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Introduction



Quantum advantage Contextuality / Nonclassicality
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Contextuality in MBQC

‘Contextuality in measurement-based quantum computation’, Raussendorf, PRA 2013.

classical input

classical output

questions

answers

MBQC: Classical control computer with access to quantum resources

I Classical control restricted to Z2-linear computation
I Resource treated as a black box, described by its behaviour

Theorem
If an `2-MBQC deterministically computes a nonlinear Boolean function then the resource is
strongly contextual.
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The AND function

‘Computational power of correlations’, Anders & Browne, PRL 2009.

GHZ

i1 i2

o
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Adaptive MBQC

q1 · · · qn

s1 · · · sn
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Question

In adaptive MBQC:

I For a given computation, the black box is used in a given (partial) order.

I Why should the classical benchmark be so restrictive?

I We could think of a classical model that exploits this (causal) knowledge.

Can we find conditions on the computed functions that
exclude even such classical HV models?
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Non-locality



Bell scenarios

A Bell scenario consists of:

I a set Ω of sites or parties

I for each ω ∈ Ω a set Qω of questions, or measurement settings

I for each ω ∈ Ω a set Aω of answers, or measurement outcomes

Given S ⊂ Ω, we write

QS :=
∏
ω∈S

Qω and AS :=
∏
ω∈S

Aω

If S ⊂ T there are restriction maps

QS⊂T : QT −→ QS and AS⊂T : AT −→ AS
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Deterministic local models

A deterministic local model is given by a family of functions

fω : Qω −→ Aω (ω ∈ Ω).

E.g. bipartite scenario: (QA −→ AA)× (QB −→ AB).

Equivalently, a function f : QΩ −→ AΩ such that

for any S ⊂ Ω

,

QΩ AΩ
f

f : QA ×QB −→ AA ×AB such that f (qA, qB) = (aA, aB) = (fA(qA), fB(qB)).
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Locality and no-signalling

Adding probabilities. . .

I fω : Qω −→ Aω (ω ∈ Ω)

This yields the local models.

E.g. bipartite scenario: (QA −→ D(AA))× (QB −→ D(AB)).

I f : QΩ −→ AΩ such that for any S ⊂ Ω,

QΩ AΩ

QS AS

f

QS⊂Ω AS⊂Ω

fS

This yields no-signalling models.

f : QA ×QB −→ D(AA ×AB) such that Pf (aA | qA, qB) = Pf (aA | qA) and similarly for aB .
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Causal contextuality



Causal scenarios

‘The sheaf-theoretic structure of definite causality ’, Gogioso & Pinzani, QPL 2021.

I A causal (partial) order between sites

I Classical models are allowed to use information from the causal past

I i.e. the answer at a given site may depend on the questions asked at sites in its past.

I Correspondingly, no-signalling gets relaxed, permitting signalling to the future.

NB: a special class of scenarios within the formalism presented by Samson & Amy.
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Causal scenarios

A Bell scenario consists of:

I a set Ω of sites or parties

I for each ω ∈ Ω a set Qω of questions, or measurement settings

I for each ω ∈ Ω a set Aω of answers, or measurement outcomes

Given S ⊂ Ω, we write

QS :=
∏
ω∈S

Qω and AS :=
∏
ω∈S

Aω

If S ⊂ T there are restriction maps

QS⊂T : QT −→ QS and AS⊂T : AT −→ AS

Notation: ↓ ω := {ω′ ∈ Ω | ω′ ≤ ω} ↓ S :=
⋃

ω∈S ↓ ω = {ω′ ∈ Ω | ∃ω ∈ S . ω′ ≤ ω}
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Deterministic classical causal models

A deterministic causally classical model is given by a family of functions

fω : Q↓ω −→ Aω (ω ∈ Ω).

E.g. bipartite scenario with A ≤ B: (QA −→ AA)× (QA ×QB −→ AB).

Equivalently, a function f : QΩ −→ AΩ such that for any S ⊂ Ω,

QΩ AΩ

Q↓S AS

f

Q↓S⊂Ω AS⊂Ω

fS

f : QA ×QB −→ AA ×AB such that f (qA, qB) = (aA, aB) = (fA(qA), fB(qA, qB)).
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Locality and no-signalling
Adding probabilities. . .

I fω : Q↓ω −→ D(Aω) (ω ∈ Ω)

This yields the causal classical models.

E.g. bipartite scenario with A ≤ B: (QA −→ D(AA))× (QA ×QB −→ D(AB)).

I f : QΩ −→ D(AΩ) such that for any S ⊂ Ω,

QΩ D(AΩ)

Q↓S D(AS)

f

Q↓S⊂Ω D(A)S⊂Ω

fS

This yields models that are no-signalling except from the past.

f : QA ×QB −→ D(AA ×AB) such that Pf (aA | qA, qB) = Pf (aA | qA) but not for aB .
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Measurement-based quantum computation



Adaptive `2-MBQC

q1 · · · qn

s1 · · · sn

· · ·

i1 · · · im

o1 · · · ol
I input size m

I output size l

I adaptive structure (Ω,≤) with n = |Ω|

I Q : Zm
2 −→ Zn

2

I T : Zn
2 −→ Zn

2

I Z : Zn
2 −→ Zl

2

such that Tω,ω′ 6= 0⇒ ω ≤ ω′

q = Qi + T s

s← e(q)

o = Zs

implements a function Zm
2 −→ D(Zl

2).
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Causal contextuality and adaptive MBQC



Main result

I Functions g : Zm
2 −→ Z2 can be represented as m-variable polynomials in Z2, π(g).

I Functions g : Zm
2 −→ Zl

2 are represented by l-tuples of m-variable polynomials
π(g) = 〈π(g)1, . . . π(g)l〉.

Theorem
Let (e,Q,T ,Z ) be an Ω-adaptive `2-MBQC protocol that deterministically computes a
function g : Zm

2 −→ Zl
2. If e is causally classical then each π(g)j is a polynomial with degree

at most the height of Ω, where the height of a poset is the maximum length of a chain in it.

NB: If Ω is flat, i.e. has heigth 1, one recovers Raussendorf’s result about nonlinear functions.
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Questions...

?


