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Introduction

» Contextuality: a fundamental non-classical phenomenon of QM

» Contextuality as a resource for Ql and QC:
> Non-local games
quantum homomorphisms, constraint satisfaction, etc.
» MBQC — Raussendorf (2013)
“Contextuality in measurement-based quantum computation”
» MSD - Howard, Wallman, Veith, & Emerson (2014)
“Contextuality supplies the ‘magic’ for quantum computation”

S Abramsky, R S Barbosa, S Mansfield 1/28



Introduction

» Abramsky—Brandenburger: unified framework for non-locality
and contextuality in general measurement scenarios

S Abramsky, R S Barbosa, S Mansfield 2/28



Introduction

» Abramsky—Brandenburger: unified framework for non-locality
and contextuality in general measurement scenarios

» qualitative hierarchy of contextuality for empirical models

S Abramsky, R S Barbosa, S Mansfield 2/28



Introduction

» Abramsky—Brandenburger: unified framework for non-locality
and contextuality in general measurement scenarios

» qualitative hierarchy of contextuality for empirical models

» quantitative grading — measure of contextuality
(NB: there may be more than one useful measure)
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Overview

We introduce the contextual fraction
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It satisfies a number of desirable properties:
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» General, i.e. applicable to any measurement scenario
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Normalised, allowing comparison across scenarios
0 for non-contextuality ... 1 for strong contextuality

v

Computable using linear programming

v

Precise relationship to violations of Bell inequalities

v

Monotone wrt operations that don’t introduce contextuality
~> resource theory
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Overview

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

» General, i.e. applicable to any measurement scenario

» Normalised, allowing comparison across scenarios
0 for non-contextuality ... 1 for strong contextuality

» Computable using linear programming
» Precise relationship to violations of Bell inequalities

» Monotone wrt operations that don’t introduce contextuality
~> resource theory

» Relates to quantifiable advantages in QC and QIP tasks

S Abramsky, R S Barbosa, S Mansfield 3/28



Contextuality



Empirical data

B(0,0) (0,1) (1,0) (1,1)
b1 1/2 0 0 1/2
by | 3/8 1/8 /8 3/8
by | 38 1/8 /8 3/8
bo | 1/8 3/8 3/8 /8

op € {0, 1} og € {0,1}
measurement measurement
device device
mp € {ay, ax} mg € {by, by}

preparation

f

p
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Abramsky—Brandenburger framework

Measurement scenario (X, M, O):
» X is a finite set of measurements or variables
» O s a finite set of outcomes or values
» M is a cover of X, indicating joint measurability (contexts)
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Measurement scenario (X, M, O):
» X is a finite set of measurements or variables
» O s a finite set of outcomes or values
» M is a cover of X, indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario
» The set of variables is X = {ay, a2, by, ba }.
» The outcomes are O = {0,1}.
» The measurement contexts are:
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Abramsky—Brandenburger framework

Measurement scenario (X, M, O):
» X is a finite set of measurements or variables
» O s a finite set of outcomes or values
» M is a cover of X, indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario
» The set of variables is X = {ay, a2, by, ba }.
» The outcomes are O = {0,1}.
» The measurement contexts are:

{ {81,b1}, {81,b2}, {a2’b1}7 {a2vb2} }

A joint outcome or event in a context Cis s € OC, e.g.
s=la—0,by —1].

(These correspond to the cells of our probability tables.)
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Another example: 18-vector Kochen—Specker

» A set of 18 variables, X = {A,..., 0}
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Another example: 18-vector Kochen—Specker

» A setof 18 variables, X = {A, ..., O}
» A set of outcomes O = {0,1}

» A measurement cover M = {Cy, ..., Cg}, whose contexts C;
correspond to the columns in the following table:

~ 3o v|&

SRS
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Empirical Models

Fix a measurement scenario (X, M, O).
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Empirical Models

Fix a measurement scenario (X, M, O).

Empirical model: family {ec}ccaq Where ec € Prob(OC) for C € M.

It specifies a probability distribution over the events in each context. These
correspond to the rows of our probability tables.
Compatibility condition: these distributions “agree on overlaps”, i.e.

Ve.crem- €clene: = €crlene -
where marginalisation of distributions: if D C C, d € Prob(O°),

do(s) == > d(1).

te0C, t|p=s
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Empirical Models

Fix a measurement scenario (X, M, O).

Empirical model: family {ec}ccaq Where ec € Prob(OC) for C € M.

It specifies a probability distribution over the events in each context. These
correspond to the rows of our probability tables.

Compatibility condition: these distributions “agree on overlaps”, i.e.
Ve.crem- €clene: = €crlene -
where marginalisation of distributions: if D C C, d € Prob(O°),

do(s) == > d(1).

te0C, t|p=s

For multipartite scenarios, compatibility = the no-signalling principle.
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Contextuality

A (compatible) empirical model is non-contextual if there exists a
global distribution d ¢ Prob(OX) (on the joint assignments of out-
comes to all measurements) that marginalises to all the ec:

Jdeprob(0Xy- Yeem- dlc = ec .
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Contextuality

A (compatible) empirical model is non-contextual if there exists a
global distribution d ¢ Prob(OX) (on the joint assignments of out-
comes to all measurements) that marginalises to all the ec:

Jdeprob(0Xy- Yeem- dlc = ec .

That is, we can glue all the local information together into a global con-
sistent description from which the local information can be recovered.

Contextuality:
family of data which is locally consistent but globally inconsistent.

The import of results such as Bell’s and Bell-Kochen—Specker’s theorems is
that there are empirical models arising from quantum mechanics that are con-
textual.
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Strong contextuality

Strong Contextuality:
no event can be extended to a
global assignment.
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Strong contextuality

Strong Contextuality:
no event can be extended to a
global assignment.

E.g. K-S, GHZ, the PR box:

A B [(0,0) (0,1) (1,00 (1,1)

a b1 Ve X X ve
ai b2 Ve X X ve
a b v X X v
ao bz X Ve Ve X
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:

Veem-dlc = ec.
Which fraction of a model admits a non-contextual explanation?
Consider subdistributions ¢ € SubProb(OX) such that:
Yeem- Cle < ec.

Non-contetual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight X over all convex decompositions
e=xe"C + (1 - \)¢

where eVC is a non-contextual model.
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:

Veem-dlc = ec.
Which fraction of a model admits a non-contextual explanation?
Consider subdistributions ¢ € SubProb(OX) such that:
Yeem- Cle < ec.

Non-contetual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight X over all convex decompositions
e= e’ + (1 - N)e¢
where "¢ is a non-contextual model. e°C is strongly contextual!

NCF(e) = A CF(e)=1-A
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(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find dcR”
such that Md = v¢
and d>0
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(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find dcR”
such that Md = v¢
and d>0

Computing the non-contextual fraction corresponds to solving the fol-
lowing linear program:

Find cecR”

maximising 1-¢€

subject to Mc < V¢

and c>0
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E.g. Equatorial measurements on GHZ(n)

Figure: Contextual fraction of empirical models obtained with equatorial
measurements at ¢¢ and ¢» on each qubit of |¢gHz(,)) With: (a) n = 3; (b)
n=4.
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Generalised Bell inequalities
An inequality for a scenario (X, M, O) is given by:

» a set of coefficients a = {a(C, $)} cc s scoc
» abound R
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Generalised Bell inequalities

An inequality for a scenario (X, M, O) is given by:
» a set of coefficients a = {a(C, $)} cc s scoc
» abound R
For a model e, the inequality reads as
B.(e) < R,

where
Ba(e) = Y. a(C,s)ec(s).

CeM,sc0¢
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Generalised Bell inequalities
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» abound R

For a model e, the inequality reads as

where
Ba(e) = Y. a(C,s)ec(s).
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Generalised Bell inequalities

An inequality for a scenario (X, M, O) is given by:
» a set of coefficients a = {a(C, $)} cc s scoc
» abound R

For a model e, the inequality reads as

where
Ba(e) = Y. a(C,s)ec(s).

CeM,sc0¢

Wilog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by every NC model. If it is
saturated by some NC model, the Bell inequality is said to be tight.
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Violation of a Bell inequality

A Bell inequality establishes a bound for the value of 5,(e) amongst
NC models.
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Violation of a Bell inequality

A Bell inequality establishes a bound for the value of 5,(e) amongst
NC models.

For a general (no-signalling) model e, the quantity is limited only by

laf == 3" max {a(C, s)|se oC}

CeM

The normalised violation of a Bell inequality («, R) by an empirical
model e is the value
max{0, B.(e) — R}
e = R
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Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.
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Proposition
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Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.

» The normalised violation by e of any Bell inequality is at most
CF(e).

» This bound is attained: there exists a Bell inequality whose
normalised violation by e is exactly CF(e).

» Moreover, this Bell inequality is tight at “the” non-contextual
model e¢ and maximally violated by “the” strongly contextual
model eS¢ for any decomposition:

e = NCF(e)eC + CF(e)e®C .
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Bell inequality violation and the contextual fraction
Quantifying Contextuality LP:

Find ceR’
maximising 1-¢€
subject to Mec < v°
and c>0

e=2eMC+(1-1)eSCwith A =1.-x*.
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Bell inequality violation and the contextual fraction

Quantifying Contextuality LP: Dual LP:
Find ceR” Find yeR”
maximising 1-¢€ minimising y-v®
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e=2eMC+(1-1)eSCwith A =1.-x*.

S Abramsky, R S Barbosa, S Mansfield 16/28



Bell inequality violation and the contextual fraction

Quantifying Contextuality LP: Dual LP:
Find ceR” Find yeR”
maximising 1-¢€ minimising y-v®
subject to Mec < v° subject to My > 1
and c>0 . and y>0

e=2eMC+(1-1)eSCwith A =1.-x*.
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Bell inequality violation and the contextual fraction

Quantifying Contextuality LP: Dual LP:
Find ceR” Find yeR”
maximising 1-¢€ minimising y-v®
subject to Mec < v° subject to My > 1
and c>0 . and y>0
e=2eMC+(1-1)eSCwith A =1.-x*.
a:=1-|Mly
Find acR”

maximising a-v®
subject to M a<0
and a<i1
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Bell inequality violation and the contextual fraction
Quantifying Contextuality LP: Dual LP:

Find ceR’
maximising 1-¢€
subject to Mec < v°
and c>0

e=2eMC+(1-1)eSCwith A =1.-x*. |:|

Find acR™
maximising a-v®
subject to M a<0
and a<i

computes tight Bell inequality
| | (separating hyperplane)
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Contextuality as a resource

v

More than one possible measure of contextuality.

v

What properties should a good measure satisfy?

v

Monotonicity wrt operations that do not introduce contextuality

v

Towards a resource theory
as for entanglement (e.g. LOCC), non-locality, . ..
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Algebra of empirical models

v

Consider operations on empirical models.

v

These should not increase contextuality.

v

We write type statements
e: (X, M,0)

to mean that e is a (compatible) emprical model on (X, M, O).

v

The operations remind one of process algebras.
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Operations

Relabelling ~ ela] : (X', M, O)
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Operations

e: (X,M,0)

Relabelling a: (X, M) = (X', M)

~ ela] : (X, M, 0)

For C € M,s: a(C) — O, €e[a]u(c)(s) = ec(soa™)
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Operations

Relabelling e 8(( A/\izl)g oy elal: (X.M0)
For C € M,s: a(C) — O, €e[a]u(c)(s) = ec(soa™)
Restriction e: (X, M, Q) ~ e M (X M, 0)

(X', M) < (X, M)
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Operations

Relabelling e 82 A/\izl)z oy elal: (X.M0)
‘ For C € M,s: a(C) — O, €e[a]u(c)(s) = ec(soa™) ‘
Restriction 6:(X,M,0) ~ el M (X M O)

X M) < (X, M)

ForC' e M',s: C' — O, (e | M')c/(8) := eclc/(S)
withany Ce M st. C'C C
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Operations

Relabelling e 82 A/\izl)z oy elal: (X.M0)
‘ For C € M,s: a(C) — O, €e[a]u(c)(s) = ec(soa™) ‘
Restriction 6:(X,M,0) ejfM (X M, O)

(X', M) < (X, M)

ForC' e M',s: C' — O, (e | M')c/(8) := eclc/(S)
withany Ce M st. C'C C

e: (X,M,0)
f:

Coarse-graining 0.0

— e/f: (X,M,0)
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Operations

Relabelling e 82 A/\izl)z oy elal: (X.M0)
‘ For C € M,s: a(C) — O, €e[a]u(c)(s) = ec(soa™) ‘
Restriction 6:(X,M,0) ~ el M (X M O)

X M) < (X, M)

ForC' e M',s: C' — O, (e | M')c/(8) := eclc/(S)
withany Ce M st. C'C C

e: (X,M,0)

Coarse-graining P N

— e/f: (X,M,0)

[ForCeM.s:C— 0',(e/N)c(s) = oo pors €0(!)
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Operations

Mixing e € (X,M,0)

X € [0,1] ~ e+, € (X, M,0)
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Operations
Mixing e € (X,M,0)

X € [0,1] ~ e+, € (X, M,0)

ForCeM,s:C— O,
(e+x €)c(s) == Aec(s) + (1 — A)ex(s)
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Operations

Mixing 6.6 (X MO | oy e (X, MO

X € [0,1]
ForCeM,s:C— O,
(e+x €)c(s) := Aec(s) + (1 — Neg(s)
Choice e XMO) _ ege (XUX, MUM,O)

e (X', M, O)
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Operations

Mixing 6.6 (X MO | oy e (X, MO

e [0.1]
ForCeM,s:C— O,
(e+x €)c(s) := Aec(s) + (1 — Neg(s)
Choice e XMO) _ ege (XUX, MUM,O)

e (X', M, 0)

ForCe M, (e&€')c:=ec
For D e M', (e&€')p := €p
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Operations
Mixing e € (X,M,0)

xeo,1] ~ e+, € (X, M,0)

ForCeM,s: C— O,
(e+x €)c(s) :=Aec(s) + (1 — N)ex(s)

e: (X, M,0)

H ~ / . ! /
Choice ¢ (X', M, 0) e&e : (XuX , MumM, O)

ForCe M, (e&€')c:=ec
For D e M', (e&€')p := €p

e: (X, M,O)

& (X, Mm,0) T eDEXUXLMAMLO)

Tensor
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Operations
Mixing e, e (X,M,0)

xe[0,1] ~ e+ € (X,M,0)

ForCeM,s:C— O,
(e +x €)c(8) := Aeg(s) + (1 — Nei(s)

e: (X, M,0)

/ . ! !/
e/:<x/,M/,O> We&e(XUX,MUM,O>

Choice

ForCe M, (e&€')c:=ec
For D e M', (e&€')p := €p

e: (X, M,0)

¢ (X, M0 e XUX MM,O)

Tensor

MxM ={CuD|CeM,De M}
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Operations
s e,e/:<XaM7O> / .
Mixing X € [0,1] ~ e+ € (X, M,0)

ForCeM,s: C— O,
(e+x €)c(s) :=Aec(s) + (1 — N)ex(s)

- e: (X, M,0) . ) /
Choice ¢ (X', M, 0) ~ e&e (XUuX , MumM, O)

ForCe M, (e&¢€')c :=ec
For D e M', (e&€')p := €p

e: (X,M,0) , , ,
Tensor ¢ (X', M'.0) ~ ee ((XUX , MxM O)

MxM ={CuD|CeM,De M}

ForCe M,De M';s={(s1,8): CuUD— O,
(e ® el)0uD<S1,Sz> = 60(81) eb(sz)
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Operations and the contextual fraction
Relabeling  CF(e[a]) = CF(e)

Restriction CF(e | M) < CF(e)

Coarse-graining CF(e/f) < CF(e)

Mixing CF(e+, €) < ACF(e) + (1 — \)CF(¢/)

Choice CF(e& €') = max{CF(e),CF(¢')}
NCF(e& €') = min{NCF(e),NCF(¢e')}

Tensor CF(e1 ® e2) = CF(ey) + CF(e2) — CF(e1)CF(e2)
NCF(er ® e2) = NCF(e1)NCF(e2)
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Contextual fraction and advantages

» Contextuality has been associated with quantum advantage in
information-processing and computational tasks.

» Measure of contextuality ~~ to quantify such advantages.
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Contextual fraction and MBQC
E.g. Raussendorf (2013) /2-MBQC
» measurement-based quantum computing scheme
(m input bits, / output bits, n parties)

» classical control:

» pre-processes input
» determines the flow of measurements
» post-processes to produce the output

only Z,-linear computations.

» additional power to compute non-linear functions resides in
certain resource empirical models.

» Raussendorf (2013): If an /2-MBQC deterministically computes
a non-linear Boolean function f : 2™ — 2/ then the resource
must be strongly contextual.

» Probabilistic version: non-linear function computed with
sufficently large probability of success implies contextuality.
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Contextual fraction and MBQC

» Goal: Compute Boolean function f : 2" — 2/
» Hardness of the problem
v(f) :==min{d(f,g) | g is Z»-linear}
(average distance between f and closest Z,-linear function)

where average distance between Boolean functions f and g is

d(f,g) =27 "[{ie 2" [ (i) # g(i)}

» (2-MBQC computing f with average (over all 2™ possible inputs)
probability of success ps.

» Then, 1 —ps > NCF(e)v(f).

S Abramsky, R S Barbosa, S Mansfield 24/28



Contextual fraction and cooperative games

Constraint system (V, D, T)
» V finite set of variables
» D finite domain of values

» [ finite set of formulae on the variables in V

Write V/(¢) for variables that occur in ¢.
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Contextual fraction and cooperative games

» Given ¢ €T as input, reply with assignment s: V(¢) — D.
» QOver several runs, consistent answers for the same variable.

» Probabilistic strategy ~~ empirical model.

» Goal: s = ¢.
Probability of sucess ps assumes all input ¢ equally probable.

» If I' is kconsistent, i.e. at most k formulae are jointly satisfiable,
hardness of the task is 2-£.
(cf. Abramsky—Hardy “Logical Bell inequalities”)

. = —k
» We have: 1 — ps < NCF %
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» Find quasi-probability distribution g on OX such that q|c = ec

> ...with minimal weight |g| = 1 + 2.
The value € provides alternative measure of contextuality.
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Further directions

» Negative Probabilities Measure
» Alternative relaxation of global probability distribution requirement.
» Find quasi-probability distribution g on OX such that q|c = ec

> ...with minimal weight |g| = 1 + 2.
The value € provides alternative measure of contextuality.

» How are these related?

» Corresponds to affine decomposition
e=(1+e)er —ee
with e and e, both non-contextual.
» Corresponding inequalities |B.(e)| < R.

» Cyclic measurement scenarios
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Further directions

» Negative Probabilities Measure
» Signalling models

» Empirical data may sometimes not satisfy no-signalling
(compatibility).

» Given a signalling table, can we quantify amount of no-signalling
and contextuality?

» Connections with Contextuality-by-Default (Dzhafarov et al.)
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Further directions

» Negative Probabilities Measure
» Signalling models
» Resource theory and algebra of empirical models

» Sequencing (~ causality?)

» Cf. “Noncontextual wirings”
Amaral, Cabello, Terra Cunha, & Aoclita (2017)

» What (else) is this resource useful for?
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Questions...
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