Causal contextuality and adaptive MBQC

Rui Soares Barbosa
(joint work with Cihan Okay)

rui.soaresbarbosa@inl.int

—
....‘. INTERNATIONAL IBERIAN
.. NANOTECHNOLOGY
@ ¥ LrBORATORY

5th Workshop on Quantum Contextuality
in Quantum Mechanics and Beyond (QCQMB 2022)
Prague, 18th December 2022


rui.soaresbarbosa@inl.int

Joint work with Cihan Okay N Bilkent University

Funded by NSERB

the European Union CRSNE

FO@ACIA




Joint work with Cihan Okay Bilkent University

) i NSERC
ro@AC'A thuenEﬁropian Union CRSNG

~

> Related to talks by Samson & Amy, but only using a particular type of models.
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Contextuality in MBQC

‘Contextuality in measurement-based quantum computation’, Raussendorf, PRA 2013.

classical input questions
/—\ /\
~_ ~_
classical output answers

l>,-MBQC: Classical control computer with access to quantum resources
» Classical control restricted to Z,-linear computation
» Resource treated as a black box, described by its behaviour

Theorem

If an {,-MBQC deterministically computes a nonlinear Boolean function then the resource is
strongly contextual.



The AND function

. <
‘Computational power of correlations’, Anders & Browne, PRL 2009. a a

o

/15



Adaptive MBQC

olT To,




Adaptive MBQC

olT To,

m

i



Question

In adaptive MBQC:
» For a given computation, the black box is used in a given (partial) order.



Question

In adaptive MBQC:
» For a given computation, the black box is used in a given (partial) order.

» Why should the classical benchmark be so restrictive?



Question

In adaptive MBQC:
» For a given computation, the black box is used in a given (partial) order.

» Why should the classical benchmark be so restrictive?

» We could think of a classical model that exploits this (causal) knowledge.



Question

In adaptive MBQC:
» For a given computation, the black box is used in a given (partial) order.

» Why should the classical benchmark be so restrictive?

» We could think of a classical model that exploits this (causal) knowledge.

Can we find conditions on the computed functions that
exclude even such classical HV models?




Non-locality



Bell scenarios

A Bell scenario consists of:

> a set Q of sites or parties
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Bell scenarios

A Bell scenario consists of:

> a set Q of sites or parties
» for each w € Q a set Q,, of questions, or measurement settings

» for each w € Q a set A, of answers, or measurement outcomes

Given S C Q, we write

Qs:=J[2 and  As:=]] A

wEeS weS

If S C T there are restriction maps

Qscr: Q1 — Qs and Asct: A — As



Deterministic local models

A deterministic local model is given by a family of functions
f, 1 Qn — A, (w e Q).

E.g. bipartite scenario: (Qa — Aa) x (Qs — Ap).
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Asca
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Deterministic local models

A deterministic local model is given by a family of functions
fw:Qw—>Aw (WEQ).

E.g. bipartite scenario: (Qa — Aa) X (Qg — Ag).

Equivalently, a function f : Qg — Aq such that for any S C Q,

f
QQ — AQ
Qsca Asca
Qs ===y~ > As

f:Qax Qg — Aa x Ap such that f(qga, gs) = (aa, as) = (fa(qa), 8(gs)).
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Locality and no-signalling
Adding probabilities. . .

> f,:Q, — D(A,) (weQ)

This yields the local models.

E.g. bipartite scenario: (Qa — D(A4)) x (Qg — D(Ag)).

> f:Qq — D(Agq) such that for any S C Q,

QQ —f> D(.AQ)
Qsca D(A)scq
Qs ~---o---- » D(As)

This yields no-signalling models.

f:Oax Qg — D(Aa x Ag) such that Pr(aa | ga, gs) = Pr(aa | ga) and similarly for ag.
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Causal scenarios

2 o)
‘ The sheaf-theoretic structure of definite causality’, Gogioso & Pinzani, QPL 2021. m
V& “Vs

A causal (partial) order between sites

v

Classical models are allowed to use information from the causal past

v

v

i.e. the answer at a given site may depend on the questions asked at sites in its past.

v

Correspondingly, no-signalling gets relaxed, permitting signalling to the future.

NB: a special class of scenarios within the formalism presented by Samson & Amy.

10/15



Causal scenarios
A Bell scenario consists of:

» a set  of sites or parties
» for each w € 2 a set Q,, of questions, or measurement settings
» for each w € Q a set A, of answers, or measurement outcomes

Given S C Q, we write

Qs = H Q. and As = H A
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Causal scenarios
A causal Bell scenario consists of:

> a partially ordered set 2 of sites or parties
» for each w € Q a set Q,, of questions, or measurement settings

» for each w € Q a set A, of answers, or measurement outcomes

Given S C Q, we write

Qs = H 9, and As = H A

weS weS

If S C T there are restriction maps

Qsct: 91 — Qs and Asct 1 At — As

Notation: [ w = {w' € Q| w < w} 1S =Upestw={we€Q|Iwes ' <w}
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Deterministic classical causal models

A deterministic causally classical model is given by a family of functions
fo: Qo — Ay (weQ).

E.g. bipartite scenario with A < B: (Qa — Aa) X (Qa X Qg —> Ap).

Equivalently, a function f : Qg — Aq such that for any S C Q,

f
QQ E— AQ
Qlsca Asca
Qs —=-mp-- > As

f:Qax Qg — Ap x Ap such that f(qga, q) = (aa, as) = (fa(qa), fa(qa, g8))-
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Locality and no-signalling
Adding probabilities. . .

> f,: 91, — D(A) (weQ)
This yields the causal classical models.

E.g. bipartite scenario with A < B: (Qa — D(A)) X (Qa x Qg — D(Ap)).

> f:Qq — D(Ag) such that for any S C Q,

Qg ——— D(Aq)
Qisca D(A)sca
Qs ~—--m-- » D(As)

This yields models that are no-signalling except from the past.

f:0ax Qg — D(Aa x Ag) such that Pr(aa | ga, gg) = Pr(aa | ga) but not for ag.
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Measurement-based quantum computation



Adaptive £,-MBQC
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Adaptive £,-MBQC
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To,

@

a1

> input size m

v

output size /
adaptive structure (2, <) with n = |Q]

v

v

Q:Zy — 73
T:Z0 — 77
> Z:78 — T

such that T, #0 = w < W'

v

gq=Qi+ Ts
s < e(q)
o=/Zs

implements a function Z§ — D(Z5).

14 /15
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Main result

» Functions g : ZJ — Z, can be represented as m-variable polynomials in Z,, 7(g).

» Functions g : ZJ — 7Z) are represented by /-tuples of m-variable polynomials
7(g) = ((g)1,.. - m(8))-

Theorem
Let (e, @, T, Z) be an Q-adaptive {,-MBQC protocol that deterministically computes a
function g : 7.5 — 7b. If e is causally classical then each m(g); is a polynomial with degree

at most the height of 2, where the height of a poset is the maximum length of a chain in it.

NB: If Q is flat, i.e. has heigth 1, one recovers Raussendorf’s result about nonlinear functions.



Questions...



