-)^{\dagger}: \mathbf{H i l b}{ }^{\text {op }} \longrightarrow \mathbf{H i l b}$. Concretely, this means showing that $\mathrm{id}_{H}^{\dagger}=\mathrm{id}_{H}$ and $(f \circ g)^{\dagger}=g^{\dagger} \circ f^{\dagger}$ whenever f and g are composable. Moreover, show that this functor is involutive, i.e. for any $f: H \longrightarrow K,\left(f^{\dagger}\right)^{\dagger}=f$.

Part 2

Definition 2. A monoidal category is a category \mathbf{C} equipped with:

- a functor $\otimes: \mathbf{C} \times \mathbf{C} \longrightarrow \mathbf{C}$ (called tensor);
- an object I of \mathbf{C} (called the unit);
- natural isomorphisms α, λ, ρ with components

$$
\begin{gathered}
\alpha_{A, B, C}: A \otimes(B \otimes C) \stackrel{\cong}{\cong}(A \otimes B) \otimes C \\
\lambda_{A}: I \otimes A \xrightarrow{\cong} A \quad \rho_{A}: A \otimes I \xrightarrow{\cong} A
\end{gathered}
$$

(called the associator, the left unitor, and the right unitor, respectively);
satisfying the equations
$\left(\mathrm{id}_{A} \otimes \lambda_{B}\right) \circ \alpha_{A, I, B}=\rho_{A} \otimes \mathrm{id}_{B} \quad$ and $\quad\left(\mathrm{id}_{A} \times \alpha_{B, C, D}\right) \circ \alpha_{A, B \otimes C, D} \circ\left(\alpha_{A, B, C} \otimes \operatorname{id}_{D}\right)=\alpha_{A, B, C \otimes D} \circ \alpha_{A \otimes B, C, D}$ which are expressed by the commutativity of the following triangle a pentagon diagrams:

These equations guarantee what is called coherence: that all diagrams involving only α, λ, and ρ commute.
In any monoidal category, one can reason using string diagrams (and you may use those in this exercise if you prefer).
We have seen that any category \mathbf{C} with binary products \times and a terminal object $\mathbf{1}$ is a monoidal category: exercise 3.13 , exercise 4.7. Moreover, we have seen in exercises 4.2 and 4.3 that, in the case of products there are natural transformations Δ, p, q with components

$$
\delta_{A}: A \longrightarrow A \times A, \quad p_{A, B}: A \times B \longrightarrow A, \quad q_{A, B}: A \times B \longrightarrow B,
$$

which one can interpret as copying and projections. The goal of this second part is to show a converse to this, therefore characterising products as precisely monoidal structures (tensors) that admit copying and projections in some sense.

Exercise 2. Let \mathbf{C} be a monoidal category and suppose there are natural transformations with components of type

$$
d_{A}: A \longrightarrow A \otimes A, \quad p_{A, B}: A \otimes B \longrightarrow A, \quad q_{A, B}: A \otimes B \longrightarrow B,
$$

such that the following diagrams commute:

Show that \otimes gives a product structure, i.e. that $A \otimes B$ is the categorical product of A and B.

