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Preamble



Quantum foundations

I Quantum mechanics is weird?

Bohr: “if anybody says he can think about quantum theory without

getting giddy it merely shows that he hasn’t understood the first

thing about it”

I It strikes at the heart of how we reason: logic and probability.

I Einstein–Podolsky–Rosen (1935): “spooky action at a distance”
 QM must be incomplete!

I Bell–Kochen–Specker (60s):
Non-locality and contextuality as fundamental empirical
phenomena rather than shortcomings of the formalism.
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Quantum foundations and quantum informatics

Advent of quantum information and computation (90s)
 Renewed interest in quantum foundations

I A central question is to characterise quantum advantage

I Focus on non-classical aspects of quantum theory

Not a bug but a feature!
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Contextuality

I Contextuality is a key signature of non-classicality.

I Non-locality (Bell’s theorem) is a special case.

I Related to many instances of quantum advantage in computation and informatics.

I Empirical predictions of quantum mechanics are incompatible with all observables being
assigned values simultaneously.

I More abstractly: data that are locally consistent but globally inconsistent.
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Summary

I Our point of departure is the seminal paper:

Kochen & Specker (1965), ‘The problem of hidden variables in quantum mechanics’.

I This contains some logical aspects largely overlooked in subsequent literature

I This is work in progress. Many open questions.

I Paper in CSL 2021: arXiv:2011.03064 [quant-ph]

I This talk: focus on logical aspects, ignore e.g. probabilistic.

I
Contextuality in logical form

I
Towards tracking the quantum tensor product

I
Logical exclusivity principle

I
Free extension of commeasurability
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Logic and quantum mechanics



From classical to quantum

John von Neumann (1932), ‘Mathematische Grundlagen der Quantenmechanik ’.

Classical mechanics
I Described by Commutative C

⇤-algebras or von Neumann algebras.
I By Gel'fand duality, these are algebras of continuous (or measurable) functions on

topological spaces, the state spaces.
I All measurements have well-defined values on any state.
I Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics
I Described by noncommutative C

⇤-algebras or von Neumann algebras.
I By GNS, algebras of bounded operators on a Hilbert space H, i.e. subalgebras of B(H).
I Measurements are self-adjoint operators.
I Quantum properties or propositions are projectors:

p : H ! H s.t. p = p

† = p

2

which correspond to closed subspaces of H.
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Quantum physics and logic

Traditional quantum logic

Birkho↵ & von Neumann (1936), ‘The logic of quantum mechanics’.

I The lattice P(H), of projectors on a Hilbert space H, as a non-classical logic for QM.

I Interpret ^ (infimum) and _ (supremum) as logical operations.

I Distributivity fails: p ^ (q _ r) 6= (p ^ q) _ (p ^ r).

I Sits unnaturally with tensor product.

I Only commuting measurements can be performed together.
So, what is the operational meaning of p ^ q, when p and q do not commute?
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Quantum physics and logic

An alternative approach

Kochen & Specker (1965), ‘The problem of hidden variables in quantum mechanics’.

I The seminal work on contextuality used partial Boolean algebras

I Only admit physically meaningful operations.

I Represent incompatibility by partiality

Kochen (2015), ‘A reconstruction of quantum mechanics’.

I Kochen develops a large part of foundations of quantum theory in this framework.
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Partial Boolean algebras



Boolean algebras

Boolean algebra hA, 0, 1,¬,_,^i:
I a set A

I constants 0, 1 2 A

I a unary operation ¬ : A �! A

I binary operations _,^ : A2 �! A

satisfying the usual axioms: hA,_, 0i and hA,^, 1i are commutative monoids,
_ and ^ distribute over each other,
a _ ¬a = 1 and a ^ ¬a = 0.

E.g.: hP(X ),?,X ,[,\i, in particular 2 = {0, 1} ⇠= P({?}).
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Partial Boolean algebras

Partial Boolean algebra hA,�, 0, 1,¬,_,^i:
I a set A

I a reflexive, symmetric binary relation � on A, read commeasurability or compatibility

I constants 0, 1 2 A

I (total) unary operation ¬ : A �! A

I (partial) binary operations _,^ : � �! A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-
commeasurable elements which is a Boolean algebra under the restriction of the given operations.

E.g.: P(H), the projectors on a Hilbert space H.
Conjunction, i.e. product of projectors, becomes partial, defined only on commuting projectors.
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The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the opera-
tions wherever defined.This gives a category pBA.

Heunen & van der Berg (2012), ‘Non-commutativity as a colimit’.

I Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.

I Coproduct: A� B is the disjoint union of A and B with identifications 0A = 0B and
1A = 1B . No other commeasurabilities hold between elements of A and elements of B .

I Coequalisers, and general colimits: shown to exist via the Adjoint Functor Theorem.
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The category pBA

I We give a direct construction of colimits.

I More generally, we show how to freely generate from a given partial Boolean algebra a new
one satisfying prescribed additional commeasurability relations.
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Free extensions of commeasurability



Free extensions of commeasurability

Theorem

Given a partial Boolean algebra A and a binary relation } on A, there is a partial Boolean

algebra A[}] such that:

I
There is a pBA-morphism ⌘ : A �! A[}] satisfying a} b =) ⌘(a)�A[}]

⌘(b).

I
For every partial Boolean algebra B and pBA-morphism h : A �! B satisfying

a} b =) h(a)�B h(b), there is a unique homomorphism ĥ : A[}] �! B such that

A A[}]

B

h

⌘

ˆh
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A A[}]

B

h

⌘

ˆh

S Abramsky, RS Barbosa Partial Boolean algebras: The logic of contextuality 12



Free extensions of commeasurability

Theorem

Given a partial Boolean algebra A and a binary relation } on A, there is a partial Boolean

algebra A[}] such that:

I
There is a pBA-morphism ⌘ : A �! A[}] satisfying a} b =) ⌘(a)�A[}]

⌘(b).

I
For every partial Boolean algebra B and pBA-morphism h : A �! B satisfying

a} b =) h(a)�B h(b), there is a unique homomorphism ĥ : A[}] �! B such that

A A[}]

B

h

⌘

ˆh
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Free extensions of commeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasur-
ability and equivalence relations over a set of syntactic terms generated from A.

I Generators G := {ı(a) | a 2 A}.
I Pre-terms P : closure of G under Boolean operations and constants.

I Define inductively:
I

a predicate # (definedness or existence)

I
a binary relation � (commeasurability)

I
a binary relation ⌘ (equivalence)

I
T

:= {t 2 P | t#}.
I

A[}] = T/ ⌘, with obvious definitions for � and operations.
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The inductive construction

a 2 A

ı(a)#
a�A b

ı(a)� ı(b)

a} b

ı(a)� ı(b)

0 ⌘ ı(0A), 1 ⌘ ı(1A), ¬ı(a) ⌘ ı(¬Aa)

a�A b

ı(a) ^ ı(b) ⌘ ı(a ^A b), ı(a) _ ı(b) ⌘ ı(a _A b)

0#, 1#
t � u

t ^ u#, t _ u#
t#
¬t#

t#
t � t, t � 0, t � 1

t � u

u � t

t � u, t � v , u � v

t ^ u � v , t _ u � v

t � u

¬t � u

t#
t ⌘ t

t ⌘ u

u ⌘ t

t ⌘ u, u ⌘ v

t ⌘ v

t ⌘ u, u � v

t � v

'(~x) ⌘
Bool

 (~x),
V

i,j ui � uj

'(~u) ⌘  (~u)

t ⌘ t

0, u ⌘ u

0, t � u

t ^ u ⌘ t

0 ^ u

0, t _ u ⌘ t

0 _ u

0
t ⌘ u

¬t ⌘ ¬u
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Coequalisers and colimits

A variation of this construction is also useful, where instead of just forcing commeasurability,
one forces equality by the additional rule

a} a

0

ı(a) ⌘ ı(a0)

This builds a pBA A[},⌘].

Theorem

Let h : A �! B be a pBA-morphism such that a} a

0 =) h(a) = h(a0). Then there is a

unique pBA-morphism ĥ : A[},⌘] �! B such that h = ĥ � ⌘.

This is used to give an explicit construction of coequalisers, and hence general colimits, in pBA.
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Contextuality



Kochen–Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors P(H) into
a (non-trivial) Boolean algebra when dimH � 3.

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A:

I
A can be embedded in a Boolean algebra

I there is a homomorphism A �! B , for some (non-trivial) Boolean algebra B , whose
restriction to each Boolean subalgebra of A is an embedding

I there is a homomorphism A �! B for some (non-trivial) Boolean algebra B
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KS conditions

I The first condition is equivalent to:
There are enough homomorphisms A ! 2 to separate elements of A

I The third is equivalent to:
There is some homomorphism A ! 2.

Thus the strongest contextuality property is:

There is not even one homomorphism A ! 2

This is what Kochen and Specker prove for P(H) with dimH � 3.
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An apparent contradiction

I BA is a full subcategory of pBA.

I
A is the colimit in pBA of the diagem C(A) of its boolean subalgebras.

I Let B be the colimit in BA of the same diagram C(A).
I The cone from C(A) to B is also a cone in pBA,

I hence there is a mediating morphism A �! B !

But note that BA is an equational variety of algebras over Set.

As such, it is complete and cocomplete, but it also admits the one-element algebra 1, in which
0 = 1. Note that 1 does not have a homomorphism to 2.
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KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2, the colimit of C(A), its diagram
of Boolean subalgebras, must be 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine all the
information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem

Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to 2.

2. The colimit in BA of the diagram C(A) of boolean subalgebras of A in BA is 1.

3. A[A2] = 1.
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Conditions of ‘impossible’ experience

Let A be a partial Boolean algebra.

I Clearly, A ⇠= A[;].

I A pure Boolean term '(~x) is interpretable in A w.r.t. an assignment ~x 7! ~
a if the pre-term

t

:= '(~a) satisfies t# in A[?].

I
A satisfies '(~a) if t ⌘ 1 in A[;].

Theorem

The following are equivalent:

1. A has the K-S property.

2. There is a '(~x) ⌘
Bool

0 and assignment

~
x 7! ~

a s.t. A satisfies '(~a).
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Tensor products and partial Boolean algebras



A (first) tensor product by generators and relations

Heunen & van den Berg show that pBA has a monoidal structure:

A⌦ B

:= colim {C + D | C 2 C(A),D 2 C(B)}
where C + D is the coproduct of Boolean algebras.

Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the
Adjoint Functor Theorem.

We can use our construction to give an explicit generators-and-relations description.

Proposition

Let A and B be partial Boolean algebras. Then

A⌦ B

⇠= (A� B)[:]

where : is the relation on the carrier set of A�B given by ı(a): |(b) for all a 2 A and b 2 B .
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Adjoint Functor Theorem.

We can use our construction to give an explicit generators-and-relations description.

Proposition

Let A and B be partial Boolean algebras. Then

A⌦ B

⇠= (A� B)[:]

where : is the relation on the carrier set of A�B given by ı(a): |(b) for all a 2 A and b 2 B .
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A more expressive tensor product

I The functor P : Hilb �! pBA :: H 7�! P(H) is lax monoidal.

I Embedding P(H)⌦ P(K) �! P(H⌦K) induced by the obvious embeddings
P(H) �! P(H⌦K) :: p 7�! p ⌦ 1 and P(K) �! P(H⌦K) :: q 7�! 1⌦ q

I This is far from being surjective:
I

Take H = K = C2

I
There are (many) homomorphisms P(C2

) �! 2,
I

which lift to homomorphisms P(C2

)⌦ P(C2

) �! 2.
I

But, by KS, there are no homomorphisms P(C4

) = P(C2 ⌦ C2

) �! 2
I

Indeed, quantum non-classicality emerges in the passage from P(C2

) to P(C4

) = P(C2 ⌦ C2

).

I But, from Kochen (2015), ‘A reconstruction of quantum mechanics’:
I

The images of P(H) and P(K) generate P(H⌦K), for any finite-dimensional H and K.

I
This is used to justify the claim contradicted above.

I
The gap is that more relations hold in P(H⌦K) than in P(H)⌦ P(K).

I Nevertheless, this result is suggestive.
It poses the challenge of finding a stronger notion of tensor product.
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A more expressive tensor product (ctd)

I Consider projectors p
1

⌦ p

2

and q

1

⌦ q

2

.

I to show that they are orthogonal, we have a disjunctive requirement: p
1

?q

1

or p
2

?q

2

.

I we are entitled to conclude that p
1

⌦ p

2

and q

1

⌦ q

2

are commeasurable, even though (say)
p

2

and q

2

are not

Indeed, the idea that propositions can be defined on quantum systems even though
subexpressions are not is emphasized by Kochen.
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Logical exclusivity principle



Logical exclusivity principle

Let A be a partial Boolean algebra.

For a, b 2 A, we write a  b to mean a� b and a ^ b = a.

Definition (exclusive events)

Two elements a, b 2 A are said to be exclusive, written a ? b, if there is a c 2 A such that
a� c with a  c and b � c with b  ¬c .

I Note that a ? b is a weaker requirement than a ^ b = 0.

I The two would be equivalent in a Boolean algebra.

I But in a general partial Boolean algebra, there might be exclusive events that are not
commeasurable (and for which, therefore, the ^ operation is not defined).

Definition

A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are
logically exclusive are also commeasurable, i.e. if ? ✓ �.
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Logical exclusivity and transitivity

Definition

A partial Boolean algebra is said to be transitive if for all elements a, b, c , if a  b and b  c ,
then a  c , i.e.  is (globally) a partial order on A.

Proposition

A partial Boolean algebra satisfies LEP if and only if it is transitive.
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A reflective adjunction for logical exclusivity

I It’s not clear whether A[?] necessarily satisfies LEP.

I While the principle holds for all its elements in the image of ⌘ : A ! A[?], it may fail to
hold for other elements in A[?].

I But we can freely generate, from any given pba, a new pba satisfying LEP.

I This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
Stone–Čech compactification to form a compact Hausdor↵ space from any topological space.

Theorem

The category epBA of partial Boolean algebras satisfying LEP is a reflective subcategory of

pBA, i.e. the inclusion functor I : epBA �! pBA has a left adjoint X : pBA �! epBA.

S Abramsky, RS Barbosa Partial Boolean algebras: The logic of contextuality 26



A reflective adjunction for logical exclusivity

I It’s not clear whether A[?] necessarily satisfies LEP.

I While the principle holds for all its elements in the image of ⌘ : A ! A[?], it may fail to
hold for other elements in A[?].

I But we can freely generate, from any given pba, a new pba satisfying LEP.

I This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
Stone–Čech compactification to form a compact Hausdor↵ space from any topological space.

Theorem

The category epBA of partial Boolean algebras satisfying LEP is a reflective subcategory of

pBA, i.e. the inclusion functor I : epBA �! pBA has a left adjoint X : pBA �! epBA.

S Abramsky, RS Barbosa Partial Boolean algebras: The logic of contextuality 26



A reflective adjunction for logical exclusivity

I It’s not clear whether A[?] necessarily satisfies LEP.

I While the principle holds for all its elements in the image of ⌘ : A ! A[?], it may fail to
hold for other elements in A[?].

I But we can freely generate, from any given pba, a new pba satisfying LEP.

I This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
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A reflective adjunction for logical exclusivity

Theorem

Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra

X (A) = A[?]⇤ satisfying LEP such that:

I
there is a homomorphism ⌘ : A �! A[?]⇤;

I
for any homomorphism h : A �! B where B is a partial Boolean algebra B satisfying LEP,

there is a unique homomorphism ĥ : A[?]⇤ �! B such that:

A A[?]⇤

B

h

⌘

ˆh

Proof. Adapt our earlier construction, adding the following rule to the inductive system:

u ^ t ⌘ u, v ^ ¬t ⌘ v

u � v
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Towards a more expressive tensor



Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; ⇥ := X � ⌦. Explicitly, we define
the logical exclusivity tensor product by

A⇥ B = (A⌦ B)[?]⇤ = (A� B)[:][?]⇤.

I This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
wrt this tensor product.

I How close does it get to the full Hilbert space tensor product?
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A limitative result

I Can extending commeasurability by a relation } induce the K-S property in A[}] when it
did not hold in A?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra.

For any relation } on A, A is K-S if and only if A[}] is K-S.
Moreover, A is K-S if and only if A[?] is K-S.

Corollary

If A and B are not K-S, then neither is A⌦ B[?]⇤.

This implies that the LE tensor product A⇥B never induces a K-S paradox if none was present
in A or B .

In particular, P(C2)⇥ P(C2) does not have the K-S property.

So, we need a stronger tensor product to track this emergent complexity in the quantum case.
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Questions...
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