Contextuality in logical form Duality for transitive partial CABAs

Samson Abramsky

s.abramsky@ucl.ac.uk

rui.soaresbarbosa@inl.int

20th International Conference on Quantum Physics and Logic (QPL 2023) Institut Henri Poincaré, Paris, 19th July 2023

Overview

Generalise Tarski duality to partial Boolean algebras

Overview

Generalise Tarski duality to partial Boolean algebras

Tarski duality between CABA and Set

- Simplest of dualities relating algebra and topology
- In logic, between syntax and semantics

Overview

Generalise Tarski duality to partial Boolean algebras

Tarski duality between CABA and Set

- Simplest of dualities relating algebra and topology
- In logic, between syntax and semantics
- partial Boolean algebras
 - Introduced by Kochen and Specker (1965)
 - algebraic-logic setting for contextual systems
 - original formulation of KS theorem

Motivation

'Commutative algebra is like topology, only backwards.' – John Baez

Commutative algebra is like topology, only backwards. – John Baez

A whole landspace of dualities between categories of algebraic structures and categories of spaces.

Commutative algebra is like topology, only backwards. – John Baez

A whole landspace of dualities between categories of algebraic structures and categories of spaces. (In logic: syntax vs semantics).

Commutative algebra is like topology, only backwards. – John Baez

A whole landspace of dualities between categories of algebraic structures and categories of spaces. (In logic: syntax vs semantics).

Commutative C*-algebras

Locally compact Hausdorff spaces

Commutative algebra is like topology, only backwards. – John Baez

A whole landspace of dualities between categories of algebraic structures and categories of spaces. (In logic: syntax vs semantics).

Commutative C*-algebras

Boolean algebras

Locally compact Hausdorff spaces Stone spaces

'Commutative algebra is like topology, only backwards.' – John Baez

A whole landspace of dualities between categories of algebraic structures and categories of spaces. (In logic: syntax vs semantics).

Commutative C*-algebrasLocally compact Hausdorff spacesBoolean algebrasStone spacesfinite Boolean algebrasfinite sets

'Commutative algebra is like topology, only backwards.' – John Baez

A whole landspace of dualities between categories of algebraic structures and categories of spaces. (In logic: syntax vs semantics).

Commutative C*-algebras	Locally compact Hausdorff spaces
Boolean algebras	Stone spaces
finite Boolean algebras	finite sets
complete atomic Boolean algebras	sets

Commutative algebra is like topology, only backwards.' – John Baez

Typically:

- ▶ Given a space X,
 - ▶ take the set C(X) of continuous functions $X \longrightarrow \mathbb{K}$ to scalars \mathbb{K} .

Commutative algebra is like topology, only backwards.' – John Baez

Typically:

- ▶ Given a space X,
 - ▶ take the set C(X) of continuous functions $X \longrightarrow \mathbb{K}$ to scalars \mathbb{K} .
 - Algebraic operations are defined pointwise
 - and thus inherit commutativity from $\mathbb K$

'Commutative algebra is like topology, only backwards.' – John Baez

Typically:

- ▶ Given a space X,
 - ▶ take the set C(X) of continuous functions $X \longrightarrow \mathbb{K}$ to scalars \mathbb{K} .
 - Algebraic operations are defined pointwise
 - and thus inherit commutativity from $\mathbb K$
- ► Given an algebra *A*, the *points* of the space $\Sigma(A)$ are homomorphism $A \longrightarrow \mathbb{K}$

'Commutative algebra is like topology, only backwards.' – John Baez

Typically:

- ▶ Given a space X,
 - ▶ take the set C(X) of continuous functions $X \longrightarrow \mathbb{K}$ to scalars \mathbb{K} .
 - Algebraic operations are defined pointwise
 - and thus inherit commutativity from $\mathbb K$
- ▶ Given an algebra *A*, the *points* of the space $\Sigma(A)$ are homomorphism $A \longrightarrow \mathbb{K}$

Here, I mean *commutativity* in a loose, informal sense. For lattices, this would be *distributivity* (think: idempotents of a ring).

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- ▶ Described by **commutative** C*-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- ▶ Described by **commutative** C*-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- Described by commutative C*-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- > Properties or propositions are identified with (measurable) subsets of the state space.

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- ▶ Described by commutative C*-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- ▶ Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

- ▶ Described by **noncommutative** C*-algebras or von Neumann algebras.
- ▶ By GNS, algebras of bounded operators on a Hilbert space \mathcal{H} , i.e. subalgebras of $\mathcal{B}(\mathcal{H})$.

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- ▶ Described by commutative C*-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- ▶ Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

- ▶ Described by **noncommutative** C*-algebras or von Neumann algebras.
- ▶ By GNS, algebras of bounded operators on a Hilbert space \mathcal{H} , i.e. subalgebras of $\mathcal{B}(\mathcal{H})$.
- Measurements are self-adjoint operators.

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- ▶ Described by commutative C*-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- > Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

- ▶ Described by **noncommutative** C*-algebras or von Neumann algebras.
- ▶ By GNS, algebras of bounded operators on a Hilbert space \mathcal{H} , i.e. subalgebras of $\mathcal{B}(\mathcal{H})$.
- Measurements are self-adjoint operators.
- > Quantum properties or propositions are **projectors** (dichotomic measurements):

$$p: \mathcal{H} \longrightarrow \mathcal{H}$$
 s.t. $p = p^{\dagger} = p^2$

which correspond to closed subspaces of \mathcal{H} .

Traditional quantum logic

Birkhoff & von Neumann (1936), 'The logic of quantum mechanics'.

▶ The lattice P(H), of projectors on a Hilbert space H, as a non-classical logic for QM.

Traditional quantum logic

Birkhoff & von Neumann (1936), 'The logic of quantum mechanics'.

- ▶ The lattice P(H), of projectors on a Hilbert space H, as a non-classical logic for QM.
- Interpret \land (infimum) and \lor (supremum) as logical operations.

Traditional quantum logic

Birkhoff & von Neumann (1936), 'The logic of quantum mechanics'.

- ▶ The lattice P(H), of projectors on a Hilbert space H, as a non-classical logic for QM.
- \blacktriangleright Interpret \land (infimum) and \lor (supremum) as logical operations.
- ► Distributivity fails: $p \land (q \lor r) \neq (p \land q) \lor (p \land r)$.

Traditional quantum logic

Birkhoff & von Neumann (1936), 'The logic of quantum mechanics'.

- ▶ The lattice P(H), of projectors on a Hilbert space H, as a non-classical logic for QM.
- Interpret \land (infimum) and \lor (supremum) as logical operations.
- ► Distributivity fails: $p \land (q \lor r) \neq (p \land q) \lor (p \land r)$.
- ► Only commuting measurements can be performed together. So, what is the operational meaning of p ∧ q, when p and q do not commute?

An alternative approach

Kochen & Specker (1965), 'The problem of hidden variables in quantum mechanics'.

An alternative approach

Kochen & Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- > The seminal work on contextuality used partial Boolean algebras.
- Only admit physically meaningful operations.
- Represent incompatibility by partiality.

An alternative approach

Kochen & Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- > The seminal work on contextuality used partial Boolean algebras.
- Only admit physically meaningful operations.
- Represent incompatibility by partiality.

Kochen (2015), 'A reconstruction of quantum mechanics'.

▶ Kochen develops a large part of foundations of quantum theory in this framework.

Boolean algebras

- Boolean algebra $\langle A, 0, 1, \neg, \lor, \land \rangle$:
- ▶ a set A
- ▶ constants $0, 1 \in A$
- a unary operation $\neg : A \longrightarrow A$
- \blacktriangleright binary operations $\lor, \land: A^2 \longrightarrow A$

Boolean algebras

```
Boolean algebra \langle A, 0, 1, \neg, \lor, \land \rangle:
```

▶ a set A

- ▶ constants $0, 1 \in A$
- a unary operation $\neg : A \longrightarrow A$
- $\blacktriangleright \text{ binary operations } \lor, \land: A^2 \longrightarrow A$

satisfying the usual axioms: $\langle A, \lor, 0 \rangle$ and $\langle A, \land, 1 \rangle$ are commutative monoids, \lor and \land distribute over each other, $a \lor \neg a = 1$ and $a \land \neg a = 0$.

E.g.: $\langle \mathcal{P}(X), \varnothing, X, \cup, \cap \rangle$, in particular $\mathbf{2} = \{0, 1\} \cong \mathcal{P}(\{\star\})$.

▶ a set A

- ► a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0, 1 \in A$
- (total) unary operation $\neg : A \longrightarrow A$
- (partial) binary operations $\lor, \land : \odot \longrightarrow A$

▶ a set A

- ▶ a reflexive, symmetric binary relation ⊙ on A, read commeasurability or compatibility
- constants $0, 1 \in A$
- (total) unary operation $\neg : A \longrightarrow A$
- (partial) binary operations $\lor, \land : \odot \longrightarrow A$

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-commeasurable elements which is a Boolean algebra under the restriction of the operations.

▶ a set A

- ▶ a reflexive, symmetric binary relation ⊙ on A, read commeasurability or compatibility
- constants $0, 1 \in A$
- (total) unary operation $\neg : A \longrightarrow A$
- (partial) binary operations $\lor, \land : \odot \longrightarrow A$

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-commeasurable elements which is a Boolean algebra under the restriction of the operations.

E.g.: $P(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H} .

▶ a set A

- ▶ a reflexive, symmetric binary relation ⊙ on A, read commeasurability or compatibility
- constants $0, 1 \in A$
- (total) unary operation $\neg : A \longrightarrow A$
- (partial) binary operations $\lor, \land : \odot \longrightarrow A$

such that every set *S* of pairwise-commeasurable elements is contained in a set *T* of pairwise-commeasurable elements which is a Boolean algebra under the restriction of the operations.

E.g.: P(H), the projectors on a Hilbert space H. Conjunction, i.e. meet of projectors, becomes partial, defined only on **commuting** projectors.
Partial Boolean algebras Partial Boolean algebra $(A, \odot, 0, 1, \neg, \lor, \land)$:

▶ a set A

- ► a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0, 1 \in A$
- (total) unary operation $\neg : A \longrightarrow A$
- (partial) binary operations $\lor, \land : \odot \longrightarrow A$

such that every set *S* of pairwise-commeasurable elements is contained in a set *T* of pairwise-commeasurable elements which is a Boolean algebra under the restriction of the operations.

E.g.: $P(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H} . Conjunction, i.e. meet of projectors, becomes partial, defined only on **commuting** projectors.

Morphisms of pBAs are maps preserving commeasurability, and the operations wherever defined. This gives the category **pBA**.

Kochen & Specker (1965).

Let \mathcal{H} be a Hilbert space with dim $\mathcal{H} \geq$ 3, and P(\mathcal{H}) its pBA of projectors.

Kochen & Specker (1965).

Let \mathcal{H} be a Hilbert space with dim $\mathcal{H} \geq$ 3, and P(\mathcal{H}) its pBA of projectors.

There is **no** pBA homomorphism $P(\mathcal{H}) \longrightarrow \mathbf{2}$.

Kochen & Specker (1965).

Let \mathcal{H} be a Hilbert space with dim $\mathcal{H} \geq$ 3, and P(\mathcal{H}) its pBA of projectors.

There is **no** pBA homomorphism $P(\mathcal{H}) \longrightarrow \mathbf{2}$.

Kochen & Specker (1965).

Let \mathcal{H} be a Hilbert space with dim $\mathcal{H} \geq$ 3, and P(\mathcal{H}) its pBA of projectors.

There is **no** pBA homomorphism $P(\mathcal{H}) \longrightarrow \mathbf{2}$.

No assignment of truth values to all propositions that respects the logical operations on jointly testable propositions.

Kochen & Specker (1965).

Let \mathcal{H} be a Hilbert space with dim $\mathcal{H} \geq$ 3, and P(\mathcal{H}) its pBA of projectors.

There is **no** pBA homomorphism $P(\mathcal{H}) \longrightarrow \mathbf{2}$.

No assignment of truth values to all propositions that respects the logical operations on jointly testable propositions.

Spectrum of a pBA cannot have points...

- ▶ Not all properties may be observed simultaneously.
- ▶ Sets of jointly observable properties provide partial, classical snapshots.

- ▶ Not all properties may be observed simultaneously.
- > Sets of jointly observable properties provide partial, classical snapshots.

M. C. Escher, Ascending and Descending

- Not all properties may be observed simultaneously.
- > Sets of jointly observable properties provide partial, classical snapshots.

Local consistency

- Not all properties may be observed simultaneously.
- ▶ Sets of jointly observable properties provide partial, classical snapshots.

Local consistency but Global inconsistency

▶ Reyes (2012)

- Any extension of Zariski spectrum to a functor $\operatorname{Rng}^{\operatorname{op}} \longrightarrow \operatorname{Top}$ trivialises on $\mathbb{M}_n(\mathbb{C})$ $(n \geq 3)$.
- ▶ Similarly for extension of Gel'fand spectrum to noncommutative C*-algebras

- Reyes (2012)
 - Any extension of Zariski spectrum to a functor $\operatorname{Rng}^{\operatorname{op}} \longrightarrow \operatorname{Top}$ trivialises on $\mathbb{M}_n(\mathbb{C})$ $(n \geq 3)$.
 - Similarly for extension of Gel'fand spectrum to noncommutative C*-algebras
- ▶ Van den Berg & Heunen (2012, 2014)
 - Extend this to Stone and Pierce spectra
 - Proof goes via partial structures: pBAs, partial C*-algebras, ... the obstruction boils down to the Kochen–Specker theorem

- Reyes (2012)
 - Any extension of Zariski spectrum to a functor $\operatorname{Rng}^{\operatorname{op}} \longrightarrow \operatorname{Top}$ trivialises on $\mathbb{M}_n(\mathbb{C})$ $(n \geq 3)$.
 - Similarly for extension of Gel'fand spectrum to noncommutative C*-algebras
- ▶ Van den Berg & Heunen (2012, 2014)
 - Extend this to Stone and Pierce spectra
 - Proof goes via partial structures: pBAs, partial C*-algebras, ... the obstruction boils down to the Kochen–Specker theorem
 - Rules out locales, ringed toposes, schemes, quantales

- Reyes (2012)
 - Any extension of Zariski spectrum to a functor $\operatorname{Rng}^{\operatorname{op}} \longrightarrow \operatorname{Top}$ trivialises on $\mathbb{M}_n(\mathbb{C})$ $(n \geq 3)$.
 - Similarly for extension of Gel'fand spectrum to noncommutative C*-algebras
- ▶ Van den Berg & Heunen (2012, 2014)
 - Extend this to Stone and Pierce spectra
 - Proof goes via partial structures: pBAs, partial C*-algebras, ... the obstruction boils down to the Kochen–Specker theorem
 - Rules out locales, ringed toposes, schemes, quantales

'What is proved by impossibility proofs is lack of imagination.' – John S. Bell

Results

Partial Tarski duality

Recap: Tarski duality

Partial order

Let A be a Boolean algebra.

Definition For $a, b \in A$, we write $a \le b$ when one (hence all) of the following equivalent conditions hold:

- a ∧ b = a
 a ∨ b = b
- a ∧ ¬b = 0
- ¬a ∨ b = 1

 \leq is a partial order.

It determines A as a Boolean algebra: e.g. \lor (resp. \land) is supremum (resp. infimum) wrt \leq .

CABAs

Definition (Complete Boolean algebra)

A Boolean algebra *A* is said to be **complete** if any subset of elements $S \subseteq A$ has a supremum $\bigvee S$ in *A* (and consequently an infimum $\bigwedge S$, too). It thus has additional operations

$$\bigwedge,\bigvee:\mathcal{P}(\mathcal{A})\longrightarrow\mathcal{A}$$
.

Definition (Atomic Boolean algebra)

An **atom** of a Boolean algebra is a minimal non-zero element, i.e. an element $x \neq 0$ such that $a \leq x$ implies a = 0 or a = x.

A Boolean algebra *A* is called **atomic** if every non-zero element sits above an atom, i.e. for all $a \in A$ with $a \neq 0$ there is an atom *x* with $x \leq a$.

A CABA is a complete, atomic Boolean algebra.

CABAs

Example

Any finite Boolean algebra is trivially a CABA.

The powerset $\mathcal{P}(X)$ of an arbitrary set X is a CABA.

completeness: closed under arbitrary unions

• atoms: singletons $\{x\}$ for $x \in X$

This is in fact the 'only' (up to iso) example.

Proposition

In a CABA, every element is the join of the atoms below it:

$$a = \bigvee U_a \quad$$
 where $U_a := \{x \in A \mid x ext{ is an atom and } x \leq a\}$.

Proof.

Suppose $a \not\leq \bigvee U_a$, i.e. $a \land \neg \lor U_a \neq 0$. Atomicity implies there's an atom $x \leq a \land \neg \lor U_a$. On the one hand, $x \leq \neg \lor U_a$. On the other, $x \leq a$, i.e. $x \in U_a$, hence $x \leq \lor U_a$. Hence x = 0. \notin

- $\mathcal{P}: \textbf{Set}^{op} \longrightarrow \textbf{CABA}$ is the contravariant powerset functor:
- on objects: a set X is mapped to its powerset $\mathcal{P}X$ (a CABA).
- on morphisms: a function $f: X \longrightarrow Y$ yields a complete Boolean algebra homomorphism

$$\begin{aligned} \mathcal{P}(f) : \mathcal{P}(Y) &\longrightarrow \mathcal{P}(X) \\ (T \subseteq Y) &\longmapsto f^{-1}(T) = \{ x \in X \mid f(x) \in T \} \end{aligned}$$

At : **CABA**^{op} \longrightarrow **Set** is defined as follows:

- on objects: a CABA A is mapped to its set of atoms.
- on morphisms: a complete Boolean homomorphism $h : A \longrightarrow B$ yields a function

 $\operatorname{At}(h) : \operatorname{At}(B) \longrightarrow \operatorname{At}(A)$

mapping an atom *y* of *B* to the unique atom *x* of *A* such that $y \le h(x)$.

At : **CABA**^{op} \longrightarrow **Set** is defined as follows:

- on objects: a CABA A is mapped to its set of atoms.
- on morphisms: a complete Boolean homomorphism $h : A \longrightarrow B$ yields a function

 $\operatorname{At}(h) : \operatorname{At}(B) \longrightarrow \operatorname{At}(A)$

mapping an atom y of B to the unique atom x of A such that $y \le h(x)$.

Lemma Let $h : A \longrightarrow B$ in **CABA**. For all $y \in At(A)$, there is a unique $x \in At(A)$ with $y \le h(x)$.

Proof. Facts about atoms in any BA:

- If $x \neq x'$ are atoms, then $x \wedge_A x' = 0$.
- ▶ If *x* is an atom and $x \leq \bigvee S$, there is $a \in S$ with $x \leq a$.

Existence

A complete atomic implies $1_A = \bigvee At(A)$. Hence,

$$1_B = h(1_A) = h(\bigvee \mathsf{At}(A)) = \bigvee \{h(x) \mid x \in \mathsf{At}(A)\}$$

Since $y \leq 1_B$, we conclude $y \leq h(x)$ for some $x \in At(A)$.

Uniqueness

If $y \leq h(x)$ and $y \leq h(x')$, then $y \leq h(x) \wedge_B h(x') = h(x \wedge x')$, hence x = x'.

The duality is witnessed by two natural isomorphisms:

The duality is witnessed by two natural isomorphisms:

• Given a CABA A, the isomorphism $A \cong \mathcal{P}(At(A))$ maps $a \in A$ to the set of elements

 $U_a = \{x \in \operatorname{At}(A) \mid x \leq a\}.$

A property is identified with the set of possible worlds in which it holds.

The duality is witnessed by two natural isomorphisms:

• Given a CABA A, the isomorphism $A \cong \mathcal{P}(At(A))$ maps $a \in A$ to the set of elements

 $U_a = \{x \in \operatorname{At}(A) \mid x \leq a\}.$

A property is identified with the set of possible worlds in which it holds.

▶ Given a set X, the bijection $X \cong At(\mathcal{P}(X))$ maps $x \in X$ to the singleton $\{x\}$, which is an atom of $\mathcal{P}(X)$.

A possible world is identified with its characteristic property (which fully determines it).

Duality for partial CABAs

Let A be a partial Boolean algebra.

For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \land b = a$.

Let A be a partial Boolean algebra.

For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \land b = a$.

Definition (exclusive events)

Two elements $a, b \in A$ are **exclusive**, written $a \perp b$, if there is a $c \in A$ with $a \leq c$ and $b \leq \neg c$.

Let A be a partial Boolean algebra.

For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \land b = a$.

Definition (exclusive events)

Two elements $a, b \in A$ are **exclusive**, written $a \perp b$, if there is a $c \in A$ with $a \leq c$ and $b \leq \neg c$.

- $a \perp b$ is a weaker requirement than $a \wedge b = 0$.
- ▶ The two are equivalent in a Boolean algebra.
- But in a general partial Boolean algebra, there may be exclusive events that are not commeasurable (and for which, therefore, the ∧ operation is not defined).

Let A be a partial Boolean algebra.

For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \land b = a$.

Definition (exclusive events)

Two elements $a, b \in A$ are **exclusive**, written $a \perp b$, if there is a $c \in A$ with $a \leq c$ and $b \leq \neg c$.

- $a \perp b$ is a weaker requirement than $a \wedge b = 0$.
- ▶ The two are equivalent in a Boolean algebra.
- But in a general partial Boolean algebra, there may be exclusive events that are not commeasurable (and for which, therefore, the ∧ operation is not defined).

Definition

A is said to satisfy the **logical exclusivity principle (LEP)** if any two elements that are logically exclusive are also commeasurable, i.e. if $\bot \subseteq \odot$.

Note that \leq is always reflexive and antisymmetric.

Definition A partial Boolean algebra is said to be **transitive** if for all elements $a, b, c, a \le b$ and $b \le c$, then $a \le c$, i.e. \le is (globally) a partial order on A.

Proposition A partial Boolean algebra satisfies LEP if and only if it is transitive.

Note that \leq is always reflexive and antisymmetric.

Definition A partial Boolean algebra is said to be **transitive** if for all elements $a, b, c, a \le b$ and $b \le c$, then $a \le c$, i.e. \le is (globally) a partial order on A.

Proposition A partial Boolean algebra satisfies LEP if and only if it is transitive.

We restrict atention to partial Boolean algebras satisfying LEP in this talk.

Theorem The category **epBA** of partial Boolean algebras satisfying LEP is a reflective subcategory of **pBA**, i.e. the inclusion functor $I : epBA \longrightarrow pBA$ has a left adjoint $X : pBA \longrightarrow epBA$.
Partial CABAs

Definition (partial complete BA)

A partial complete Boolean algebra is a pBA with an additional (partial) operation

$$\bigvee: \bigcirc \longrightarrow A$$

satisfying the following property: any set $S \in \bigcirc$ is contained in a set $T \in \bigcirc$ which forms a complete Boolean algebra under the restriction of the operations.

Partial CABAs

Definition (partial complete BA)

A partial complete Boolean algebra is a pBA with an additional (partial) operation

$$\bigvee: \bigcirc \longrightarrow A$$

satisfying the following property: any set $S \in \bigcirc$ is contained in a set $T \in \bigcirc$ which forms a complete Boolean algebra under the restriction of the operations.

Definition (Atomic Boolean algebra)

A partial Boolean algebra *A* is called **atomic** if every non-zero element sits above an atom, i.e. for all $a \in A$ with $a \neq 0$ there is an atom *x* with $x \leq a$.

Partial CABAs

Definition (partial complete BA)

A partial complete Boolean algebra is a pBA with an additional (partial) operation

$$\bigvee: \bigcirc \longrightarrow A$$

satisfying the following property: any set $S \in \bigcirc$ is contained in a set $T \in \bigcirc$ which forms a complete Boolean algebra under the restriction of the operations.

Definition (Atomic Boolean algebra)

A partial Boolean algebra *A* is called **atomic** if every non-zero element sits above an atom, i.e. for all $a \in A$ with $a \neq 0$ there is an atom *x* with $x \leq a$.

A partial CABA is a complete, atomic partial Boolean algebra.

Graph

Definition

A graph (X, #) is a set equipped with a symmetric irreflexive relation.

Elements of X are called vertices, while unordered pairs $\{x, y\}$ with x # y are called edges.

Graph

Definition

A graph (X, #) is a set equipped with a symmetric irreflexive relation. Elements of X are called vertices, while unordered pairs $\{x, y\}$ with x # y are called edges.

Given a vertex $x \in X$ and sets of vertices $S, T \subset X$, we write:

- x # S when for all $y \in S$, x # y;
- ▶ S # T when for all $x \in S$ and $y \in T$, x # y;
- ▶ $x^{\#} := \{y \in X \mid y \# x\}$ for the neighbourhood of the vertex *x*;
- ▶ $S^{\#} := \bigcap x \in Sx^{\#} = \{y \in X \mid y \# S\}$ for the common neighbourhood of the set *S*.

Graph

Definition

A graph (X, #) is a set equipped with a symmetric irreflexive relation. Elements of X are called vertices, while unordered pairs $\{x, y\}$ with x # y are called edges.

Given a vertex $x \in X$ and sets of vertices $S, T \subset X$, we write:

- x # S when for all $y \in S$, x # y;
- ▶ S # T when for all $x \in S$ and $y \in T$, x # y;
- ▶ $x^{\#} := \{y \in X \mid y \# x\}$ for the neighbourhood of the vertex *x*;
- ▶ $S^{\#} := \bigcap x \in Sx^{\#} = \{y \in X \mid y \# S\}$ for the common neighbourhood of the set *S*.

A clique is a set of pairwise-adjacent vertices, i.e. a set $K \subset X$ with $x \# K \setminus \{x\}$ for all $x \in K$. A graph (X, #) has **finite clique cardinal** if all cliques are finite sets.

Definition (Graph of atoms)

The **graph of atoms** of a partial Boolean algebra *A*, denoted At(*A*), has as vertices the atoms of *A* and an edge between atoms *x* and *x'* if and only if $x \odot x'$ and $x \land x' = 0$.

Definition (Graph of atoms)

The **graph of atoms** of a partial Boolean algebra *A*, denoted At(*A*), has as vertices the atoms of *A* and an edge between atoms *x* and *x'* if and only if $x \odot x'$ and $x \land x' = 0$.

- At(A) is the set of atomic events with an exclusivity relation.
- ▶ Can interpret these as worlds of maximal information and incompatibility between them.

Definition (Graph of atoms)

The **graph of atoms** of a partial Boolean algebra *A*, denoted At(*A*), has as vertices the atoms of *A* and an edge between atoms *x* and *x'* if and only if $x \odot x'$ and $x \land x' = 0$.

- At(A) is the set of atomic events with an exclusivity relation.
- ► Can interpret these as worlds of maximal information and incompatibility between them.
- ▶ If A is a Boolean algebra, then At(A) is the complete graph on the set of atoms (# is \neq).

Definition (Graph of atoms)

The **graph of atoms** of a partial Boolean algebra *A*, denoted At(*A*), has as vertices the atoms of *A* and an edge between atoms *x* and *x'* if and only if $x \odot x'$ and $x \land x' = 0$.

- At(A) is the set of atomic events with an exclusivity relation.
- Can interpret these as worlds of maximal information and incompatibility between them.
- ▶ If A is a Boolean algebra, then At(A) is the complete graph on the set of atoms (# is \neq).

Recall that in a CABA, any element is uniquely written as a join of atoms, viz. $a = \bigvee U_a$ with

$$U_a := \{x \in \operatorname{At}(A) \mid x \leq a\}$$

In a pBA, U_a may not be pairwise commeasurable, hence their join need not even be defined.

Proposition Let A be a transitive partial CABA. For any element $a \in A$, it holds that $a = \bigvee K$ for any clique K of At(A) which is maximal in U_a .

Proposition

Let A be a transitive partial CABA. For any element $a \in A$, it holds that $a = \bigvee K$ for any clique K of At(A) which is maximal in U_a .

Proof. Let $a \in A$ and K be a clique of At(A) maximal in U_a .

Being a clique in At(A), $K \in \bigcirc$ and thus $\bigvee K$ is defined.

Since $K \subset U_a$, all $k \in K$ satisfy $k \le a$ and in particular $k \odot a$. Hence, $K \cup \{a\} \in \bigcirc$, implying that it is contained in a complete Boolean subalgebra. Consequently, $\bigvee K \le a$.

Now, suppose $a \leq \bigvee K$, i.e. $a \land \neg \bigvee K \neq 0$. Then atomicity implies there is an atom $x \leq a \land \neg \bigvee K$. By transitivity, $x \leq a$ and $x \leq \neg k$ (hence $x \perp k$) for all $k \in K$. This makes $K \cup \{x\}$ a clique of atoms contained in U_a , contradicting maximality of K.

So an element *a* is the join of **any** clique that is maximal in U_a .

So an element *a* is the join of **any** clique that is maximal in U_a .

Given two maximal cliques K and L, this yields an equality

$$\bigvee K = \bigvee L$$

where the elements in $\bigvee K$ and those in $\bigvee L$ are not commeasurable.

So an element *a* is the join of **any** clique that is maximal in U_a .

Given two maximal cliques K and L, this yields an equality

$$\bigvee K = \bigvee L$$

where the elements in $\bigvee K$ and those in $\bigvee L$ are not commeasurable.

The key to reconstructing a partial CABA from its atoms lies in characterising such equalities,

So an element *a* is the join of **any** clique that is maximal in U_a .

Given two maximal cliques K and L, this yields an equality

$$\bigvee K = \bigvee L$$

where the elements in $\bigvee K$ and those in $\bigvee L$ are not commeasurable.

The key to reconstructing a partial CABA from its atoms lies in characterising such equalities,

Proposition Let K and L be cliques in At(A). Then $\bigvee K \leq \bigvee L$ iff $L^{\#} \subseteq K^{\#}$ iff $K \subseteq L^{\#\#}$. Corollary

 $\bigvee K = \bigvee \tilde{L} \text{ iff } K^{\#} = L^{\#}.$

 $K \equiv L : \Leftrightarrow K^{\#} = L^{\#},$

elements of A are in 1-to-1 correspondence with \equiv -equivalence classes of cliques of At(A).

 $K \equiv L : \Leftrightarrow K^{\#} = L^{\#},$

elements of A are in 1-to-1 correspondence with \equiv -equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques $K^{\#\#}$, yielding the sets U_a .

 $K \equiv L : \Leftrightarrow K^{\#} = L^{\#},$

elements of A are in 1-to-1 correspondence with \equiv -equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques $K^{\#\#}$, yielding the sets U_a .

 $K \equiv L : \Leftrightarrow K^{\#} = L^{\#},$

elements of A are in 1-to-1 correspondence with \equiv -equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques $K^{\#\#}$, yielding the sets U_a .

- ▶ $0 = [\emptyset].$
- 1 = [M] for any maximal clique M.

 $K \equiv L : \Leftrightarrow K^{\#} = L^{\#},$

elements of A are in 1-to-1 correspondence with \equiv -equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques $K^{\#\#}$, yielding the sets U_a .

- $\blacktriangleright \ 0 = [\varnothing].$
- 1 = [M] for any maximal clique *M*.
- ▶ $\neg[K] = [L]$ for any *L* maximal in $K^{\#}$, i.e. for any L # K such that $L \sqcup K$ is a maximal clique.

 $K \equiv L : \Leftrightarrow K^{\#} = L^{\#},$

elements of A are in 1-to-1 correspondence with \equiv -equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques $K^{\#\#}$, yielding the sets U_a .

- ▶ $0 = [\emptyset].$
- 1 = [M] for any maximal clique M.
- ▶ $\neg[K] = [L]$ for any *L* maximal in $K^{\#}$, i.e. for any L # K such that $L \sqcup K$ is a maximal clique.
- ▶ $[K] \odot [L]$ iff there exist $K' \equiv K$ and $L' \equiv L$ such that $K' \cup L'$ is a clique.

 $K \equiv L : \Leftrightarrow K^{\#} = L^{\#},$

elements of A are in 1-to-1 correspondence with \equiv -equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques $K^{\#\#}$, yielding the sets U_a .

- ▶ $0 = [\emptyset].$
- 1 = [M] for any maximal clique M.
- ▶ $\neg[K] = [L]$ for any *L* maximal in $K^{\#}$, i.e. for any L # K such that $L \sqcup K$ is a maximal clique.
- ▶ $[K] \odot [L]$ iff there exist $K' \equiv K$ and $L' \equiv L$ such that $K' \cup L'$ is a clique.
- ▶ $[K] \vee [L] = [K' \cup L'].$
- ▶ $[K] \land [L] = [K' \cap L'].$

 $K \equiv L : \Leftrightarrow K^{\#} = L^{\#},$

elements of A are in 1-to-1 correspondence with \equiv -equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques $K^{\#\#}$, yielding the sets U_a .

We can describe the algebraic structure of a partial CABA A from its graph of atoms:

- ▶ $0 = [\emptyset].$
- 1 = [M] for any maximal clique M.
- ▶ $\neg[K] = [L]$ for any *L* maximal in $K^{\#}$, i.e. for any L # K such that $L \sqcup K$ is a maximal clique.
- ▶ $[K] \odot [L]$ iff there exist $K' \equiv K$ and $L' \equiv L$ such that $K' \cup L'$ is a clique.
- ▶ $[K] \vee [L] = [K' \cup L'].$
- $\blacktriangleright [K] \land [L] = [K' \cap L'].$

Which conditions on a graph (X, #) allow for such reconstruction?

Complete exclusivity graphs

Definition

A complete exclusivity graph is a graph (X, #) such that for K, L cliques and $x, y \in X$:

- 1. If $K \sqcup L$ is a maximal clique, then $K^{\#} \# L^{\#}$, i.e. x # K and y # L implies x # y.
- 2. $x^{\#} \subseteq y^{\#}$ implies x = y.

Complete exclusivity graphs

Definition A complete exclusivity graph is a graph (X, #) such that for K, L cliques and $x, y \in X$: 1. If $K \sqcup L$ is a maximal clique, then $K^{\#} \# L^{\#}$, i.e. x # K and y # L implies x # y. 2. $x^{\#} \subseteq y^{\#}$ implies x = y.

A helpful intuition is to see these as generalising sets with a \neq relation (the complete graph).

- A graph is symmetric and irreflexive.
- ▶ To be an inequivalence relation, we need cotransitivity: x # z implies x # y or x # z.

Complete exclusivity graphs

Definition A complete exclusivity graph is a graph (X, #) such that for K, L cliques and $x, y \in X$: 1. If $K \sqcup L$ is a maximal clique, then $K^{\#} \# L^{\#}$, i.e. x # K and y # L implies x # y. 2. $x^{\#} \subseteq y^{\#}$ implies x = y.

A helpful intuition is to see these as generalising sets with a \neq relation (the complete graph).

- A graph is symmetric and irreflexive.
- To be an inequivalence relation, we need cotransitivity: x # z implies x # y or x # z.
- Condition 1. is a weaker version of cotransitivity.
- ▶ Condition 2. eliminates redundant elements: cotransitive + 2. implies \neq .

Graph of atoms is complete exclusivity graph

Proposition

Let A be a partial Boolean algebra. Then At(A) is a complete exclusivity graph.

Proof. Let $K, L \subset X$ such that $K \sqcup L$ is a maximal clique, and let x, y be atoms of A. $c := \bigvee K = \neg \bigvee L$. x # K means $x \leq \neg \bigvee K = \neg c$ and x # L means $y \leq \neg \bigvee L = c$. By transitivity, we conclude that $x \odot y$,

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow (Y, \#)$ is a relation $R : X \longrightarrow Y$ satisfying:

- 1. x R y, x' R y', and y # y' implies x # x'
- 2. if K is a maximal clique in Y, $R^{-1}(K)$ contains a maximal clique.

3. for each
$$y \in Y$$
, $(R^{-1}(\{y\}))^{\#\#} = R^{-1}(\{y\})$.

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow (Y, \#)$ is a relation $R : X \longrightarrow Y$ satisfying:

- 1. x R y, x' R y', and y # y' implies x # x'
- 2. if *K* is a maximal clique in *Y*, $R^{-1}(K)$ contains a maximal clique.
- 3. for each $y \in Y$, $(R^{-1}(\{y\}))^{\#\#} = R^{-1}(\{y\})$.

For complete graphs:

1. *xRy*, *x'Ry'*, and $y \neq y'$ implies $x \neq x'$.

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow (Y, \#)$ is a relation $R : X \longrightarrow Y$ satisfying:

- 1. x R y, x' R y', and y # y' implies x # x'
- 2. if *K* is a maximal clique in *Y*, $R^{-1}(K)$ contains a maximal clique.
- 3. for each $y \in Y$, $(R^{-1}(\{y\}))^{\#\#} = R^{-1}(\{y\})$.

For complete graphs:

1. *xRy*, *x'Ry'*, and $y \neq y'$ implies $x \neq x'.x = x'$ implies y = y'. (functional)

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow (Y, \#)$ is a relation $R : X \longrightarrow Y$ satisfying:

- 1. x R y, x' R y', and y # y' implies x # x'
- 2. if *K* is a maximal clique in *Y*, $R^{-1}(K)$ contains a maximal clique.
- 3. for each $y \in Y$, $(R^{-1}(\{y\}))^{\#\#} = R^{-1}(\{y\})$.

For complete graphs:

- 1. *xRy*, *x'Ry'*, and $y \neq y'$ implies $x \neq x'$.
- 2. $R^{-1}(Y) = X$. (left-total)

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow (Y, \#)$ is a relation $R : X \longrightarrow Y$ satisfying:

- 1. x R y, x' R y', and y # y' implies x # x'
- 2. if *K* is a maximal clique in *Y*, $R^{-1}(K)$ contains a maximal clique.
- 3. for each $y \in Y$, $(R^{-1}(\{y\}))^{\#\#} = R^{-1}(\{y\})$.

For complete graphs:

- 1. *xRy*, *x'Ry'*, and $y \neq y'$ implies $x \neq x'$.
- 2. $R^{-1}(Y) = X$. (left-total)

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow (Y, \#)$ is a relation $R : X \longrightarrow Y$ satisfying:

- 1. x R y, x' R y', and y # y' implies x # x'
- 2. if *K* is a maximal clique in *Y*, $R^{-1}(K)$ contains a maximal clique.
- 3. for each $y \in Y$, $(R^{-1}(\{y\}))^{\#\#} = R^{-1}(\{y\})$.

For complete graphs:

- 1. *xRy*, *x'Ry'*, and $y \neq y'$ implies $x \neq x'$.
- 2. $R^{-1}(Y) = X$. (left-total)
- 3. trivialises.

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow (Y, \#)$ is a relation $R : X \longrightarrow Y$ satisfying:

- 1. x R y, x' R y', and y # y' implies x # x'
- 2. if K is a maximal clique in Y, $R^{-1}(K)$ contains a maximal clique.
- 3. for each $y \in Y$, $(R^{-1}(\{y\}))^{\#\#} = R^{-1}(\{y\})$.

For complete graphs:

- 1. *xRy*, *x'Ry'*, and $y \neq y'$ implies $x \neq x'$.
- 2. $R^{-1}(Y) = X$. (left-total)
- 3. trivialises.

Given $h : A \longrightarrow B$ define y R x iff $y \le h(x)$.

Morphisms of CE graphs and pCABA homomorphisms

Proposition

Let A and B be transitive partial CABAs. Given $h : A \longrightarrow B$ a partial complete Boolean algebra homomorphism, the relation $R_h : At(B) \longrightarrow At(A)$ given by

$$xR_hy$$
 iff $x \le h(y)$

is a morphism of complete exclusivity graphs. Moreover, the assignment $h \mapsto R_h$ is functorial.
Morphisms of CE graphs and pCABA homomorphisms

Proposition

Let A and B be transitive partial CABAs. Given $h : A \longrightarrow B$ a partial complete Boolean algebra homomorphism, the relation $R_h : At(B) \longrightarrow At(A)$ given by

$$xR_hy$$
 iff $x \le h(y)$

is a morphism of complete exclusivity graphs. Moreover, the assignment $h \mapsto R_h$ is functorial.

Proposition

Let X and Y be complete exclusivity graphs. Given $R : X \longrightarrow Y$ a morphism of complete exclusivity graphs, the function $h_R : \mathcal{K}(Y) \longrightarrow \mathcal{K}(X)$ given by $h_R([K]) := [L]$ where L is any clique maximal in $R^{-1}(K)$ is a well-defined partial CABA homomorphism.

Morphisms of CE graphs and pCABA homomorphisms

Proposition

Let A and B be transitive partial CABAs. Given $h : A \longrightarrow B$ a partial complete Boolean algebra homomorphism, the relation $R_h : At(B) \longrightarrow At(A)$ given by

$$xR_hy$$
 iff $x \le h(y)$

is a morphism of complete exclusivity graphs. Moreover, the assignment $h \mapsto R_h$ is functorial.

Proposition

Let X and Y be complete exclusivity graphs. Given $R : X \longrightarrow Y$ a morphism of complete exclusivity graphs, the function $h_R : \mathcal{K}(Y) \longrightarrow \mathcal{K}(X)$ given by $h_R([K]) := [L]$ where L is any clique maximal in $R^{-1}(K)$ is a well-defined partial CABA homomorphism.

Proposition

For any A and B be transitive partial CABAs, $epCABA(A, B) \cong XGph(At(B), At(A))$.

Global points

Homomorphism $A \longrightarrow 2$ corresponds to morphism $K_1 \longrightarrow At(A)$,

Homomorphism $A \longrightarrow 2$ corresponds to morphism $K_1 \longrightarrow At(A)$,

- i.e. a subset of atoms of A satisfying:
- 1. it is an independent (or stable) set
- 2. it is a maximal clique transversal, i.e. it has a vertex in each maximal clique

Free-forgetful adjunction for CABAs

Free-forgetful adjunction for CABAs

- ▶ Under the duality, it corresponds to the contravariant powerset self-adjunction.
- It gives the construction of the free CABA as a double powerset.

• Universe of a pCABA is a reflexive (compability) graph $\langle A, \odot \rangle$

- ▶ Universe of a pCABA is a reflexive (compability) graph $\langle A, \odot \rangle$
- ▶ Under duality it corresponds to adjunction between **compatibility** and **exclusivity** graphs.
- This gives a concrete construction of the free CABA.

- Universe of a pCABA is a reflexive (compability) graph $\langle A, \odot \rangle$
- Under duality it corresponds to adjunction between compatibility and exclusivity graphs.
- ▶ This gives a concrete construction of the free CABA. A compatibility $\langle P, \odot \rangle$ to a graph with vertices $\langle C, \gamma : C \longrightarrow \{0, 1\} \rangle$ where C maximal compatible set, and edges

 $\langle \mathbf{C}, \gamma \rangle \# \langle \mathbf{D}, \delta \rangle$ iff $\exists \mathbf{x} \in \mathbf{C} \cap \mathbf{D}. \ \gamma(\mathbf{x}) \neq \delta(\mathbf{x}).$

Outlook

▶ Recall that $K \equiv L$ iff $K^{\#} = L^{\#}$, hence $K^{\#\#} = L^{\#\#}$

- ▶ Recall that $K \equiv L$ iff $K^{\#} = L^{\#}$, hence $K^{\#\#} = L^{\#\#}$
- Moreover, $U_a = K^{\#\#}$ for any clique K maximal in U_a

- ▶ Recall that $K \equiv L$ iff $K^{\#} = L^{\#}$, hence $K^{\#\#} = L^{\#\#}$
- Moreover, $U_a = K^{\#\#}$ for any clique K maximal in U_a
- ▶ This suggests taking double-neighbourhood-closed sets ($S^{\#\#} = S$) as elements of the CABA built from an exclusivity graph.

- ▶ Recall that $K \equiv L$ iff $K^{\#} = L^{\#}$, hence $K^{\#\#} = L^{\#\#}$
- Moreover, $U_a = K^{\#\#}$ for any clique K maximal in U_a
- ▶ This suggests taking double-neighbourhood-closed sets ($S^{\#\#} = S$) as elements of the CABA built from an exclusivity graph.

▶ However, not all #-closed sets are $K^{\#\#}$ for some clique K.

- ▶ Recall that $K \equiv L$ iff $K^{\#} = L^{\#}$, hence $K^{\#\#} = L^{\#\#}$
- Moreover, $U_a = K^{\#\#}$ for any clique K maximal in U_a
- ▶ This suggests taking double-neighbourhood-closed sets ($S^{\#\#} = S$) as elements of the CABA built from an exclusivity graph.

▶ However, not all #-closed sets are $K^{\#\#}$ for some clique K.

Can we characterise which ##-closed sets arise from cliques?

Drop transitivity / LEP

- Drop transitivity / LEP
- Relax binary to simplicial compatibility

- Drop transitivity / LEP
- Relax binary to simplicial compatibility

 Dropping completeness and atomicity (e.g. P(A) for vN algebra A with factor not of type I)

- Drop transitivity / LEP
- Relax binary to simplicial compatibility

 Dropping completeness and atomicity (e.g. P(A) for vN algebra A with factor not of type I)

→ analogues of Stone, Priestley, . . . Stone's motto: 'always topologise' – but how?

(Gudder, 1972)

(Gudder, 1972)

(Gudder, 1972)

OLs ···· Minimal quantum logic (Dishkant, Goldblatt, Dalla Chiara, 1970s)

(Gudder, 1972)

OLs 🚧 Minimal quantum logic (Dishkant, Goldblatt, Dalla Chiara, 1970s)

Stone representation for OLs (Goldblatt, 1975)

- related to our construction
- all graphs, all nhood-regular sets
- nothing on morphisms

Towards noncommutative dualities?

Can one find a more encompassing duality theory for 'noncommutative' or 'quantum' structures by viewing them through multiple partial classical snapshots?

Questions...

