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In a nutshell. . .

I Contextuality is a quintessential marker of non-classicality, an empirical phenomenon
distinguishing QM from classical physical theories.

I It has been established as a useful resource conferring advantage in informatic tasks.

I Resource theory

I focus shifts from objects (empirical models e : S) to morphisms (convertibility).
I d  e simulation of empirical model e : T using empirical model d : S .

I The ‘free’ operations are given by classical procedures S −→ T .
I In this talk, we focus on non-adaptive procedures.

I Q: Which maps F : Emp(S) −→ Emp(T ) arise from classical procedures S −→ T?

I Construct a scenario [S ,T ] from S and T .
I F yields an empirical model eF : [S ,T ].
I F realisable by classical procedure S −→ T iff eF is noncontextual (and satisfies a certain predicate).

I [−,−] provides a closed structure on (a variant of) the category of measurement scenarios.
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Contextuality



Type or interface: measurement scenario

I Interaction with system: perform measurements
and observe respective outcomes

Compatibility of measurements

I Some subsets of measurements can be performed
together . . .

I but some combinations are forbibben!
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Type or interface: measurement scenario

Measurement scenario S = 〈XS ,ΣS ,OS〉:

I XS is a finite set of measurements;

I OS = (OS,x)x∈XS
specifies for each x ∈ XS a

non-empty set OS,x of allowed outcomes

I ΣS is an abstract simplicial complex on XS whose
faces are the measurement contexts;

i.e. a set of subsets of Xs that:
I contains all singletons:

{x} ∈ ΣS for all x ∈ XS ;
I is downwards closed:

σ ∈ ΣS and τ ⊂ σ implies τ ∈ ΣS .

XS = {x, y, z}, OS,x = OS,y = OS,z = {0, 1}, ΣS =↓ {{x, y}, {y, z}, {x, z}}.
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Behaviour: empirical model

I Behaviour of system is described by measurement
statistics

(0, 0) (0, 1) (1, 0) (1, 1)
x y

3/8 1/8 1/8 3/8

y z

3/8 1/8 1/8 3/8

x z

1/8 3/8 3/8 1/8

No-signalling / no-disturbance

I Marginal distributions agree

∑
b

P(x, y 7→ a, b)

=

∑
c

P(x, z 7→ a, c)

=

P(x 7→ a)
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Behaviour: empirical model

Empirical model e : S is a family {eσ}σ∈ΣS
where:

I eσ is a probability distribution on the set of joint
outcomes OS,σ :=

∏
x∈σ OS,x

I These satisfy no-disturbance:
if τ ⊂ σ, then eσ|τ = eτ .
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Contextuality

Deterministic model

=

probability distribution d on OS,XS
=

∏
x∈XS

OS,x such that d |σ = eσ for all σ ∈ ΣS .
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Contextuality

Non-contextual model
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Resource theory of contextuality



Resource theories

I Consider ‘free’ (i.e. classical) operations:
(classical) procedures that use a box of type S to simulate a box of type T
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Experiments and procedures

I An O-valued S-experiment is a protocol for an
interaction with the box S producing a value in O:

I which measurements to perform;

I how to interpret their joint outcome into an
outcome in O.

I A deterministic procedure S −→ T specifies an
S-experiment (OT ,x -valued) for each measurement
x of T .

(subject to compatibility conditions)

I A classical procedure is a probabilistic mixture of
deterministic procedures.
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Classical procedures

Deterministic procedure f : S −→ T is 〈πf , αf 〉:

I πf : ΣT −→ ΣS is a simplicial relation:

I for each x ∈ XT specifies πf (x) ⊂ XS

I If σ ∈ ΣT then πf (σ) ∈ ΣS , where
πf (σ) = ∪x∈σπf (x).

I αf = (αf ,x)x∈XT
where αf ,x : OS,πf (x) −→ OT ,x

maps joint outcomes of πf (x) to outcomes of x .

Probabilistic procedure f : S −→ T is f =
∑

i ri fi
where ri ≥ 0,

∑
i ri = 1, and fi : S −→ T

deterministic procedures.
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Classical simulations

I A classical procedure induces a (convex-preserving) map between empirical models:

f : S −→ T Emp(f ) : Emp(S) −→ Emp(T )

 

I Which black-box transformations arise in this fashion?
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Characterising free transformations

Main question and sketch of the answer



Main question

Given F : Emp(S) −→ Emp(T ), can it be realised by a classical procedure?
I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

?
=
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Relativising contextuality

Given F : Emp(S) −→ Emp(T ), can it be realised by an experimental
procedure? I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

Special case S = I

Given ,

?
=
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From objects to morphisms . . .

and back!

Given F : Emp(S) −→ Emp(T ), can it be realised by an classical procedure?
I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

is special case of

Given an empirical model, is it noncontextual?
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Answering the question by internalisation

From two scenarios S and T , we build a new scenario [S ,T ].
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Answering the question by internalisation

A convex preserving F : Emp(S) −→ Emp(T )

induces a canonical model eF : [S ,T ].

F is realised by a deterministic procedure iff eF is deterministic and satisfies g[S,T ].

F is realised by a classical procedure iff eF is non-contextual and satisfies g[S,T ].
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Further details



The hom scenario [S,T]

I Measurements are those of T .

I Outcomes of a measurement x from T are protocols
to interact with S and produce an outcome for x .

I Protocols given as joint outcomes to compatible
measurements must be jointly performable.
This guarantee is captured by the predicate

g
[S,T ]

: [S ,T ] −→ 2 .

I Noncontextual models have predetermined choice of
outcome (S-protocol) for each measurement in T ,
i.e. are classical procedures S −→ T .
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Evaluation map
ev : [S ,T ] “⊗” S “−→” T
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Answering the question I

Facts:

I Every no-signalling empirical model is an affine mixture of deterministic models.

I A function Emp(S) −→ Emp(T ) that preserves convex mixtures preserves affine mixtures.

Therefore, a convex-preserving function Emp(S) −→ Emp(T ) is determined by its action on
deterministic models, Det(S).
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Answering the question II: for experiments

An S-experiment valued in {1, . . . , n} is a classical procedure S −→ n.

I n is the scenario with a single measurement with outcomes in {1, . . . , n}.
I Emp(n) ∼= D({1, . . . , n}).

A convex-preserving function Emp(S) −→ Emp(n) is determined by action on Det(S).

In turn, Det(S) −→ D({1, . . . , n}) yields a convex mixture of functions Det(S) −→ {1, . . . , n}.

Fact:

I For any function f out of Det(S), there is a smallest set Uf of measurements needed to
implement f .

Thus, f is induced by a deterministic experiment iff Uf is a compatible set of measurements.

Similarly,
∑

ri fi is induced by an experiment if each Ufi is a compatible set of measurements.
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I For any function f out of Det(S), there is a smallest set Uf of measurements needed to
implement f .

Thus, f is induced by a deterministic experiment iff Uf is a compatible set of measurements.

Similarly,
∑

ri fi is induced by an experiment if each Ufi is a compatible set of measurements.
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Answering the question III: internalisation

A convex-preserving map F : Emp(S) −→ Emp(T ) is determined by its action on Det(S).

Given a compatible set of measurements on T , we then get a mixture of deterministic functions
from Det(S) to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

This in turn amounts to giving, for each context, some probabilistic data – an empirical model?

Lemma
A convex-preserving function F : Emp(S) −→ Emp(T ) induces a canonical no-signalling
empirical model eF : [S ,T ].
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Main results

Theorem
F is induced by a classical procedure iff eF is non-contextual and satisfies g[S,T ].

I The theorem suggests working with pairs 〈S , g : S −→ 2〉 as our basic objects.

I A morphism f : 〈S , g〉 −→ 〈T , h〉 is given by a procedure f : S −→ T such that

e : S satisfies g =⇒ Emp(f ) e : T satisfies h.

Theorem
[−,−] (appropriately modified) makes this category into a closed category.
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Caveat: adding predicates

g
S
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Closed structure



Getting closure

[S ,T ] “⊗” S −→ T
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Getting closure

Closed category

[−,−] : Scenop × Scen −→ Scen

I iS : S
∼=−→ [I ,S ] natural in S

I jS : I −→ [S ,S ] extranatural in S (identity transformations)

I LR
S,T : [S ,T ] −→ [[R,S ], [R,T ]] natural in S , T , extranatural in R (curried composition)

I + reasonable coherence axioms
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Outlook



Further questions

I External characterisation of adaptive procedures?
Note that [S ,T ] can be defined in the adaptive case, but there is no obvious way of building a

canonical adaptive empirical model out of a convex-preserving function Emp(S) −→ Emp(T ).

I Doing the same possibilistically?

I Does the set of all predicates on S generalise partial Boolean algebras to arbitrary
measurement compatibility structures?

I Examining the closed structure?
Note that it’s not monoidal wrt. the usual monoidal structure, but seems closed wrt a ‘directed’

tensor product.
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Questions...

?
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