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Quantum physics and logic

Traditional quantum logic
Birkhoff & von Neumann (1936), ‘ The logic of quantum mechanics'.

» P(H), the projectors on a Hilbert space H, is the lattice of propositions.
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» P(H), the projectors on a Hilbert space H, is the lattice of propositions.
» Distributivity fails: pA(gVr)#(pAqg)V(pAr)
» What is the operational meaning of p A g, when p and ¢ do not commute?

Partial Boolean algebras
Kochen & Specker (1965), ‘ The problem of hidden variables in quantum mechanics’.

» This seminal work on contextuality used partial Boolean algebras, which only admit
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Quantum physics and logic

Traditional quantum logic
Birkhoff & von Neumann (1936), ‘ The logic of quantum mechanics'.

» P(H), the projectors on a Hilbert space H, is the lattice of propositions.
» Distributivity fails: pA(gVr)#(pAqg)V(pAr)
» What is the operational meaning of p A g, when p and ¢ do not commute?

Partial Boolean algebras
Kochen & Specker (1965), ‘ The problem of hidden variables in quantum mechanics’.

» This seminal work on contextuality used partial Boolean algebras, which only admit
physically meaningful operations.
Kochen (2015), ‘A reconstruction of quantum mechanics'.

» Kochen develops a large part of foundations of quantum theory in this framework.
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Overview

» Partial Boolean algebras

> Free extensions of comeasurability

v

Contextuality

v

Exclusivity principles

v

Tensor products
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Boolean algebras

Boolean algebra (A,0,1,—,V,A):
> aset A

» constants 0,1 € A

» a unary operation - : A— A

» binary operations V, A : A2 — A
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Boolean algebras

Boolean algebra (A,0,1,—,V,A):

> aset A

» constants 0,1 € A

» a unary operation - : A— A

» binary operations V, A : A2 — A

satisfying the usual axioms: (A,V,0) and (A, A, 1) are commutative monoids,
V and A distribute over each other,
aV-a=1land aA—-a=0.

E.g.: (P(X),2,X,U,N), in particular 2 = {0,1} = P({x}).
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Partial Boolean algebras

Partial Boolean algebra (A, ®,0,1, =, V, A):
> aset A

» a reflexive, symmetric binary relation ® on A, read commeasurability or compatibility

» constants 0,1 € A
> (total) unary operation =: A — A
» (partial) binary operations V,A: ® — A
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Partial Boolean algebras

Partial Boolean algebra (A, ®,0,1, =, V, A):

> aset A

» a reflexive, symmetric binary relation ® on A, read commeasurability or compatibility
» constants 0,1 € A

> (total) unary operation =: A — A

» (partial) binary operations V,A: ® — A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-
commeasurable elements which is a Boolean algebra under the restriction of the given operations.

E.g.: P(H), the projectors on a Hilbert space H.
Conjunction, i.e. product of projectors, becomes partial, defined only on commuting projectors.
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The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the opera-
tions wherever defined. This gives a category pBA.
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Heunen & van der Berg (2012), ‘Non-commutativity as a colimit’'.

» Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.

» Coproduct: A @ B is the disjoint union of A and B with identifications 04 = Og and
14 = 15. No other commeasurabilities hold between elements of A and elements of B.

» Coequalisers, and general colimits: shown to exist via Adjoint Functor Theorem.
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The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the opera-
tions wherever defined. This gives a category pBA.

Heunen & van der Berg (2012), ‘Non-commutativity as a colimit’'.

>

Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.

Coproduct: A @ B is the disjoint union of A and B with identifications 04 = Og and
14 = 15. No other commeasurabilities hold between elements of A and elements of B.

Coequalisers, and general colimits: shown to exist via Adjoint Functor Theorem.

We give a direct construction of colimits.

More generally, we show how to freely generate from a given partial Boolean algebra a new
one satisfying prescribed additional commeasurability relations.
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Free extensions of comeasurability

Theorem
Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean
algebra A[®@)] such that:
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Free extensions of comeasurability

Theorem

Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean
algebra A[®@)] such that:

> There is a pBA-morphism 1 : A — A[©] satisfying a@ b = n(a) O a[e) 1(b)-

» For every partial Boolean algebra B and pBA-morphism h : 14 — B satisfying
a®b = h(a) ©p h(b), there is a unique homomorphism h : A[®] — B such that

A Ale]

R

B
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Free extensions of comeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasur-
ability and equivalence relations over a set of syntactic terms generated from A.

» Generators G := {1(a) | a € A}.

» Pre-terms P: closure of G under Boolean operations and constants.
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Free extensions of comeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasur-
ability and equivalence relations over a set of syntactic terms generated from A.

» Generators G := {1(a) | a € A}.

» Pre-terms P: closure of G under Boolean operations and constants.

v

Define inductively:
> a predicate | (definedness or existence)
> a binary relation ® (commeasurability)
> a binary relation = (equivalence)

v

T={teP|tl}.

v

Al®] = T/ =, with obvious definitions for © and operations.
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acA a®ab a®@b
1(a)d 1(a) ©@u(b) 1(a) @ u(b)
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The inductive construction

acA a®ab a®@b
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a®ab
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The inductive construction
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The inductive construction

acA a®ab a®@b
1(a)d 1(a) © 1(b) 1(a) © 1(b)
a®ab
0=1(02), 1= 1(1a), (3) = ((~na) a) A(b) = 2 hab), 1(a) V i(b) = 1(a Va B)
tOu t
0}, 14 tAul, tVul -t
t) tOu tOu, tOv, UV tOu
toOt, te0, tol uGt tAUQV, tVu®v “tOu
t) t=u t=u, u=v t=u, u®Ov
t=t u=t t=v tOv
t(X) =Bool u(X), /\,')jVIQVj t=t, u=uv,toOu t=u
t(V) = u(V) tAu=t' AU, tVu=t vy -t=-u
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Coequalisers and colimits

A variation of this construction is also useful, where instead of just forcing commeasurability,
one forces equality by the additional rule

a®a
1(a) =(2)
This builds a pBA A[e, =].
Theorem

Let h: A— B be a pBA-morphism such that a© a' = h(a) = h(a'). Then there is a
unique pBA-morphism h : A[®,=] — B such that h= hon.

This can be used to give an explicit construction of coequalisers, and hence general colimits, in
pBA.
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Kochen—Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors P(H) into
a (non-trivial) Boolean algebra when dimH > 3.
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Kochen—Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors P(H) into
a (non-trivial) Boolean algebra when dimH > 3.

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A:

» A can be embedded in a Boolean algebra

» there is a homomorphism A — B, for some (non-trivial) Boolean algebra B, whose
restriction to each Boolean subalgebra of A is an embedding

» there is a homomorphism A — B for some (non-trivial) Boolean algebra B
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KS conditions

» The first condition is equivalent to:
There are enough homomorphisms A — 2 to separate elements of A
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KS conditions

» The first condition is equivalent to:
There are enough homomorphisms A — 2 to separate elements of A

» The third is equivalent to:
There is some homomorphism A — 2.

Thus the strongest contextuality property is:

There is not even one homomorphism A — 2

Note the analogy with strong vs. logical contextuality.
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An apparent contradiction

» BA is a full subcategory of pBA.

» A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.
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An apparent contradiction

v

BA is a full subcategory of pBA.

v

A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.

v

Let B be the colimit in BA of the same diagram C(A).

v

The cone from C(A) to B is also a cone in pBA,

v

hence there is a mediating morphism A — B!
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An apparent contradiction

v

BA is a full subcategory of pBA.

v

A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.

v

Let B be the colimit in BA of the same diagram C(A).

v

The cone from C(A) to B is also a cone in pBA,

v

hence there is a mediating morphism A — B!

But note that BA is an equational variety of algebras over Set.

As such, it is complete and cocomplete, but it also admits the one-element algebra 1, in which
0 = 1. Note that 1 does not have a homomorphism to 2.
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KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.
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KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!
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KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem
Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to 2.

2. The colimit in BA of the diagram C(A) of boolean subalgebras of A in BA is 1.
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KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem
Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to 2.
2. The colimit in BA of the diagram C(A) of boolean subalgebras of A in BA is 1.

3. A[A% =1.
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Contextuality in partial Boolean algebras

An advantage of partial Boolean algebras is that the K-S property provides an intrinsic, logical
approach to defining state-independent contextuality.
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Contextuality in partial Boolean algebras

An advantage of partial Boolean algebras is that the K-S property provides an intrinsic, logical
approach to defining state-independent contextuality.

But where do states come in?

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 14/28



States

Definition
A state or probability valuation on a partial Boolean algebra A is a map v : A — [0, 1] such

that:

1. v(0) =0;

2. v(—x) =1-rv(x);

3. forall x,y € Awith x @y, v(x Vy)+v(x Ay) =v(x)+ v(y).

15/28
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States

Definition
A state or probability valuation on a partial Boolean algebra A is a map v : A — [0, 1] such

that:

1. v(0) =0;

2. v(—x) =1-rv(x);

3. forall x,y € Awith x @y, v(x Vy)+v(x Ay) =v(x)+ v(y).

Proposition
States can be characterised as the maps v : A — [0, 1] such that, for every Boolean

subalgebra B of A, the restriction of v to B is a finitely additive probability measure on B.

15/28
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We can define a state v : A — [0, 1] to be probabilically non-contextual if v extends to A[A?];
that is, there is a state 0 : A[A?] — [0,1] such that v = D o 7.
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We can define a state v : A — [0, 1] to be probabilically non-contextual if v extends to A[A?];
that is, there is a state 0 : A[A?] — [0,1] such that v = D o 7.

By the universal property of A[A?], this is equivalent to asking that there is some Boolean algebra
B, morphism h: A — B, and state ¥ : B — [0,1] such that v =D o).
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We can define a state v : A — [0, 1] to be probabilically non-contextual if v extends to A[A?];
that is, there is a state 0 : A[A?] — [0,1] such that v = D o 7.

By the universal property of A[A?], this is equivalent to asking that there is some Boolean algebra
B, morphism h: A — B, and state ¥ : B — [0,1] such that v =D o).

Note that if A is K-S, A[A?] =1, and there is no state on 1.

S Abramsky, RS Barbosa

Partial Boolean algebras and the logical exclusivity principle 16/28



Connection with the sheaf-theoretic approach

Given a ‘graphical measurement scenario’ (where compatibility is specified simply by a binary
relation), we can construct a partial Boolean algebra such that:
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Connection with the sheaf-theoretic approach

Given a ‘graphical measurement scenario’ (where compatibility is specified simply by a binary
relation), we can construct a partial Boolean algebra such that:

» states correspond to no-disturbance/no-signalling empirical models.

> there are corresponding formulations of
> probabilistic contextuality
> logical contextuality

» strong contextuality.
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Exclusivity principles for partial Boolean algebras

» No-distubance ensures that the probabilistic outcome of a compatible subset of
measurements is independent of which other compatible measurements are performed.
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> A lot of effort has gone into trying to characterise the set of quantum behaviours by
imposing additional, physically motivated conditions, leading to various approximations from
above to this quantum set.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 18/28



Exclusivity principles for partial Boolean algebras
» No-distubance ensures that the probabilistic outcome of a compatible subset of
measurements is independent of which other compatible measurements are performed.
» This is satisfied by probabilities that can be realised in quantum mechanics.
» However, this condition is much weaker than quantum realisability (e.g. PR box).

> A lot of effort has gone into trying to characterise the set of quantum behaviours by
imposing additional, physically motivated conditions, leading to various approximations from
above to this quantum set.

» We consider two exclusivity principles:
> one acts at the ‘logical’ level, i.e. the level of events or elements of a partial Boolean algebra
> the other acts at the ‘probabilistic’ level, applying to states of a partial Boolean algebra.
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Exclusive events

Let A be a partial Boolean algebra.

For a,b € A, we write a< btomeana® band aAb=a.
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Exclusive events

Let A be a partial Boolean algebra.

For a,b € A, we write a< btomeana® band aAb=a.

Definition (Exclusive events)

Two elements a, b € A are said to be exclusive, written a L b, if there is a ¢ € A such that
a®cwitha<cand b® c with b < —c.

» Note that a L b is a weaker requirement than a A b= 0.
» The two would be equivalent in a Boolean algebra.

» But in a general partial Boolean algebra, there might be exclusive events that are not
commeasurable (and for which, therefore, the A operation is not defined).
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LEP and PEP

Definition
A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are
logically exclusive are also commeasurable, i.e. if L C ©.
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Definition
A state v : A — [0,1] on A is said to satisfy the probabilistic exclusivity principle (PEP) if
for any set S C A of pairwise exclusive elements, i.e. such that Va,b€ S. (a=b V a L b),

then > sv(a) < 1.
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Definition
A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are
logically exclusive are also commeasurable, i.e. if L C ©.

We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras
satisfying LEP.

Definition
A state v : A — [0,1] on A is said to satisfy the probabilistic exclusivity principle (PEP) if
for any set S C A of pairwise exclusive elements, i.e. such that Va,b€ S. (a=b V a L b),

then > sv(a) < 1.
A partial Boolean algebra is said to satisfy PEP if all of its states satisfy PEP.

> In a Boolean algebra, > _sv(a) <1 for any set S of elements st Va,b€ S. aAnb=0.
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LEP vs PEP

Proposition (LEP = PEP)
Let A be a partial Boolean algebra satisfying LEP. Then, any state on A satisfies PEP.

> In a general partial Boolean algebra A, not all states need satisfy PEP.
» E.g.: pba of (4,2,2) Bell scenario, state: tensor product of two PR boxes.

» But we can construct a new pba whose states yield states of A that satisfy PEP.

Theorem
A state v : A — [0, 1] satisfies PEP if there is a state U of A[L] such that

A AlL]

N

[0,1]
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A reflective adjunction for logical exclusivity

» It's not clear whether A[_L] necessarily satisfies LEP.

» While the principle holds for all its elements in the image of n: A — A[l], it may fail to
hold for other elements in A[L].
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A reflective adjunction for logical exclusivity

v

It's not clear whether A[_L] necessarily satisfies LEP.

v

While the principle holds for all its elements in the image of  : A — A[L], it may fail to
hold for other elements in A[L].

» But we can freely generate, from any given pba, a new pba satisfying LEP.

v

This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
Stone—Cech compactification to form a compact Hausdorff space from any topological space.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 22/28



A reflective adjunction for logical exclusivity

v

It's not clear whether A[_L] necessarily satisfies LEP.

v

While the principle holds for all its elements in the image of  : A — A[L], it may fail to
hold for other elements in A[L].

» But we can freely generate, from any given pba, a new pba satisfying LEP.

v

This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
Stone—Cech compactification to form a compact Hausdorff space from any topological space.

Theorem
The category epBA is a reflective subcategory of pBA, i.e. the inclusion functor
| : epBA — pBA has a left adjoint X : pPBA — epBA.
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A reflective adjunction for logical exclusivity

Theorem

Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra
X(A) = A[L]* satisfying LEP such that:

» there is a homomorphism 1 : A — A[L]*;

> for any homomorphism h: A — B where B is a partial Boolean algebra B satisfying LEP,
there is a unique homomorphism h : A[L]* — B such that:

A AlL]*

N

B
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A reflective adjunction for logical exclusivity

Theorem

Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra
X(A) = A[L]* satisfying LEP such that:

> there is a homomorphism 1 : A — A[L]*;

> for any homomorphism h: A — B where B is a partial Boolean algebra B satisfying LEP,
there is a unique homomorphism h : A[L]* — B such that:

A AlL]*

N

B

Proof. Adapt our earlier construction, adding the following rule to the inductive system:

UNt=u, vA-t=v
u®v
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Tensor products of partial Boolean algebras



A (first) tensor product by generators and relations

Heunen & van den Berg show that pBA has a monoidal structure:

A® B :=colim{C+ D | CeC(A),DeC(B)}

where C + D is the coproduct of Boolean algebras.
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Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the
Adjoint Functor Theorem.
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A (first) tensor product by generators and relations

Heunen & van den Berg show that pBA has a monoidal structure:
A® B :=colim{C+ D | CeC(A),DeC(B)}
where C + D is the coproduct of Boolean algebras.

Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the
Adjoint Functor Theorem.

We can use our construction to give an explicit generators-and-relations description.
Proposition
Let A and B be partial Boolean algebras. Then

A©B = (A® B)[0]

where (@ is the relation on the carrier set of A@® B given by 1(a) © y(b) for alla€ A and b € B.
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A more expressive tensor product
» There functor P : Hilb — pBA :: % — P(#H) is lax monoidal.

» Embedding P(H) ® P(K) — P(H ® K) induced by the obvious embeddings
P(H) — PHoK):p—pRland P(K) — P(H®K):1gr—1®q
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» But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:

» The images of P(H) and P(K) generate P(H ® K), for any finite-dimensional H and K.
> This is used to justify the claim contradicted above.
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A more expressive tensor product
» There functor P : Hilb — pBA :: % — P(#H) is lax monoidal.

» Embedding P(H) ® P(K) — P(H ® K) induced by the obvious embeddings
P(H) — PHoK):p—pRland P(K) — P(H®K):1gr—1®q

» This is far from being surjective:
» Take H=K =C?
There are (many) homomorphisms P(C?) — 2,
which lift to homomorphisms P(C?) ® P(C?) — 2.
But, by KS, there are no homomorphisms P(C*) = P(C? ® C?) — 2
Indeed, quantum non-classicality emerges in the passage from P(C?) to P(C*) = P(C? ® C?).

v

A2 A

» But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:

» The images of P(H) and P(K) generate P(H ® K), for any finite-dimensional H and K.
> This is used to justify the claim contradicted above.
> The gap is that more relations hold in P(H ® K) than in P(H) ® P(K).

> Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.
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A more expressive tensor product (ctd)

> In constructing A® B = (A @ B)[D] by the inductive rules, if F t|, then  ul for every
subterm u of t.
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» In constructing A® B = (A @ B)[D] by the inductive rules, if - t], then F u] for every
subterm u of t.

» This is too strong to capture the full logic of the Hilbert space tensor product.
» Consider projectors p; ® po and g1 ® go.
» to show that they are orthogonal, we have a disjunctive requirement: p; 1 q; or pa_lqs.

» we are entitled to conclude that p; ® p, and q; ® g» are commeasurable, even though (say)
p> and @, are not
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A more expressive tensor product (ctd)

» In constructing A® B = (A @ B)[D] by the inductive rules, if - t], then F u] for every
subterm u of t.

» This is too strong to capture the full logic of the Hilbert space tensor product.
» Consider projectors p; ® po and g1 ® go.
» to show that they are orthogonal, we have a disjunctive requirement: p; 1 q; or pa_lqs.

» we are entitled to conclude that p; ® p, and q; ® g» are commeasurable, even though (say)
p> and @, are not

Indeed, the idea that propositions can be defined on quantum systems even though
subexpressions are not is emphasized by Kochen.
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Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.
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This leads us to define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; X = X o ®. Explicitly, we define
the logical exclusivity tensor product by

AR B =(A® B)[L]" = (Ae B)[D][L]".
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Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; X = X o ®. Explicitly, we define
the logical exclusivity tensor product by

AR B = (A® B)[L]" = (Aa® B)[O][L]".
» This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
wrt this tensor product.

> It remains to be seen how close it gets us to the full Hilbert space tensor product.
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A limitative result

» Can extending commeasurability by a relation ® induce the K-S property in A[®] when it
did not hold in A?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra, and © C A? a relation on A. Then A is K-S if and only if
Al@] is K-S.
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Corollary

If A and B are not K-S, then neither is A® B[ L]x.
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Under the conjecture that A[L]* coincides with iterating A[L] to a fixpoint, this would imply
that the LE tensor product AX B never induces a K-S paradox if none was present in A or B.
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A limitative result

» Can extending commeasurability by a relation ® induce the K-S property in A[®] when it
did not hold in A?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra, and © C A? a relation on A. Then A is K-S if and only if
Al@] is K-S.

Corollary
If A and B are not K-S, then neither is A® B[ L]x.

Under the conjecture that A[L]* coincides with iterating A[L] to a fixpoint, this would imply
that the LE tensor product AX B never induces a K-S paradox if none was present in A or B.

In particular, P(C?) X P(C?) does not have the K-S property.

So, we need a stronger tensor product to track this emergent complexity in the quantum case.
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Questions...



