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Quantum physics and logic

Traditional quantum logic
Birkhoff & von Neumann (1936), ‘The logic of quantum mechanics’.

I P(H), the projectors on a Hilbert space H, is the lattice of propositions.

I Distributivity fails: p ∧ (q ∨ r) 6= (p ∧ q) ∨ (p ∧ r)

I What is the operational meaning of p ∧ q, when p and q do not commute?

Partial Boolean algebras
Kochen & Specker (1965), ‘The problem of hidden variables in quantum mechanics’.

I This seminal work on contextuality used partial Boolean algebras, which only admit
physically meaningful operations.

Kochen (2015), ‘A reconstruction of quantum mechanics’.

I Kochen develops a large part of foundations of quantum theory in this framework.
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Overview

I Partial Boolean algebras

I Free extensions of comeasurability

I Contextuality

I Exclusivity principles

I Tensor products
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Boolean algebras

Boolean algebra 〈A, 0, 1,¬,∨,∧〉:

I a set A

I constants 0, 1 ∈ A

I a unary operation ¬ : A −→ A

I binary operations ∨,∧ : A2 −→ A

satisfying the usual axioms: 〈A,∨, 0〉 and 〈A,∧, 1〉 are commutative monoids,
∨ and ∧ distribute over each other,
a ∨ ¬a = 1 and a ∧ ¬a = 0.

E.g.: 〈P(X ),∅,X ,∪,∩〉, in particular 2 = {0, 1} ∼= P({?}).
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Partial Boolean algebras

Partial Boolean algebra 〈A,�, 0, 1,¬,∨,∧〉:

I a set A

I a reflexive, symmetric binary relation � on A, read commeasurability or compatibility

I constants 0, 1 ∈ A

I (total) unary operation ¬ : A −→ A

I (partial) binary operations ∨,∧ : � −→ A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-
commeasurable elements which is a Boolean algebra under the restriction of the given operations.

E.g.: P(H), the projectors on a Hilbert space H.
Conjunction, i.e. product of projectors, becomes partial, defined only on commuting projectors.
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The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the opera-
tions wherever defined.This gives a category pBA.

Heunen & van der Berg (2012), ‘Non-commutativity as a colimit’.

I Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.

I Coproduct: A⊕ B is the disjoint union of A and B with identifications 0A = 0B and
1A = 1B . No other commeasurabilities hold between elements of A and elements of B.

I Coequalisers, and general colimits: shown to exist via Adjoint Functor Theorem.

I We give a direct construction of colimits.

I More generally, we show how to freely generate from a given partial Boolean algebra a new
one satisfying prescribed additional commeasurability relations.
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Free extensions of comeasurability



Free extensions of comeasurability

Theorem
Given a partial Boolean algebra A and a binary relation } on A, there is a partial Boolean
algebra A[}] such that:

I There is a pBA-morphism η : A −→ A[}] satisfying a} b =⇒ η(a)�A[}] η(b).

I For every partial Boolean algebra B and pBA-morphism h : A −→ B satisfying
a} b =⇒ h(a)�B h(b), there is a unique homomorphism ĥ : A[}] −→ B such that

A A[}]

B

h

η

ĥ
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Free extensions of comeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasur-
ability and equivalence relations over a set of syntactic terms generated from A.

I Generators G := {ı(a) | a ∈ A}.

I Pre-terms P: closure of G under Boolean operations and constants.

I Define inductively:
I a predicate ↓ (definedness or existence)
I a binary relation � (commeasurability)
I a binary relation ≡ (equivalence)

I T := {t ∈ P | t↓}.

I A[}] = T/ ≡, with obvious definitions for � and operations.
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The inductive construction

a ∈ A

ı(a)↓
a�A b

ı(a)� ı(b)

a} b

ı(a)� ı(b)

0 ≡ ı(0A), 1 ≡ ı(1A), ¬ı(a) ≡ ı(¬Aa)

a�A b

ı(a) ∧ ı(b) ≡ ı(a ∧A b), ı(a) ∨ ı(b) ≡ ı(a ∨A b)

0↓, 1↓
t � u

t ∧ u↓, t ∨ u↓
t↓
¬t↓

t↓
t � t, t � 0, t � 1

t � u

u � t

t � u, t � v , u � v

t ∧ u � v , t ∨ u � v

t � u

¬t � u

t↓
t ≡ t

t ≡ u

u ≡ t

t ≡ u, u ≡ v

t ≡ v

t ≡ u, u � v

t � v

t(~x) ≡Bool u(~x),
∧

i,j vi � vj

t(~v) ≡ u(~v)

t ≡ t ′, u ≡ u′, t � u

t ∧ u ≡ t ′ ∧ u′, t ∨ u ≡ t ′ ∨ u′
t ≡ u

¬t ≡ ¬u
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u � t

t � u, t � v , u � v

t ∧ u � v , t ∨ u � v

t � u

¬t � u

t↓
t ≡ t

t ≡ u

u ≡ t

t ≡ u, u ≡ v

t ≡ v

t ≡ u, u � v

t � v

t(~x) ≡Bool u(~x),
∧

i,j vi � vj

t(~v) ≡ u(~v)

t ≡ t ′, u ≡ u′, t � u

t ∧ u ≡ t ′ ∧ u′, t ∨ u ≡ t ′ ∨ u′
t ≡ u

¬t ≡ ¬u
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Coequalisers and colimits

A variation of this construction is also useful, where instead of just forcing commeasurability,
one forces equality by the additional rule

a} a′

ı(a) ≡ ı(a′)

This builds a pBA A[},≡].

Theorem
Let h : A −→ B be a pBA-morphism such that a} a′ =⇒ h(a) = h(a′). Then there is a
unique pBA-morphism ĥ : A[},≡] −→ B such that h = ĥ ◦ η.

This can be used to give an explicit construction of coequalisers, and hence general colimits, in
pBA.
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Contextuality



Kochen–Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors P(H) into
a (non-trivial) Boolean algebra when dimH ≥ 3.

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A:

I A can be embedded in a Boolean algebra

I there is a homomorphism A→ B, for some (non-trivial) Boolean algebra B, whose
restriction to each Boolean subalgebra of A is an embedding

I there is a homomorphism A→ B for some (non-trivial) Boolean algebra B
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KS conditions

I The first condition is equivalent to:
There are enough homomorphisms A→ 2 to separate elements of A

I The third is equivalent to:
There is some homomorphism A→ 2.

Thus the strongest contextuality property is:

There is not even one homomorphism A→ 2

Note the analogy with strong vs. logical contextuality.
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An apparent contradiction

I BA is a full subcategory of pBA.

I A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.

I Let B be the colimit in BA of the same diagram C(A).

I The cone from C(A) to B is also a cone in pBA,

I hence there is a mediating morphism A −→ B !

But note that BA is an equational variety of algebras over Set.

As such, it is complete and cocomplete, but it also admits the one-element algebra 1, in which
0 = 1. Note that 1 does not have a homomorphism to 2.
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KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem
Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to 2.

2. The colimit in BA of the diagram C(A) of boolean subalgebras of A in BA is 1.

3. A[A2] = 1.
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Contextuality in partial Boolean algebras

An advantage of partial Boolean algebras is that the K-S property provides an intrinsic, logical
approach to defining state-independent contextuality.

But where do states come in?
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States

Definition
A state or probability valuation on a partial Boolean algebra A is a map ν : A −→ [0, 1] such
that:

1. ν(0) = 0;

2. ν(¬x) = 1− ν(x);

3. for all x , y ∈ A with x � y , ν(x ∨ y) + ν(x ∧ y) = ν(x) + ν(y).

Proposition
States can be characterised as the maps ν : A −→ [0, 1] such that, for every Boolean
subalgebra B of A, the restriction of ν to B is a finitely additive probability measure on B.
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We can define a state ν : A→ [0, 1] to be probabilically non-contextual if ν extends to A[A2];
that is, there is a state ν̂ : A[A2]→ [0, 1] such that ν = ν̂ ◦ η.

By the universal property of A[A2], this is equivalent to asking that there is some Boolean algebra
B, morphism h : A→ B, and state ν̂ : B → [0, 1] such that ν = ν̂ ◦ η.

Note that if A is K-S, A[A2] = 1, and there is no state on 1.
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Connection with the sheaf-theoretic approach

Given a ‘graphical measurement scenario’ (where compatibility is specified simply by a binary
relation), we can construct a partial Boolean algebra such that:

I states correspond to no-disturbance/no-signalling empirical models.

I there are corresponding formulations of

I probabilistic contextuality

I logical contextuality

I strong contextuality.
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Exclusivity principles for partial Boolean algebras



Exclusivity principles for partial Boolean algebras

I No-distubance ensures that the probabilistic outcome of a compatible subset of
measurements is independent of which other compatible measurements are performed.

I This is satisfied by probabilities that can be realised in quantum mechanics.

I However, this condition is much weaker than quantum realisability (e.g. PR box).

I A lot of effort has gone into trying to characterise the set of quantum behaviours by
imposing additional, physically motivated conditions, leading to various approximations from
above to this quantum set.

I We consider two exclusivity principles:
I one acts at the ‘logical’ level, i.e. the level of events or elements of a partial Boolean algebra
I the other acts at the ‘probabilistic’ level, applying to states of a partial Boolean algebra.
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Exclusive events

Let A be a partial Boolean algebra.

For a, b ∈ A, we write a ≤ b to mean a� b and a ∧ b = a.

Definition (Exclusive events)
Two elements a, b ∈ A are said to be exclusive, written a ⊥ b, if there is a c ∈ A such that
a� c with a ≤ c and b � c with b ≤ ¬c .

I Note that a ⊥ b is a weaker requirement than a ∧ b = 0.

I The two would be equivalent in a Boolean algebra.

I But in a general partial Boolean algebra, there might be exclusive events that are not
commeasurable (and for which, therefore, the ∧ operation is not defined).
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LEP and PEP

Definition
A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are
logically exclusive are also commeasurable, i.e. if ⊥ ⊆ �.

We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras
satisfying LEP.

Definition
A state ν : A −→ [0, 1] on A is said to satisfy the probabilistic exclusivity principle (PEP) if
for any set S ⊆ A of pairwise exclusive elements, i.e. such that ∀a, b ∈ S. (a = b ∨ a ⊥ b),
then

∑
a∈S ν(a) ≤ 1.

A partial Boolean algebra is said to satisfy PEP if all of its states satisfy PEP.

I In a Boolean algebra,
∑

a∈S ν(a) ≤ 1 for any set S of elements st ∀a, b ∈ S. a ∧ b = 0.
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LEP vs PEP

Proposition (LEP ⇒ PEP)
Let A be a partial Boolean algebra satisfying LEP. Then, any state on A satisfies PEP.

I In a general partial Boolean algebra A, not all states need satisfy PEP.

I E.g.: pba of (4, 2, 2) Bell scenario, state: tensor product of two PR boxes.

I But we can construct a new pba whose states yield states of A that satisfy PEP.

Theorem
A state ν : A −→ [0, 1] satisfies PEP if there is a state ν̂ of A[⊥] such that
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A reflective adjunction for logical exclusivity

I It’s not clear whether A[⊥] necessarily satisfies LEP.

I While the principle holds for all its elements in the image of η : A→ A[⊥], it may fail to
hold for other elements in A[⊥].

I But we can freely generate, from any given pba, a new pba satisfying LEP.

I This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
Stone–Čech compactification to form a compact Hausdorff space from any topological space.

Theorem
The category epBA is a reflective subcategory of pBA, i.e. the inclusion functor
I : epBA −→ pBA has a left adjoint X : pBA −→ epBA.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 22/28



A reflective adjunction for logical exclusivity

I It’s not clear whether A[⊥] necessarily satisfies LEP.

I While the principle holds for all its elements in the image of η : A→ A[⊥], it may fail to
hold for other elements in A[⊥].

I But we can freely generate, from any given pba, a new pba satisfying LEP.

I This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
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A reflective adjunction for logical exclusivity

Theorem
Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra
X (A) = A[⊥]∗ satisfying LEP such that:

I there is a homomorphism η : A −→ A[⊥]∗;

I for any homomorphism h : A −→ B where B is a partial Boolean algebra B satisfying LEP,
there is a unique homomorphism ĥ : A[⊥]∗ −→ B such that:

A A[⊥]∗

B

h

η

ĥ

Proof. Adapt our earlier construction, adding the following rule to the inductive system:

u ∧ t ≡ u, v ∧ ¬t ≡ v

u � v
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Tensor products of partial Boolean algebras



A (first) tensor product by generators and relations

Heunen & van den Berg show that pBA has a monoidal structure:

A⊗ B := colim {C + D | C ∈ C(A),D ∈ C(B)}

where C + D is the coproduct of Boolean algebras.

Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the
Adjoint Functor Theorem.

We can use our construction to give an explicit generators-and-relations description.

Proposition
Let A and B be partial Boolean algebras. Then

A⊗ B ∼= (A⊕ B)[:]

where : is the relation on the carrier set of A⊕B given by ı(a) : (b) for all a ∈ A and b ∈ B.
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A more expressive tensor product
I There functor P : Hilb −→ pBA :: H 7−→ P(H) is lax monoidal.

I Embedding P(H)⊗ P(K) −→ P(H⊗K) induced by the obvious embeddings
P(H) −→ P(H⊗K) :: p 7−→ p ⊗ 1 and P(K) −→ P(H⊗K) :: q 7−→ 1⊗ q

I This is far from being surjective:
I Take H = K = C2

I There are (many) homomorphisms P(C2) −→ 2,
I which lift to homomorphisms P(C2)⊗ P(C2) −→ 2.
I But, by KS, there are no homomorphisms P(C4) = P(C2 ⊗ C2) −→ 2
I Indeed, quantum non-classicality emerges in the passage from P(C2) to P(C4) = P(C2 ⊗ C2).

I But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:
I The images of P(H) and P(K) generate P(H⊗K), for any finite-dimensional H and K.
I This is used to justify the claim contradicted above.
I The gap is that more relations hold in P(H⊗K) than in P(H)⊗ P(K).

I Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 25/28



A more expressive tensor product
I There functor P : Hilb −→ pBA :: H 7−→ P(H) is lax monoidal.

I Embedding P(H)⊗ P(K) −→ P(H⊗K) induced by the obvious embeddings
P(H) −→ P(H⊗K) :: p 7−→ p ⊗ 1 and P(K) −→ P(H⊗K) :: q 7−→ 1⊗ q

I This is far from being surjective:
I Take H = K = C2

I There are (many) homomorphisms P(C2) −→ 2,

I which lift to homomorphisms P(C2)⊗ P(C2) −→ 2.
I But, by KS, there are no homomorphisms P(C4) = P(C2 ⊗ C2) −→ 2
I Indeed, quantum non-classicality emerges in the passage from P(C2) to P(C4) = P(C2 ⊗ C2).

I But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:
I The images of P(H) and P(K) generate P(H⊗K), for any finite-dimensional H and K.
I This is used to justify the claim contradicted above.
I The gap is that more relations hold in P(H⊗K) than in P(H)⊗ P(K).

I Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 25/28



A more expressive tensor product
I There functor P : Hilb −→ pBA :: H 7−→ P(H) is lax monoidal.

I Embedding P(H)⊗ P(K) −→ P(H⊗K) induced by the obvious embeddings
P(H) −→ P(H⊗K) :: p 7−→ p ⊗ 1 and P(K) −→ P(H⊗K) :: q 7−→ 1⊗ q

I This is far from being surjective:
I Take H = K = C2

I There are (many) homomorphisms P(C2) −→ 2,
I which lift to homomorphisms P(C2)⊗ P(C2) −→ 2.
I But, by KS, there are no homomorphisms P(C4) = P(C2 ⊗ C2) −→ 2

I Indeed, quantum non-classicality emerges in the passage from P(C2) to P(C4) = P(C2 ⊗ C2).

I But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:
I The images of P(H) and P(K) generate P(H⊗K), for any finite-dimensional H and K.
I This is used to justify the claim contradicted above.
I The gap is that more relations hold in P(H⊗K) than in P(H)⊗ P(K).

I Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 25/28



A more expressive tensor product
I There functor P : Hilb −→ pBA :: H 7−→ P(H) is lax monoidal.

I Embedding P(H)⊗ P(K) −→ P(H⊗K) induced by the obvious embeddings
P(H) −→ P(H⊗K) :: p 7−→ p ⊗ 1 and P(K) −→ P(H⊗K) :: q 7−→ 1⊗ q

I This is far from being surjective:
I Take H = K = C2

I There are (many) homomorphisms P(C2) −→ 2,
I which lift to homomorphisms P(C2)⊗ P(C2) −→ 2.
I But, by KS, there are no homomorphisms P(C4) = P(C2 ⊗ C2) −→ 2
I Indeed, quantum non-classicality emerges in the passage from P(C2) to P(C4) = P(C2 ⊗ C2).

I But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:
I The images of P(H) and P(K) generate P(H⊗K), for any finite-dimensional H and K.
I This is used to justify the claim contradicted above.
I The gap is that more relations hold in P(H⊗K) than in P(H)⊗ P(K).

I Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 25/28



A more expressive tensor product
I There functor P : Hilb −→ pBA :: H 7−→ P(H) is lax monoidal.

I Embedding P(H)⊗ P(K) −→ P(H⊗K) induced by the obvious embeddings
P(H) −→ P(H⊗K) :: p 7−→ p ⊗ 1 and P(K) −→ P(H⊗K) :: q 7−→ 1⊗ q

I This is far from being surjective:
I Take H = K = C2

I There are (many) homomorphisms P(C2) −→ 2,
I which lift to homomorphisms P(C2)⊗ P(C2) −→ 2.
I But, by KS, there are no homomorphisms P(C4) = P(C2 ⊗ C2) −→ 2
I Indeed, quantum non-classicality emerges in the passage from P(C2) to P(C4) = P(C2 ⊗ C2).

I But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:
I The images of P(H) and P(K) generate P(H⊗K), for any finite-dimensional H and K.
I This is used to justify the claim contradicted above.

I The gap is that more relations hold in P(H⊗K) than in P(H)⊗ P(K).

I Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 25/28



A more expressive tensor product
I There functor P : Hilb −→ pBA :: H 7−→ P(H) is lax monoidal.

I Embedding P(H)⊗ P(K) −→ P(H⊗K) induced by the obvious embeddings
P(H) −→ P(H⊗K) :: p 7−→ p ⊗ 1 and P(K) −→ P(H⊗K) :: q 7−→ 1⊗ q

I This is far from being surjective:
I Take H = K = C2

I There are (many) homomorphisms P(C2) −→ 2,
I which lift to homomorphisms P(C2)⊗ P(C2) −→ 2.
I But, by KS, there are no homomorphisms P(C4) = P(C2 ⊗ C2) −→ 2
I Indeed, quantum non-classicality emerges in the passage from P(C2) to P(C4) = P(C2 ⊗ C2).

I But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:
I The images of P(H) and P(K) generate P(H⊗K), for any finite-dimensional H and K.
I This is used to justify the claim contradicted above.
I The gap is that more relations hold in P(H⊗K) than in P(H)⊗ P(K).

I Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 25/28



A more expressive tensor product
I There functor P : Hilb −→ pBA :: H 7−→ P(H) is lax monoidal.

I Embedding P(H)⊗ P(K) −→ P(H⊗K) induced by the obvious embeddings
P(H) −→ P(H⊗K) :: p 7−→ p ⊗ 1 and P(K) −→ P(H⊗K) :: q 7−→ 1⊗ q

I This is far from being surjective:
I Take H = K = C2

I There are (many) homomorphisms P(C2) −→ 2,
I which lift to homomorphisms P(C2)⊗ P(C2) −→ 2.
I But, by KS, there are no homomorphisms P(C4) = P(C2 ⊗ C2) −→ 2
I Indeed, quantum non-classicality emerges in the passage from P(C2) to P(C4) = P(C2 ⊗ C2).

I But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:
I The images of P(H) and P(K) generate P(H⊗K), for any finite-dimensional H and K.
I This is used to justify the claim contradicted above.
I The gap is that more relations hold in P(H⊗K) than in P(H)⊗ P(K).

I Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.

S Abramsky, RS Barbosa Partial Boolean algebras and the logical exclusivity principle 25/28



A more expressive tensor product (ctd)

I In constructing A⊗ B = (A⊕ B)[:] by the inductive rules, if ` t↓, then ` u↓ for every
subterm u of t.

I This is too strong to capture the full logic of the Hilbert space tensor product.

I Consider projectors p1 ⊗ p2 and q1 ⊗ q2.

I to show that they are orthogonal, we have a disjunctive requirement: p1⊥q1 or p2⊥q2.

I we are entitled to conclude that p1 ⊗ p2 and q1 ⊗ q2 are commeasurable, even though (say)
p2 and q2 are not

Indeed, the idea that propositions can be defined on quantum systems even though
subexpressions are not is emphasized by Kochen.
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Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; � := X ◦ ⊗. Explicitly, we define
the logical exclusivity tensor product by

A� B = (A⊗ B)[⊥]∗ = (A⊕ B)[:][⊥]∗.

I This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
wrt this tensor product.

I It remains to be seen how close it gets us to the full Hilbert space tensor product.
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A limitative result

I Can extending commeasurability by a relation } induce the K-S property in A[}] when it
did not hold in A?

Theorem (K-S faithfulness of extensions)
Let A be a partial Boolean algebra, and } ⊆ A2 a relation on A. Then A is K-S if and only if
A[}] is K-S.

Corollary
If A and B are not K-S, then neither is A⊗ B[⊥]k .

Under the conjecture that A[⊥]∗ coincides with iterating A[⊥] to a fixpoint, this would imply
that the LE tensor product A� B never induces a K-S paradox if none was present in A or B.

In particular, P(C2)� P(C2) does not have the K-S property.

So, we need a stronger tensor product to track this emergent complexity in the quantum case.
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Questions...
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