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Quantum foundations

» Quantum mechanics is weird?
Bohr: “if anybody says he can think about quantum theory without
getting giddy it merely shows that he hasn't understood the first
thing about it"

> It strikes at the heart of how we reason: logic and probability.

> Einstein—Podolsky—Rosen (1935): “spooky action at a distance”
~~» QM must be incomplete!

> Bell-Kochen—Specker (60s):
Non-locality and contextuality as fundamental empirical
phenomena rather than shortcomings of the formalism.

S Abramsky, RS Barbosa Partial Boolean algebras: The logic of contextuality 1



Quantum foundations and quantum informatics

Advent of quantum information and computation (90s)
~~» Renewed interest in quantum foundations
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Quantum foundations and quantum informatics

Advent of quantum information and computation (90s)
~~» Renewed interest in quantum foundations

» A central question is to characterise quantum advantage

» Focus on non-classical aspects of quantum theory

Not a bug but a feature!
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» Non-locality (Bell's theorem) is a special case.
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Contextuality is a key signature of non-classicality.

v
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Empirical predictions of quantum mechanics are incompatible with all observables being
assigned values simultaneously.
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Contextuality

» Contextuality is a key signature of non-classicality.
» Non-locality (Bell's theorem) is a special case.

» Related to many instances of quantum advantage in computation and informatics.

» Empirical predictions of quantum mechanics are incompatible with all observables being
assigned values simultaneously.

» More abstractly: data that are locally consistent but globally inconsistent.
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Summary

» Our point of departure is the seminal paper:

Kochen & Specker (1965), ‘ The problem of hidden variables in quantum mechanics’.
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Summary

» Our point of departure is the seminal paper:
Kochen & Specker (1965), ‘ The problem of hidden variables in quantum mechanics’.
» This contains some logical aspects largely overlooked in subsequent literature
» This is work in progress. Many open questions.
» Paper in CSL 2021: arXiv:2011.03064 [quant-ph]
» This talk: focus on logical aspects, ignore e.g. probabilistic.

Contextuality in logical form

Towards tracking the quantum tensor product
Logical exclusivity principle

Free extension of commeasurability

Yy VVvVY
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Logic and quantum mechanics



From classical to quantum

John von Neumann (1932), ‘Mathematische Grundlagen der Quantenmechanik’.
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From classical to quantum

John von Neumann (1932), ‘Mathematische Grundlagen der Quantenmechanik’.

Classical mechanics

» Described by Commutative C*-algebras or von Neumann algebras.

» By Gel'fand duality, these are algebras of continuous (or measurable) functions on
topological spaces, the state spaces.

» All measurements have well-defined values on any state.

» Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

» Described by noncommutative C*-algebras or von Neumann algebras.

» By GNS, algebras of bounded operators on a Hilbert space H, i.e. subalgebras of B(H).
» Measurements are self-adjoint operators.

» Quantum properties or propositions are projectors:

p:H—=H s.t. p=p =p

which correspond to closed subspaces of H.
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Quantum physics and logic

Traditional quantum logic

Birkhoff & von Neumann (1936), ‘' The logic of quantum mechanics'.

» The lattice P(#), of projectors on a Hilbert space H, as a non-classical logic for QM.
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Quantum physics and logic

Traditional quantum logic

Birkhoff & von Neumann (1936), ‘' The logic of quantum mechanics'.

v

The lattice P(#), of projectors on a Hilbert space H, as a non-classical logic for QM.

v

Interpret A (infimum) and V (supremum) as logical operations.

v

Distributivity fails: pA(gVr) £ (pAg)V(pAr).

v

Sits unnaturally with tensor product.

v

Only commuting measurements can be performed together.
So, what is the operational meaning of p A g, when p and g do not commute?
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Quantum physics and logic

An alternative approach

Kochen & Specker (1965), ‘ The problem of hidden variables in quantum mechanics'.
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Quantum physics and logic

An alternative approach

Kochen & Specker (1965), ‘ The problem of hidden variables in quantum mechanics'.

» The seminal work on contextuality used partial Boolean algebras
» Only admit physically meaningful operations.

> Represent incompatibility by partiality

Kochen (2015), ‘A reconstruction of quantum mechanics'.

» Kochen develops a large part of foundations of quantum theory in this framework.
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Boolean algebras

Boolean algebra (A,0,1,—,V,A):
> aset A

» constants 0,1 € A

» a unary operation -: A— A

» binary operations V, A : A2 — A
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Boolean algebras

Boolean algebra (A,0,1,—,V,A):

> aset A

» constants 0,1 € A

» a unary operation -: A— A

» binary operations V, A : A2 — A

satisfying the usual axioms: (A,V,0) and (A, A, 1) are commutative monoids,
V and A distribute over each other,
aV-a=1land aA-a=0.

E.g.: (P(X),2,X,U,N), in particular 2 = {0,1} = P({x}).
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Partial Boolean algebras

Partial Boolean algebra (A, ®,0,1, =, V, A):
> aset A

> a reflexive, symmetric binary relation ® on A, read commeasurability or compatibility

» constants 0,1 € A
> (total) unary operation =: A — A
» (partial) binary operations V,A: ® — A
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Partial Boolean algebras

Partial Boolean algebra (A, ®,0,1, =, V, A):

> aset A

> a reflexive, symmetric binary relation ® on A, read commeasurability or compatibility
» constants 0,1 € A

> (total) unary operation =: A — A

» (partial) binary operations V,A: ® — A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-
commeasurable elements which is a Boolean algebra under the restriction of the given operations.

E.g.: P(H), the projectors on a Hilbert space H.
Conjunction, i.e. product of projectors, becomes partial, defined only on commuting projectors.
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The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the opera-
tions wherever defined. This gives a category pBA.
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Heunen & van der Berg (2012), 'Non-commutativity as a colimit'.
» Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.
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The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the opera-
tions wherever defined. This gives a category pBA.

Heunen & van der Berg (2012), 'Non-commutativity as a colimit'.

» Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.

» Coproduct: A @ B is the disjoint union of A and B with identifications 04 = Og and
14 = 15. No other commeasurabilities hold between elements of A and elements of B.

» Coequalisers, and general colimits: shown to exist via the Adjoint Functor Theorem.
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The category pBA

classifying toposes (6.56). One’s first reaction on seeing this theorem is to
admire its elegance and generality ; the second reaction (which comes quite a
long time later) is to realize its fundamental uselessness—a quality which,
by the way, it shares with the General Adjoint Functor Theorem. For the
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The category pBA

classifying toposes (6.56). One’s first reaction on seeing this theorem is to
admire its elegance and generality ; the second reaction (which comes quite a
long time later) is to realize its fundamental uselessness—a quality which,
by the way, it shares with the General Adjoint Functor Theorem. For the

» We give a direct construction of colimits.

» More generally, we show how to freely generate from a given partial Boolean algebra a new
one satisfying prescribed additional commeasurability relations.
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Free extensions of commeasurability

Theorem
Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean
algebra A[®@)] such that:
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Free extensions of commeasurability

Theorem

Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean
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Free extensions of commeasurability

Theorem

Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean
algebra A[®@)] such that:

> There is a pBA-morphism 1 : A — A[©] satisfying a©@ b = n(a) O a[e) 1(b)-

» For every partial Boolean algebra B and pBA-morphism h : 14 — B satisfying
a®b = h(a) ©p h(b), there is a unique homomorphism h : A[®] — B such that

A Ale]

R

B
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Free extensions of commeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasur-
ability and equivalence relations over a set of syntactic terms generated from A.

» Generators G := {1(a) | a € A}.

» Pre-terms P: closure of G under Boolean operations and constants.
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Free extensions of commeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasur-
ability and equivalence relations over a set of syntactic terms generated from A.

» Generators G := {1(a) | a € A}.

» Pre-terms P: closure of G under Boolean operations and constants.

v

Define inductively:
> a predicate | (definedness or existence)
> a binary relation ® (commeasurability)
> a binary relation = (equivalence)

v

T={teP|tl}

v

A[®] = T/ =, with obvious definitions for © and operations.
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The inductive construction
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acA aGab a®@b
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The inductive construction

acA aGab a®@b
1(a)d 1(a) ©@u(b) 1(a) ®@u(b)

a®ab
0=14(04), 1 =1(1a), ~2(a) =2(—aa) 2(a) Ae(b) =1(anab), 1(a)Veb)=1aVab)
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The inductive construction
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The inductive construction

acA a®ab a®@b
1(a)d 1(a) © 1(b) 1(a) © 1(b)
a®ab
0=1(02), 1= u(1a), ~(2) = (~na) 1(3) A u(B) = 1(a Aa b), 1() V1(b) = o(a Va b)
tOu t
0}, 14 tAul, tVul -t
t) tOu tOu, tOv, u®Vv tOu
toOt, to0, tol uGt tAUQV, tVu®v “tOu
t) t=u t=u, u=v t=u, u®Ov
t=t u=t t=v tOv
©(X) =Bool ¥(X), /\,-,j uj © uj t=t, u=u,toOu t=u

() = Y(0) tAuU=t' AU, tVu=t vy —t=-u
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Coequalisers and colimits

A variation of this construction is also useful, where instead of just forcing commeasurability,
one forces equality by the additional rule

a®a
1(a) = ()
This builds a pBA A[®,=].

Theorem

Let h: A— B be a pBA-morphism such that a© a' = h(a) = h(a'). Then there is a
unique pBA-morphism h : A[®,=] — B such that h= hon.

This is used to give an explicit construction of coequalisers, and hence general colimits, in pBA.
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Contextuality



Kochen—Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors P(H) into
a (non-trivial) Boolean algebra when dimH > 3.
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Kochen—Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors P(H) into
a (non-trivial) Boolean algebra when dimH > 3.

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A:

» A can be embedded in a Boolean algebra

» there is a homomorphism A — B, for some (non-trivial) Boolean algebra B, whose
restriction to each Boolean subalgebra of A is an embedding

» there is a homomorphism A — B for some (non-trivial) Boolean algebra B
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KS conditions

» The first condition is equivalent to:
There are enough homomorphisms A — 2 to separate elements of A
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KS conditions

» The first condition is equivalent to:
There are enough homomorphisms A — 2 to separate elements of A

» The third is equivalent to:
There is some homomorphism A — 2.

Thus the strongest contextuality property is:

There is not even one homomorphism A — 2

This is what Kochen and Specker prove for P(H) with dim#H > 3.
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An apparent contradiction

» BA is a full subcategory of pBA.

» A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.
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An apparent contradiction

» BA is a full subcategory of pBA.
» A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.

» Let B be the colimit in BA of the same diagram C(A).
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An apparent contradiction

v

BA is a full subcategory of pBA.

v

A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.

v

Let B be the colimit in BA of the same diagram C(A).

v

The cone from C(A) to B is also a cone in pBA,

v

hence there is a mediating morphism A — B!
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v

BA is a full subcategory of pBA.

v

A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.

v

Let B be the colimit in BA of the same diagram C(A).

v

The cone from C(A) to B is also a cone in pBA,

v

hence there is a mediating morphism A — B!

But note that BA is an equational variety of algebras over Set.

As such, it is complete and cocomplete, but it also admits the one-element algebra 1, in which
0 = 1. Note that 1 does not have a homomorphism to 2.
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KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.
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KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!
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of Boolean subalgebras, must be 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem
Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to 2.

2. The colimit in BA of the diagram C(A) of boolean subalgebras of A in BA is 1.
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KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem
Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to 2.
2. The colimit in BA of the diagram C(A) of boolean subalgebras of A in BA is 1.

3. A[A% =1.
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Conditions of ‘impossible’ experience
Let A be a partial Boolean algebra.

» Clearly, A= A[0].
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Let A be a partial Boolean algebra.

» Clearly, A= A[0].

» A pure Boolean term ¢(X) is interpretable in A w.r.t. an assignment X — & if the pre-term
t := (3) satisfies t| in A[D].
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Conditions of ‘impossible’ experience
Let A be a partial Boolean algebra.

» Clearly, A= A[0].

» A pure Boolean term ¢(X) is interpretable in A w.r.t. an assignment X — & if the pre-term
t := (3) satisfies t| in A[D].

> A satisfies ¢(3) if t = 1 in A[0].

Theorem
The following are equivalent:

1. A has the K-S property.

2. There is a p(X) =gool 0 and assignment X — 3 s.t. A satisfies p(3J).
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Tensor products and partial Boolean algebras



A (first) tensor product by generators and relations

Heunen & van den Berg show that pBA has a monoidal structure:

A® B :=colim{C+ D | C € C(A),D € C(B)}

where C + D is the coproduct of Boolean algebras.
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Heunen & van den Berg show that pBA has a monoidal structure:
A® B :=colim{C+ D | CeC(A),DeC(B)}
where C + D is the coproduct of Boolean algebras.

Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the
Adjoint Functor Theorem.
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A (first) tensor product by generators and relations

Heunen & van den Berg show that pBA has a monoidal structure:
A® B :=colim{C+ D | CeC(A),DeC(B)}
where C + D is the coproduct of Boolean algebras.

Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the
Adjoint Functor Theorem.

We can use our construction to give an explicit generators-and-relations description.
Proposition
Let A and B be partial Boolean algebras. Then

A©B = (Ae B)[0]

where (@ is the relation on the carrier set of A® B given by 1(a) © y(b) for alla€ A and b € B.
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A more expressive tensor product
» The functor P : Hilb — pBA :: H —— P(#) is lax monoidal.

» Embedding P(H) ® P(K) — P(H ® K) induced by the obvious embeddings
P(H) — P(He@K):p—pRland P(K) — P(H®K):1gr—1®q
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A more expressive tensor product
» The functor P : Hilb — pBA :: H —— P(#) is lax monoidal.

» Embedding P(H) ® P(K) — P(H ® K) induced by the obvious embeddings
P(H) — P(He@K):p—pRland P(K) — P(H®K):1gr—1®q

» This is far from being surjective:
» Take H =K =C?
There are (many) homomorphisms P(C?) — 2,
which lift to homomorphisms P(C?) ® P(C?) — 2.
But, by KS, there are no homomorphisms P(C*) = P(C? ® C?) — 2
Indeed, quantum non-classicality emerges in the passage from P(C?) to P(C*) = P(C? ® C?).

v

A2 A

» But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:

» The images of P(H) and P(K) generate P(H ® K), for any finite-dimensional #H and K.
> This is used to justify the claim contradicted above.
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» But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:

» The images of P(H) and P(K) generate P(H ® K), for any finite-dimensional #H and K.
> This is used to justify the claim contradicted above.
> The gap is that more relations hold in P(H ® K) than in P(H) ® P(K).

S Abramsky, RS Barbosa Partial Boolean algebras: The logic of contextuality 22



A more expressive tensor product
» The functor P : Hilb — pBA :: H —— P(#) is lax monoidal.

» Embedding P(H) ® P(K) — P(H ® K) induced by the obvious embeddings
P(H) — P(He@K):p—pRland P(K) — P(H®K):1gr—1®q

» This is far from being surjective:
» Take H =K =C?
There are (many) homomorphisms P(C?) — 2,
which lift to homomorphisms P(C?) ® P(C?) — 2.
But, by KS, there are no homomorphisms P(C*) = P(C? ® C?) — 2
Indeed, quantum non-classicality emerges in the passage from P(C?) to P(C*) = P(C? ® C?).

v

A2 A

» But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:

» The images of P(H) and P(K) generate P(H ® K), for any finite-dimensional #H and K.
> This is used to justify the claim contradicted above.
> The gap is that more relations hold in P(H ® K) than in P(H) ® P(K).

> Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.
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A more expressive tensor product (ctd)

S Abramsky, RS Barbosa Partial Boolean algebras: The logic of contextuality pxj



A more expressive tensor product (ctd)

» Consider projectors p; ® po and g1 ® go.
> to show that they are orthogonal, we have a disjunctive requirement: p; 1 q; or p, L go.

» we are entitled to conclude that p; ® p» and g1 ® go are commeasurable, even though (say)
p> and g, are not
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A more expressive tensor product (ctd)

» Consider projectors p; ® po and g1 ® g».
> to show that they are orthogonal, we have a disjunctive requirement: p; 1 q; or p, L go.
» we are entitled to conclude that p; ® p» and g1 ® go are commeasurable, even though (say)

p> and g, are not

Indeed, the idea that propositions can be defined on quantum systems even though
subexpressions are not is emphasized by Kochen.
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Logical exclusivity principle
Let A be a partial Boolean algebra.

For a,bc A, we write a< btomeana®band aAb=a.
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Logical exclusivity principle
Let A be a partial Boolean algebra.
For a,bc A, we write a< btomeana®band aAb=a.

Definition (exclusive events)

Two elements a, b € A are said to be exclusive, written a L b, if there is a ¢ € A such that
a®cwitha<cand b® c with b < —c.
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Definition (exclusive events)

Two elements a, b € A are said to be exclusive, written a L b, if there is a ¢ € A such that
a®cwitha<cand b® c with b < —c.

» Note that a L b is a weaker requirement than a A b = 0.
» The two would be equivalent in a Boolean algebra.

» But in a general partial Boolean algebra, there might be exclusive events that are not
commeasurable (and for which, therefore, the A operation is not defined).
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Logical exclusivity principle
Let A be a partial Boolean algebra.

For a,bc A, we write a< btomeana®band aAb=a.

Definition (exclusive events)

Two elements a, b € A are said to be exclusive, written a L b, if there is a ¢ € A such that
a®cwitha<cand b® c with b < —c.

» Note that a L b is a weaker requirement than a A b = 0.
» The two would be equivalent in a Boolean algebra.

» But in a general partial Boolean algebra, there might be exclusive events that are not
commeasurable (and for which, therefore, the A operation is not defined).

Definition
A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are
logically exclusive are also commeasurable, i.e. if L C ©.
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Logical exclusivity and transitivity

Definition
A partial Boolean algebra is said to be transitive if for all elements a, b, c, if a< b and b < ¢,
then a < ¢, i.e. < is (globally) a partial order on A.

Proposition
A partial Boolean algebra satisfies LEP if and only if it is transitive.
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A reflective adjunction for logical exclusivity

» It's not clear whether A[_L] necessarily satisfies LEP.

» While the principle holds for all its elements in the image of n: A — A[l], it may fail to
hold for other elements in A[L].
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A reflective adjunction for logical exclusivity

v

It's not clear whether A[_L] necessarily satisfies LEP.

v

While the principle holds for all its elements in the image of  : A — A[L], it may fail to
hold for other elements in A[L].

» But we can freely generate, from any given pba, a new pba satisfying LEP.

v

This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
Stone—Cech compactification to form a compact Hausdorff space from any topological space.
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A reflective adjunction for logical exclusivity

v

It's not clear whether A[_L] necessarily satisfies LEP.

v

While the principle holds for all its elements in the image of  : A — A[L], it may fail to
hold for other elements in A[L].

» But we can freely generate, from any given pba, a new pba satisfying LEP.

v

This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
Stone—Cech compactification to form a compact Hausdorff space from any topological space.

Theorem
The category epBA of partial Boolean algebras satisfying LEP is a reflective subcategory of
pBA, i.e. the inclusion functor | : epBA — pBA has a left adjoint X : pPBA — epBA.
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A reflective adjunction for logical exclusivity

Theorem

Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra
X(A) = A[L]* satisfying LEP such that:

> there is a homomorphism 1 : A — A[L]*;

> for any homomorphism h: A — B where B is a partial Boolean algebra B satisfying LEP,
there is a unique homomorphism h : A[L]* — B such that:

A AlL]*

N

B
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A reflective adjunction for logical exclusivity

Theorem

Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra
X(A) = A[L]* satisfying LEP such that:

> there is a homomorphism 1 : A — A[L]*;

> for any homomorphism h: A — B where B is a partial Boolean algebra B satisfying LEP,
there is a unique homomorphism h : A[L]* — B such that:

A AlL]*

N

B

Proof. Adapt our earlier construction, adding the following rule to the inductive system:

UNt=u, vA-t=v
u®v
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Logical exclusivity tensor product
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Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.
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Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; X = X o ®. Explicitly, we define
the logical exclusivity tensor product by

AR B =(A® B)[L]" = (Ae B)[0][L]".
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Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; X = X o ®. Explicitly, we define
the logical exclusivity tensor product by

AR B = (A® B)[L]" = (Aa® B)[O][L]".
» This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
wrt this tensor product.

» How close does it get to the full Hilbert space tensor product?
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A limitative result
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A limitative result

» Can extending commeasurability by a relation ® induce the K-S property in A[®] when it
did not hold in A?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra.
For any relation ® on A, A is K-S if and only if A[®@] is K-S.
Moreover, A is K-S if and only if A[L] is K-S.
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A limitative result

» Can extending commeasurability by a relation ® induce the K-S property in A[®] when it
did not hold in A?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra.
For any relation ® on A, A is K-S if and only if A[®@] is K-S.
Moreover, A is K-S if and only if A[L] is K-S.

Corollary
If A and B are not K-S, then neither is A® B[L]*.
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Moreover, A is K-S if and only if A[L] is K-S.

Corollary
If A and B are not K-S, then neither is A® B[L]*.

This implies that the LE tensor product AX B never induces a K-S paradox if none was present
in Aor B.
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Corollary
If A and B are not K-S, then neither is A® B[L]*.

This implies that the LE tensor product AX B never induces a K-S paradox if none was present
in Aor B.

In particular, P(C?) X P(C?) does not have the K-S property.
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A limitative result

» Can extending commeasurability by a relation ® induce the K-S property in A[®] when it
did not hold in A?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra.
For any relation ® on A, A is K-S if and only if A[®@] is K-S.
Moreover, A is K-S if and only if A[L] is K-S.

Corollary
If A and B are not K-S, then neither is A® B[L]*.

This implies that the LE tensor product AX B never induces a K-S paradox if none was present
in Aor B.

In particular, P(C?) X P(C?) does not have the K-S property.

So, we need a stronger tensor product to track this emergent complexity in the quantum case.
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Questions...



