Contextuality in logical form

Duality for transitive partial CABAs

Samson Abramsky
s.abramsky@ucl.ac.uk

Rui Soares Barbosa
rui.soaresbarbosa@inl.int

- international iberian NANOTECHNOLOGY -ABORATORY

20th International Conference on Quantum Physics and Logic (QPL 2023) Institut Henri Poincaré, Paris, 19th July 2023

Overview

Generalise Tarski duality to partial Boolean algebras

Overview

Generalise Tarski duality to partial Boolean algebras

- Tarski duality between CABA and Set
- Simplest of dualities relating algebra and topology
- In logic, between syntax and semantics

Overview

Generalise Tarski duality to partial Boolean algebras

- Tarski duality between CABA and Set
- Simplest of dualities relating algebra and topology
- In logic, between syntax and semantics
- partial Boolean algebras
- Introduced by Kochen and Specker (1965)
- algebraic-logic setting for contextual systems
- original formulation of KS theorem

Motivation

Dualities between algebra and topology

'Commutative algebra is like topology, only backwards.' - John Baez

Dualities between algebra and topology

'Commutative algebra is like topology, only backwards.' - John Baez
A whole landspace of dualities between categories of algebraic structures and categories of spaces.

Dualities between algebra and topology

'Commutative algebra is like topology, only backwards.' - John Baez
A whole landspace of dualities between categories of algebraic structures and categories of spaces.
(In logic: syntax vs semantics).

Dualities between algebra and topology

'Commutative algebra is like topology, only backwards.' - John Baez
A whole landspace of dualities between categories of algebraic structures and categories of spaces.
(In logic: syntax vs semantics).

Commutative C^{*}-algebras
Locally compact Hausdorff spaces

Dualities between algebra and topology

'Commutative algebra is like topology, only backwards.' - John Baez
A whole landspace of dualities between categories of algebraic structures and categories of spaces.
(In logic: syntax vs semantics).

Commutative C^{*}-algebras
Boolean algebras

Locally compact Hausdorff spaces
Stone spaces

Dualities between algebra and topology

'Commutative algebra is like topology, only backwards.' - John Baez
A whole landspace of dualities between categories of algebraic structures and categories of spaces.
(In logic: syntax vs semantics).

Commutative C^{*}-algebras
Boolean algebras
finite Boolean algebras

Locally compact Hausdorff spaces
Stone spaces
finite sets

Dualities between algebra and topology

'Commutative algebra is like topology, only backwards.' - John Baez
A whole landspace of dualities between categories of algebraic structures and categories of spaces.
(In logic: syntax vs semantics).

Commutative C^{*}-algebras
Boolean algebras
finite Boolean algebras
complete atomic Boolean algebras

Locally compact Hausdorff spaces
Stone spaces
finite sets
sets

Commutativity

‘Commutative algebra is like topology, only backwards.' - John Baez

Typically:

- Given a space X,
- take the set $C(X)$ of continuous functions $X \longrightarrow \mathbb{K}$ to scalars \mathbb{K}.

Commutativity

'Commutative algebra is like topology, only backwards.' - John Baez

Typically:

- Given a space X,
- take the set $C(X)$ of continuous functions $X \longrightarrow \mathbb{K}$ to scalars \mathbb{K}.
- Algebraic operations are defined pointwise
- and thus inherit commutativity from \mathbb{K}

Commutativity

'Commutative algebra is like topology, only backwards.' - John Baez
Typically:

- Given a space X,
- take the set $C(X)$ of continuous functions $X \longrightarrow \mathbb{K}$ to scalars \mathbb{K}.
- Algebraic operations are defined pointwise
- and thus inherit commutativity from \mathbb{K}
- Given an algebra A, the points of the space $\Sigma(A)$ are homomorphism $A \longrightarrow \mathbb{K}$

Commutativity

'Commutative algebra is like topology, only backwards.' - John Baez
Typically:

- Given a space X,
- take the set $C(X)$ of continuous functions $X \longrightarrow \mathbb{K}$ to scalars \mathbb{K}.
- Algebraic operations are defined pointwise
- and thus inherit commutativity from \mathbb{K}
- Given an algebra A, the points of the space $\Sigma(A)$ are homomorphism $A \longrightarrow \mathbb{K}$

Here, I mean commutativity in a loose, informal sense. For lattices, this would be distributivity (think: idempotents of a ring).

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- Described by commutative C^{*}-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- Described by commutative C^{*}-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- Described by commutative C^{*}-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- Properties or propositions are identified with (measurable) subsets of the state space.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- Described by commutative C^{*}-algebras or von Neumann algebras.

- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

- Described by noncommutative C^{*}-algebras or von Neumann algebras.
- By GNS, algebras of bounded operators on a Hilbert space \mathcal{H}, i.e. subalgebras of $\mathcal{B}(\mathcal{H})$.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- Described by commutative C^{*}-algebras or von Neumann algebras.

- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

- Described by noncommutative C^{*}-algebras or von Neumann algebras.
- By GNS, algebras of bounded operators on a Hilbert space \mathcal{H}, i.e. subalgebras of $\mathcal{B}(\mathcal{H})$.
- Measurements are self-adjoint operators.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

Classical mechanics

- Described by commutative C^{*}-algebras or von Neumann algebras.

- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

- Described by noncommutative C^{*}-algebras or von Neumann algebras.
- By GNS, algebras of bounded operators on a Hilbert space \mathcal{H}, i.e. subalgebras of $\mathcal{B}(\mathcal{H})$.
- Measurements are self-adjoint operators.
- Quantum properties or propositions are projectors (dichotomic measurements):

$$
p: \mathcal{H} \longrightarrow \mathcal{H} \quad \text { s.t. } \quad p=p^{\dagger}=p^{2}
$$

which correspond to closed subspaces of \mathcal{H}.

Quantum physics and logic

Traditional quantum logic
Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM .

Quantum physics and logic

Traditional quantum logic
Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM .
- Interpret \wedge (infimum) and \vee (supremum) as logical operations.

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM .
- Interpret \wedge (infimum) and \vee (supremum) as logical operations.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$.

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM.
- Interpret \wedge (infimum) and \vee (supremum) as logical operations.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$.
- Only commuting measurements can be performed together. So, what is the operational meaning of $p \wedge q$, when p and q do not commute?

Quantum physics and logic

An alternative approach

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics’.

Quantum physics and logic

An alternative approach

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- The seminal work on contextuality used partial Boolean algebras.
- Only admit physically meaningful operations.
- Represent incompatibility by partiality.

Quantum physics and logic

An alternative approach

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- The seminal work on contextuality used partial Boolean algebras.
- Only admit physically meaningful operations.
- Represent incompatibility by partiality.

Kochen (2015), 'A reconstruction of quantum mechanics'.

- Kochen develops a large part of foundations of quantum theory in this framework.

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$
satisfying the usual axioms: $\langle A, \vee, 0\rangle$ and $\langle A, \wedge, 1\rangle$ are commutative monoids, \vee and \wedge distribute over each other, $a \vee \neg a=1$ and $a \wedge \neg a=0$.
E.g.: $\langle\mathcal{P}(X), \varnothing, X, \cup, \cap\rangle$, in particular $\mathbf{2}=\{0,1\} \cong \mathcal{P}(\{\star\})$.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the operations.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the operations.
E.g.: $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the operations.
E.g.: $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}.

Conjunction, i.e. meet of projectors, becomes partial, defined only on commuting projectors.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the operations.
E.g.: $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}.

Conjunction, i.e. meet of projectors, becomes partial, defined only on commuting projectors.
Morphisms of pBAs are maps preserving commeasurability, and the operations wherever defined. This gives the category pBA.

Contextuality, or the Kochen-Specker theorem

Kochen \& Specker (1965).
Let \mathcal{H} be a Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$, and $\mathrm{P}(\mathcal{H})$ its pBA of projectors.

Contextuality, or the Kochen-Specker theorem

Kochen \& Specker (1965).
Let \mathcal{H} be a Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$, and $\mathrm{P}(\mathcal{H})$ its pBA of projectors.

There is no pBA homomorphism $\mathrm{P}(\mathcal{H}) \longrightarrow \mathbf{2}$.

Contextuality, or the Kochen-Specker theorem

Kochen \& Specker (1965).
Let \mathcal{H} be a Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$, and $\mathrm{P}(\mathcal{H})$ its pBA of projectors.

There is no pBA homomorphism $\mathrm{P}(\mathcal{H}) \longrightarrow \mathbf{2}$.

Contextuality, or the Kochen-Specker theorem

Kochen \& Specker (1965).
Let \mathcal{H} be a Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$, and $\mathrm{P}(\mathcal{H})$ its pBA of projectors.

$$
\text { There is no pBA homomorphism } \mathrm{P}(\mathcal{H}) \longrightarrow \mathbf{2} \text {. }
$$

- No assignment of truth values to all propositions that respects the logical operations on jointly testable propositions.

Contextuality, or the Kochen-Specker theorem

Kochen \& Specker (1965).
Let \mathcal{H} be a Hilbert space with $\operatorname{dim} \mathcal{H} \geq 3$, and $\mathrm{P}(\mathcal{H})$ its pBA of projectors.

$$
\text { There is no pBA homomorphism } \mathrm{P}(\mathcal{H}) \longrightarrow \mathbf{2} \text {. }
$$

- No assignment of truth values to all propositions that respects the logical operations on jointly testable propositions.
- Spectrum of a pBA cannot have points...

The essence of contextuality

- Not all properties may be observed simultaneously.
- Sets of jointly observable properties provide partial, classical snapshots.

The essence of contextuality

- Not all properties may be observed simultaneously.
- Sets of jointly observable properties provide partial, classical snapshots.

M. C. Escher, Ascending and Descending

The essence of contextuality

- Not all properties may be observed simultaneously.
- Sets of jointly observable properties provide partial, classical snapshots.

Local consistency

The essence of contextuality

- Not all properties may be observed simultaneously.
- Sets of jointly observable properties provide partial, classical snapshots.

Local consistency but Global inconsistency

No-go theorems for noncommutative dualities

- Reyes (2012)
- Any extension of Zariski spectrum to a functor Rng $^{\text {op }} \longrightarrow$ Top trivialises on $\mathbb{M}_{n}(\mathbb{C})(n \geq 3)$.
- Similarly for extension of Gel'fand spectrum to noncommutative C^{*}-algebras

No-go theorems for noncommutative dualities

- Reyes (2012)
- Any extension of Zariski spectrum to a functor Rng ${ }^{\text {op }} \longrightarrow$ Top trivialises on $\mathbb{M}_{n}(\mathbb{C})(n \geq 3)$.
- Similarly for extension of Gel'fand spectrum to noncommutative C^{*}-algebras
- Van den Berg \& Heunen $(2012,2014)$
- Extend this to Stone and Pierce spectra
- Proof goes via partial structures: pBAs, partial C^{*}-algebras, ...
 the obstruction boils down to the Kochen-Specker theorem

No-go theorems for noncommutative dualities

- Reyes (2012)
- Any extension of Zariski spectrum to a functor Rng ${ }^{\text {op }} \longrightarrow$ Top trivialises on $\mathbb{M}_{n}(\mathbb{C})(n \geq 3)$.
- Similarly for extension of Gel'fand spectrum to noncommutative C^{*}-algebras
- Van den Berg \& Heunen $(2012,2014)$
- Extend this to Stone and Pierce spectra
- Proof goes via partial structures: pBAs, partial C^{*}-algebras, ...
 the obstruction boils down to the Kochen-Specker theorem
- Rules out locales, ringed toposes, schemes, quantales

No-go theorems for noncommutative dualities

- Reyes (2012)
- Any extension of Zariski spectrum to a functor Rng ${ }^{\text {op }} \longrightarrow$ Top trivialises on $\mathbb{M}_{n}(\mathbb{C})(n \geq 3)$.
- Similarly for extension of Gel'fand spectrum to noncommutative C^{*}-algebras
- Van den Berg \& Heunen $(2012,2014)$
- Extend this to Stone and Pierce spectra
- Proof goes via partial structures: pBAs, partial C^{*}-algebras, ...
 the obstruction boils down to the Kochen-Specker theorem
- Rules out locales, ringed toposes, schemes, quantales
'What is proved by impossibility proofs is lack of imagination.' - John S. Bell

Results

Tarski duality

Partial Tarski duality

Recap: Tarski duality

Partial order

Let A be a Boolean algebra.

Definition

For $a, b \in A$, we write $a \leq b$ when one (hence all) of the following equivalent conditions hold:

- $a \wedge b=a$
- $a \vee b=b$
- $a \wedge \neg b=0$
- $\neg a \vee b=1$
\leq is a partial order.
It determines A as a Boolean algebra: e.g. $\vee($ resp. \wedge) is supremum (resp. infimum) wrt \leq.

CABAs

Definition (Complete Boolean algebra)

A Boolean algebra A is said to be complete if any subset of elements $S \subseteq A$ has a supremum $\bigvee S$ in A (and consequently an infimum $\wedge S$, too). It thus has additional operations

$$
\Lambda, \bigvee: \mathcal{P}(A) \longrightarrow A
$$

Definition (Atomic Boolean algebra)

An atom of a Boolean algebra is a minimal non-zero element, i.e. an element $x \neq 0$ such that $a \leq x$ implies $a=0$ or $a=x$.
A Boolean algebra A is called atomic if every non-zero element sits above an atom, i.e. for all $a \in A$ with $a \neq 0$ there is an atom x with $x \leq a$.

A CABA is a complete, atomic Boolean algebra.

CABAs

Example

Any finite Boolean algebra is trivially a CABA.
The powerset $\mathcal{P}(X)$ of an arbitrary set X is a CABA.

- completeness: closed under arbitrary unions
- atoms: singletons $\{x\}$ for $x \in X$

This is in fact the 'only' (up to iso) example.

Proposition

In a CABA, every element is the join of the atoms below it:

$$
a=\bigvee U_{a} \quad \text { where } U_{a}:=\{x \in A \mid x \text { is an atom and } x \leq a\}
$$

Proof.

Suppose $a \not \subset \bigvee U_{\text {a }}$, i.e. $a \wedge \neg \bigvee U_{a} \neq 0$. Atomicity implies there's an atom $x \leq a \wedge \neg \bigvee U_{a}$. On the one hand, $x \leq \neg \bigvee U_{a}$. On the other, $x \leq a$, i.e. $x \in U_{a}$, hence $x \leq \bigvee U_{a}$. Hence $x=0$. .

Tarski duality

Tarski duality

$\mathcal{P}:$ Set $^{\mathrm{Op}} \longrightarrow$ CABA is the contravariant powerset functor:

- on objects: a set X is mapped to its powerset $\mathcal{P} X$ (a CABA).
- on morphisms: a function $f: X \longrightarrow Y$ yields a complete Boolean algebra homomorphism

$$
\begin{aligned}
\mathcal{P}(f): \mathcal{P}(Y) & \longrightarrow \mathcal{P}(X) \\
\quad(T \subseteq Y) & \longmapsto f^{-1}(T)=\{x \in X \mid f(x) \in T\}
\end{aligned}
$$

Tarski duality

At : CABA ${ }^{\text {op }} \longrightarrow$ Set is defined as follows:

- on objects: a CABA A is mapped to its set of atoms.
- on morphisms: a complete Boolean homomorphism $h: A \longrightarrow B$ yields a function

$$
\operatorname{At}(h): \operatorname{At}(B) \longrightarrow \operatorname{At}(A)
$$

mapping an atom y of B to the unique atom x of A such that $y \leq h(x)$.

Tarski duality

At : CABA ${ }^{\text {op }} \longrightarrow$ Set is defined as follows:

- on objects: a CABA A is mapped to its set of atoms.
- on morphisms: a complete Boolean homomorphism $h: A \longrightarrow B$ yields a function

$$
\operatorname{At}(h): \operatorname{At}(B) \longrightarrow \operatorname{At}(A)
$$

mapping an atom y of B to the unique atom x of A such that $y \leq h(x)$.

Tarski duality

Lemma

Let $h: A \longrightarrow B$ in CABA. For all $y \in \operatorname{At}(A)$, there is a unique $x \in \operatorname{At}(A)$ with $y \leq h(x)$.

Proof.

Facts about atoms in any BA:

- If $x \neq x^{\prime}$ are atoms, then $x \wedge_{A} x^{\prime}=0$.
- If x is an atom and $x \leq \bigvee S$, there is $a \in S$ with $x \leq a$.

Existence

A complete atomic implies $1_{A}=\bigvee \operatorname{At}(A)$. Hence,

$$
1_{B}=h\left(1_{A}\right)=h(\bigvee \operatorname{At}(A))=\bigvee\{h(x) \mid x \in \operatorname{At}(A)\}
$$

Since $y \leq 1_{B}$, we conclude $y \leq h(x)$ for some $x \in \operatorname{At}(A)$.

Uniqueness

If $y \leq h(x)$ and $y \leq h\left(x^{\prime}\right)$, then $y \leq h(x) \wedge_{B} h\left(x^{\prime}\right)=h\left(x \wedge x^{\prime}\right)$, hence $x=x^{\prime}$.

Tarski duality

The duality is witnessed by two natural isomorphisms:

Tarski duality

The duality is witnessed by two natural isomorphisms:

- Given a CABA A, the isomorphism $A \cong \mathcal{P}(\operatorname{At}(A))$ maps $a \in A$ to the set of elements

$$
U_{a}=\{x \in \operatorname{At}(A) \mid x \leq a\} .
$$

A property is identified with the set of possible worlds in which it holds.

Tarski duality

The duality is witnessed by two natural isomorphisms:

- Given a CABA A, the isomorphism $A \cong \mathcal{P}(\operatorname{At}(A))$ maps $a \in A$ to the set of elements

$$
U_{a}=\{x \in \operatorname{At}(A) \mid x \leq a\} .
$$

A property is identified with the set of possible worlds in which it holds.

- Given a set X, the bijection $X \cong \operatorname{At}(\mathcal{P}(X))$ maps $x \in X$ to the singleton $\{x\}$, which is an atom of $\mathcal{P}(X)$.

A possible world is identified with its characteristic property (which fully determines it).

Duality for partial CABAs

Logical exclusivity principle

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Logical exclusivity principle

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Definition (exclusive events)

Two elements $a, b \in A$ are exclusive, written $a \perp b$, if there is a $c \in A$ with $a \leq c$ and $b \leq \neg c$.

Logical exclusivity principle

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Definition (exclusive events)

Two elements $a, b \in A$ are exclusive, written $a \perp b$, if there is a $c \in A$ with $a \leq c$ and $b \leq \neg c$.

- $a \perp b$ is a weaker requirement than $a \wedge b=0$.
- The two are equivalent in a Boolean algebra.
- But in a general partial Boolean algebra, there may be exclusive events that are not commeasurable (and for which, therefore, the \wedge operation is not defined).

Logical exclusivity principle

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Definition (exclusive events)

Two elements $a, b \in A$ are exclusive, written $a \perp b$, if there is a $c \in A$ with $a \leq c$ and $b \leq \neg c$.

- $a \perp b$ is a weaker requirement than $a \wedge b=0$.
- The two are equivalent in a Boolean algebra.
- But in a general partial Boolean algebra, there may be exclusive events that are not commeasurable (and for which, therefore, the \wedge operation is not defined).

Definition

A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are logically exclusive are also commeasurable, i.e. if $\perp \subseteq \odot$.

Logical exclusivity principle

Note that \leq is always reflexive and antisymmetric.
Definition
A partial Boolean algebra is said to be transitive if for all elements $a, b, c, a \leq b$ and $b \leq c$, then $a \leq c$, i.e. \leq is (globally) a partial order on A.

Proposition

A partial Boolean algebra satisfies LEP if and only if it is transitive.

Logical exclusivity principle

Note that \leq is always reflexive and antisymmetric.

Definition

A partial Boolean algebra is said to be transitive if for all elements $a, b, c, a \leq b$ and $b \leq c$, then $a \leq c$, i.e. \leq is (globally) a partial order on A.

Proposition

A partial Boolean algebra satisfies LEP if and only if it is transitive.

We restrict atention to partial Boolean algebras satisfying LEP in this talk.

Theorem

The category epBA of partial Boolean algebras satisfying LEP is a reflective subcategory of pBA, i.e. the inclusion functor $I:$ epBA \longrightarrow pBA has a left adjoint $X:$ pBA $\longrightarrow \mathbf{e p B A}$.

Definition (partial complete BA)

A partial complete Boolean algebra is a pBA with an additional (partial) operation

$$
\bigvee: \bigodot \longrightarrow A
$$

satisfying the following property: any set $S \in \odot$ is contained in a set $T \in \odot$ which forms a complete Boolean algebra under the restriction of the operations.

Partial CABAs

Definition (partial complete BA)

A partial complete Boolean algebra is a pBA with an additional (partial) operation

$$
V: \bigodot \longrightarrow A
$$

satisfying the following property: any set $S \in \odot$ is contained in a set $T \in \odot$ which forms a complete Boolean algebra under the restriction of the operations.

Definition (Atomic Boolean algebra)

A partial Boolean algebra A is called atomic if every non-zero element sits above an atom, i.e. for all $a \in A$ with $a \neq 0$ there is an atom x with $x \leq a$.

Partial CABAs

Definition (partial complete BA)

A partial complete Boolean algebra is a pBA with an additional (partial) operation

$$
V: \bigodot \longrightarrow A
$$

satisfying the following property: any set $S \in \odot$ is contained in a set $T \in \odot$ which forms a complete Boolean algebra under the restriction of the operations.

Definition (Atomic Boolean algebra)

A partial Boolean algebra A is called atomic if every non-zero element sits above an atom, i.e. for all $a \in A$ with $a \neq 0$ there is an atom x with $x \leq a$.

A partial CABA is a complete, atomic partial Boolean algebra.

Graph

Definition

A graph ($X, \#$) is a set equipped with a symmetric irreflexive relation.
Elements of X are called vertices, while unordered pairs $\{x, y\}$ with $x \# y$ are called edges.

Graph

Definition

A graph $(X, \#)$ is a set equipped with a symmetric irreflexive relation.
Elements of X are called vertices, while unordered pairs $\{x, y\}$ with $x \# y$ are called edges.
Given a vertex $x \in X$ and sets of vertices $S, T \subset X$, we write:

- $x \# S$ when for all $y \in S, x \# y$;
- $S \# T$ when for all $x \in S$ and $y \in T, x \# y$;
- $x^{\#}:=\{y \in X \mid y \# x\}$ for the neighbourhood of the vertex x;
- $S^{\#}:=\bigcap x \in S x^{\#}=\{y \in X \mid y \# S\}$ for the common neighbourhood of the set S.

Definition

A graph $(X, \#)$ is a set equipped with a symmetric irreflexive relation.
Elements of X are called vertices, while unordered pairs $\{x, y\}$ with $x \# y$ are called edges.
Given a vertex $x \in X$ and sets of vertices $S, T \subset X$, we write:

- $x \# S$ when for all $y \in S, x \# y$;
- $S \# T$ when for all $x \in S$ and $y \in T, x \# y$;
- $x^{\#}:=\{y \in X \mid y \# x\}$ for the neighbourhood of the vertex x;
- $S^{\#}:=\bigcap x \in S x^{\#}=\{y \in X \mid y \# S\}$ for the common neighbourhood of the set S.

A clique is a set of pairwise-adjacent vertices, i.e. a set $K \subset X$ with $x \# K \backslash\{x\}$ for all $x \in K$. A graph $(X, \#)$ has finite clique cardinal if all cliques are finite sets.

Graph of atoms

Definition (Graph of atoms)

The graph of atoms of a partial Boolean algebra A, denoted $\operatorname{At}(A)$, has as vertices the atoms of A and an edge between atoms x and x^{\prime} if and only if $x \odot x^{\prime}$ and $x \wedge x^{\prime}=0$.

Graph of atoms

Definition (Graph of atoms)

The graph of atoms of a partial Boolean algebra A, denoted $\operatorname{At}(A)$, has as vertices the atoms of A and an edge between atoms x and x^{\prime} if and only if $x \odot x^{\prime}$ and $x \wedge x^{\prime}=0$.

- $\operatorname{At}(A)$ is the set of atomic events with an exclusivity relation.
- Can interpret these as worlds of maximal information and incompatibility between them.

Graph of atoms

Definition (Graph of atoms)

The graph of atoms of a partial Boolean algebra A, denoted $\operatorname{At}(A)$, has as vertices the atoms of A and an edge between atoms x and x^{\prime} if and only if $x \odot x^{\prime}$ and $x \wedge x^{\prime}=0$.

- $\operatorname{At}(A)$ is the set of atomic events with an exclusivity relation.
- Can interpret these as worlds of maximal information and incompatibility between them.
- If A is a Boolean algebra, then $\operatorname{At}(A)$ is the complete graph on the set of atoms $(\#$ is $\neq)$.

Graph of atoms

Definition (Graph of atoms)

The graph of atoms of a partial Boolean algebra A, denoted $\operatorname{At}(A)$, has as vertices the atoms of A and an edge between atoms x and x^{\prime} if and only if $x \odot x^{\prime}$ and $x \wedge x^{\prime}=0$.

- $\operatorname{At}(A)$ is the set of atomic events with an exclusivity relation.
- Can interpret these as worlds of maximal information and incompatibility between them.
- If A is a Boolean algebra, then $\operatorname{At}(A)$ is the complete graph on the set of atoms $(\#$ is $\neq)$.

Recall that in a CABA, any element is uniquely written as a join of atoms, viz. $a=\bigvee U_{a}$ with

$$
U_{a}:=\{x \in \operatorname{At}(A) \mid x \leq a\}
$$

In a pBA, U_{a} may not be pairwise commeasurable, hence their join need not even be defined.

Elements from atoms

Proposition

Let A be a transitive partial $C A B A$. For any element $a \in A$, it holds that $a=\bigvee K$ for any clique K of $\operatorname{At}(A)$ which is maximal in U_{a}.

Elements from atoms

Proposition

Let A be a transitive partial CABA. For any element $a \in A$, it holds that $a=\bigvee K$ for any clique K of $\operatorname{At}(A)$ which is maximal in U_{a}.

Proof.

Let $a \in A$ and K be a clique of $\operatorname{At}(A)$ maximal in U_{a}.
Being a clique in $\operatorname{At}(A), K \in \odot$ and thus $\bigvee K$ is defined.
Since $K \subset U_{a}$, all $k \in K$ satisfy $k \leq a$ and in particular $k \odot a$. Hence, $K \cup\{a\} \in \odot$, implying that it is contained in a complete Boolean subalgebra. Consequently, $\bigvee K \leq a$.

Now, suppose $a \not \subset \bigvee K$, i.e. $a \wedge \neg \bigvee K \neq 0$. Then atomicity implies there is an atom $x \leq a \wedge \neg \bigvee K$. By transitivity, $x \leq a$ and $x \leq \neg k$ (hence $x \perp k$) for all $k \in K$. This makes $K \cup\{x\}$ a clique of atoms contained in U_{a}, contradicting maximality of K.

Elements from atoms

So an element a is the join of any clique that is maximal in U_{a}.

Elements from atoms

So an element a is the join of any clique that is maximal in U_{a}.
Given two maximal cliques K and L, this yields an equality

$$
\bigvee K=\bigvee L
$$

where the elements in $\bigvee K$ and those in $\bigvee L$ are not commeasurable.

Elements from atoms

So an element a is the join of any clique that is maximal in U_{a}.
Given two maximal cliques K and L, this yields an equality

$$
\bigvee K=\bigvee L
$$

where the elements in $\bigvee K$ and those in $\bigvee L$ are not commeasurable.
The key to reconstructing a partial CABA from its atoms lies in characterising such equalities,

Elements from atoms

So an element a is the join of any clique that is maximal in U_{a}.
Given two maximal cliques K and L, this yields an equality

$$
\bigvee K=\bigvee L
$$

where the elements in $\bigvee K$ and those in $\bigvee L$ are not commeasurable.
The key to reconstructing a partial CABA from its atoms lies in characterising such equalities,

Proposition

Let K and L be cliques in $\operatorname{At}(A)$. Then $\bigvee K \leq \bigvee L$ iff $L^{\#} \subseteq K^{\#}$ iff $K \subseteq L^{\# \#}$.
Corollary
$\bigvee K=\bigvee L$ iff $K^{\#}=L^{\#}$.

Partial CABA from its graph of atoms

Writing

$$
K \equiv L: \Leftrightarrow K^{\#}=L^{\#},
$$

elements of A are in 1-to-1 correspondence with \equiv-equivalence classes of cliques of $\operatorname{At}(A)$.

Partial CABA from its graph of atoms

 Writing$$
K \equiv L: \Leftrightarrow K^{\#}=L^{\#},
$$

elements of A are in 1-to-1 correspondence with \equiv-equivalence classes of cliques of $\operatorname{At}(A)$. Alternatively, take the double neighbourhood closures of cliques $K^{\# \#}$, yielding the sets U_{a}.

Partial CABA from its graph of atoms

Writing

$$
K \equiv L: \Leftrightarrow K^{\#}=L^{\#}
$$

elements of A are in 1-to-1 correspondence with \equiv-equivalence classes of cliques of $\operatorname{At}(A)$. Alternatively, take the double neighbourhood closures of cliques $K^{\# \#}$, yielding the sets U_{a}.

We can describe the algebraic structure of a partial CABA A from its graph of atoms:

Partial CABA from its graph of atoms

Writing

$$
K \equiv L: \Leftrightarrow K^{\#}=L^{\#}
$$

elements of A are in 1-to-1 correspondence with \equiv-equivalence classes of cliques of $\operatorname{At}(A)$. Alternatively, take the double neighbourhood closures of cliques $K^{\# \#}$, yielding the sets U_{a}.

We can describe the algebraic structure of a partial CABA A from its graph of atoms:

- $0=[\varnothing]$.
- $1=[M]$ for any maximal clique M.

Partial CABA from its graph of atoms

Writing

$$
K \equiv L: \Leftrightarrow K^{\#}=L^{\#}
$$

elements of A are in 1-to-1 correspondence with \equiv-equivalence classes of cliques of $\operatorname{At}(A)$. Alternatively, take the double neighbourhood closures of cliques $K^{\# \#}$, yielding the sets U_{a}.

We can describe the algebraic structure of a partial CABA A from its graph of atoms:

- $0=[\varnothing]$.
- $1=[M]$ for any maximal clique M.
- $\neg[K]=[L]$ for any L maximal in $K^{\#}$, i.e. for any $L \# K$ such that $L \sqcup K$ is a maximal clique.

Partial CABA from its graph of atoms

Writing

$$
K \equiv L: \Leftrightarrow K^{\#}=L^{\#}
$$

elements of A are in 1-to-1 correspondence with \equiv-equivalence classes of cliques of $\operatorname{At}(A)$. Alternatively, take the double neighbourhood closures of cliques $K^{\# \#}$, yielding the sets U_{a}.

We can describe the algebraic structure of a partial CABA A from its graph of atoms:

- $0=[\varnothing]$.
- $1=[M]$ for any maximal clique M.
- $\neg[K]=[L]$ for any L maximal in $K^{\#}$, i.e. for any $L \# K$ such that $L \sqcup K$ is a maximal clique.
- $[K] \odot[L]$ iff there exist $K^{\prime} \equiv K$ and $L^{\prime} \equiv L$ such that $K^{\prime} \cup L^{\prime}$ is a clique.

Partial CABA from its graph of atoms

Writing

$$
K \equiv L: \Leftrightarrow K^{\#}=L^{\#}
$$

elements of A are in 1-to-1 correspondence with \equiv-equivalence classes of cliques of $\operatorname{At}(A)$. Alternatively, take the double neighbourhood closures of cliques $K^{\# \#}$, yielding the sets U_{a}.

We can describe the algebraic structure of a partial CABA A from its graph of atoms:

- $0=[\varnothing]$.
- $1=[M]$ for any maximal clique M.
- $\neg[K]=[L]$ for any L maximal in $K^{\#}$, i.e. for any $L \# K$ such that $L \sqcup K$ is a maximal clique.
- $[K] \odot[L]$ iff there exist $K^{\prime} \equiv K$ and $L^{\prime} \equiv L$ such that $K^{\prime} \cup L^{\prime}$ is a clique.
- $[K] \vee[L]=\left[K^{\prime} \cup L^{\prime}\right]$.
- $[K] \wedge[L]=\left[K^{\prime} \cap L^{\prime}\right]$.

Partial CABA from its graph of atoms

Writing

$$
K \equiv L: \Leftrightarrow K^{\#}=L^{\#}
$$

elements of A are in 1-to-1 correspondence with \equiv-equivalence classes of cliques of $\operatorname{At}(A)$. Alternatively, take the double neighbourhood closures of cliques $K^{\# \#}$, yielding the sets U_{a}.

We can describe the algebraic structure of a partial CABA A from its graph of atoms:

- $0=[\varnothing]$.
- $1=[M]$ for any maximal clique M.
- $\neg[K]=[L]$ for any L maximal in $K^{\#}$, i.e. for any $L \# K$ such that $L \sqcup K$ is a maximal clique.
- $[K] \odot[L]$ iff there exist $K^{\prime} \equiv K$ and $L^{\prime} \equiv L$ such that $K^{\prime} \cup L^{\prime}$ is a clique.
- $[K] \vee[L]=\left[K^{\prime} \cup L^{\prime}\right]$.
- $[K] \wedge[L]=\left[K^{\prime} \cap L^{\prime}\right]$.

Which conditions on a graph $(X, \#)$ allow for such reconstruction?

Complete exclusivity graphs

Definition

A complete exclusivity graph is a graph $(X, \#)$ such that for K, L cliques and $x, y \in X$:

1. If $K \sqcup L$ is a maximal clique, then $K \# \# L$, i.e. $x \# K$ and $y \# L$ implies $x \# y$.
2. $x^{\#} \subseteq y^{\#}$ implies $x=y$.

Complete exclusivity graphs

Definition

A complete exclusivity graph is a graph $(X, \#)$ such that for K, L cliques and $x, y \in X$:

1. If $K \sqcup L$ is a maximal clique, then $K \# \# L^{\#}$, i.e. $x \# K$ and $y \# L$ implies $x \# y$.
2. $x^{\#} \subseteq y^{\#}$ implies $x=y$.

A helpful intuition is to see these as generalising sets with $\mathrm{a} \neq$ relation (the complete graph).

- A graph is symmetric and irreflexive.
- To be an inequivalence relation, we need cotransitivity: $x \# z$ implies $x \# y$ or $x \# z$.

Complete exclusivity graphs

Definition

A complete exclusivity graph is a graph $(X, \#)$ such that for K, L cliques and $x, y \in X$:

1. If $K \sqcup L$ is a maximal clique, then $K \# \# L^{\#}$, i.e. $x \# K$ and $y \# L$ implies $x \# y$.
2. $x^{\#} \subseteq y^{\#}$ implies $x=y$.

A helpful intuition is to see these as generalising sets with $\mathrm{a} \neq$ relation (the complete graph).

- A graph is symmetric and irreflexive.
- To be an inequivalence relation, we need cotransitivity: $x \# z$ implies $x \# y$ or $x \# z$.
- Condition 1 . is a weaker version of cotransitivity.
- Condition 2. eliminates redundant elements: cotransitive +2 . implies \neq.

Graph of atoms is complete exclusivity graph

Proposition

Let A be a partial Boolean algebra. Then $\operatorname{At}(A)$ is a complete exclusivity graph.
Proof.
Let $K, L \subset X$ such that $K \sqcup L$ is a maximal clique, and let x, y be atoms of A.
$c:=\bigvee K=\neg \bigvee L$.
$x \# K$ means $x \leq \neg \bigvee K=\neg c$ and $x \# L$ means $y \leq \neg \bigvee L=c$.
By transitivity, we conclude that $x \odot y$,

Morphisms of complete exclusivity graphs

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow(Y, \#)$ is a relation $R: X \longrightarrow Y$ satisfying:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \# y^{\prime}$ implies $x \# x^{\prime}$
2. if K is a maximal clique in $Y, R^{-1}(K)$ contains a maximal clique.
3. for each $y \in Y,\left(R^{-1}(\{y\})\right)^{\# \#}=R^{-1}(\{y\})$.

Morphisms of complete exclusivity graphs

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow(Y, \#)$ is a relation $R: X \longrightarrow Y$ satisfying:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \# y^{\prime}$ implies $x \# x^{\prime}$
2. if K is a maximal clique in $Y, R^{-1}(K)$ contains a maximal clique.
3. for each $y \in Y,\left(R^{-1}(\{y\})\right)^{\# \#}=R^{-1}(\{y\})$.

For complete graphs:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \neq y^{\prime}$ implies $x \neq x^{\prime}$.

Morphisms of complete exclusivity graphs

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow(Y, \#)$ is a relation $R: X \longrightarrow Y$ satisfying:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \# y^{\prime}$ implies $x \# x^{\prime}$
2. if K is a maximal clique in $Y, R^{-1}(K)$ contains a maximal clique.
3. for each $y \in Y,\left(R^{-1}(\{y\})\right)^{\# \#}=R^{-1}(\{y\})$.

For complete graphs:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \neq y^{\prime}$ implies $x \neq x^{\prime} . x=x^{\prime}$ implies $y=y^{\prime}$. (functional)

Morphisms of complete exclusivity graphs

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow(Y, \#)$ is a relation $R: X \longrightarrow Y$ satisfying:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \# y^{\prime}$ implies $x \# x^{\prime}$
2. if K is a maximal clique in $Y, R^{-1}(K)$ contains a maximal clique.
3. for each $y \in Y,\left(R^{-1}(\{y\})\right)^{\# \#}=R^{-1}(\{y\})$.

For complete graphs:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \neq y^{\prime}$ implies $x \neq x^{\prime}$.
2. $R^{-1}(Y)=X$. (left-total)

Morphisms of complete exclusivity graphs

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow(Y, \#)$ is a relation $R: X \longrightarrow Y$ satisfying:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \# y^{\prime}$ implies $x \# x^{\prime}$
2. if K is a maximal clique in $Y, R^{-1}(K)$ contains a maximal clique.
3. for each $y \in Y,\left(R^{-1}(\{y\})\right)^{\# \#}=R^{-1}(\{y\})$.

For complete graphs:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \neq y^{\prime}$ implies $x \neq x^{\prime}$.
2. $R^{-1}(Y)=X$. (left-total)

Morphisms of complete exclusivity graphs

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow(Y, \#)$ is a relation $R: X \longrightarrow Y$ satisfying:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \# y^{\prime}$ implies $x \# x^{\prime}$
2. if K is a maximal clique in $Y, R^{-1}(K)$ contains a maximal clique.
3. for each $y \in Y,\left(R^{-1}(\{y\})\right)^{\# \#}=R^{-1}(\{y\})$.

For complete graphs:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \neq y^{\prime}$ implies $x \neq x^{\prime}$.
2. $R^{-1}(Y)=X$. (left-total)
3. trivialises.

Morphisms of complete exclusivity graphs

What about morphisms?

Definition

A morphism $(X, \#) \longrightarrow(Y, \#)$ is a relation $R: X \longrightarrow Y$ satisfying:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \# y^{\prime}$ implies $x \# x^{\prime}$
2. if K is a maximal clique in $Y, R^{-1}(K)$ contains a maximal clique.
3. for each $y \in Y,\left(R^{-1}(\{y\})\right)^{\# \#}=R^{-1}(\{y\})$.

For complete graphs:

1. $x R y, x^{\prime} R y^{\prime}$, and $y \neq y^{\prime}$ implies $x \neq x^{\prime}$.
2. $R^{-1}(Y)=X$. (left-total)
3. trivialises.

Given $h: A \longrightarrow B$ define $y R x$ iff $y \leq h(x)$.

Morphisms of CE graphs and pCABA homomorphisms

Proposition

Let A and B be transitive partial CABAs. Given $h: A \longrightarrow B$ a partial complete Boolean algebra homomorphism, the relation $R_{h}: \operatorname{At}(B) \longrightarrow \operatorname{At}(A)$ given by

$$
x R_{h} y \quad \text { iff } \quad x \leq h(y)
$$

is a morphism of complete exclusivity graphs. Moreover, the assignment $h \mapsto R_{h}$ is functorial.

Morphisms of CE graphs and pCABA homomorphisms

Proposition

Let A and B be transitive partial CABAs. Given $h: A \longrightarrow B$ a partial complete Boolean algebra homomorphism, the relation $R_{h}: \operatorname{At}(B) \longrightarrow \operatorname{At}(A)$ given by

$$
x R_{h} y \quad \text { iff } \quad x \leq h(y)
$$

is a morphism of complete exclusivity graphs. Moreover, the assignment $h \mapsto R_{h}$ is functorial.

Proposition

Let X and Y be complete exclusivity graphs. Given $R: X \longrightarrow Y$ a morphism of complete exclusivity graphs, the function $h_{R}: \mathcal{K}(Y) \longrightarrow \mathcal{K}(X)$ given by $h_{R}([K]):=[L]$ where L is any clique maximal in $R^{-1}(K)$ is a well-defined partial CABA homomorphism.

Morphisms of CE graphs and pCABA homomorphisms

Proposition

Let A and B be transitive partial CABAs. Given $h: A \longrightarrow B$ a partial complete Boolean algebra homomorphism, the relation $R_{h}: \operatorname{At}(B) \longrightarrow \operatorname{At}(A)$ given by

$$
x R_{h} y \quad \text { iff } \quad x \leq h(y)
$$

is a morphism of complete exclusivity graphs. Moreover, the assignment $h \mapsto R_{h}$ is functorial.

Proposition

Let X and Y be complete exclusivity graphs. Given $R: X \longrightarrow Y$ a morphism of complete exclusivity graphs, the function $h_{R}: \mathcal{K}(Y) \longrightarrow \mathcal{K}(X)$ given by $h_{R}([K]):=[L]$ where L is any clique maximal in $R^{-1}(K)$ is a well-defined partial CABA homomorphism.

Proposition

For any A and B be transitive partial $C A B A s, \operatorname{epCABA}(A, B) \cong \operatorname{XGph}(\operatorname{At}(B), \operatorname{At}(A))$.

Global points

Homomorphism $A \longrightarrow 2$ corresponds to morphism $K_{1} \longrightarrow \operatorname{At}(A)$,

Global points

Homomorphism $A \longrightarrow 2$ corresponds to morphism $K_{1} \longrightarrow \operatorname{At}(A)$,
i.e. a subset of atoms of A satisfying:

1. it is an independent (or stable) set
2. it is a maximal clique transversal, i.e. it has a vertex in each maximal clique

Free-forgetful adjunction for CABAs

Free-forgetful adjunction for CABAs

- Under the duality, it corresponds to the contravariant powerset self-adjunction.
- It gives the construction of the free CABA as a double powerset.

Free-forgetful adjunction for partial CABAs

Free-forgetful adjunction for partial CABAs

- Universe of a pCABA is a reflexive (compability) graph $\langle A, \odot\rangle$

Free-forgetful adjunction for partial CABAs

- Universe of a pCABA is a reflexive (compability) graph $\langle A, \odot\rangle$
- Under duality it corresponds to adjunction between compatibility and exclusivity graphs.
- This gives a concrete construction of the free CABA.

Free-forgetful adjunction for partial CABAs

- Universe of a pCABA is a reflexive (compability) graph $\langle A, \odot\rangle$
- Under duality it corresponds to adjunction between compatibility and exclusivity graphs.
- This gives a concrete construction of the free CABA. A compatibility $\langle P, \odot\rangle$ to a graph with vertices $\langle C, \gamma: C \longrightarrow\{0,1\}\rangle$ where C maximal compatible set, and edges

$$
\langle C, \gamma\rangle \#\langle D, \delta\rangle \quad \text { iff } \quad \exists x \in C \cap D . \gamma(x) \neq \delta(x)
$$

Outlook

Reconstruction via double-neighbourhood-closed sets

- Recall that $K \equiv L$ iff $K^{\#}=L^{\#}$, hence $K^{\# \#}=L^{\# \#}$

Reconstruction via double-neighbourhood-closed sets

- Recall that $K \equiv L$ iff $K^{\#}=L^{\#}$, hence $K^{\# \#}=L^{\# \#}$
- Moreover, $U_{a}=K^{\# \#}$ for any clique K maximal in U_{a}

Reconstruction via double-neighbourhood-closed sets

- Recall that $K \equiv L$ iff $K^{\#}=L^{\#}$, hence $K^{\# \#}=L^{\# \#}$
- Moreover, $U_{a}=K^{\# \#}$ for any clique K maximal in U_{a}
- This suggests taking double-neighbourhood-closed sets $\left(S^{\# \#}=S\right)$ as elements of the CABA built from an exclusivity graph.

Reconstruction via double-neighbourhood-closed sets

- Recall that $K \equiv L$ iff $K^{\#}=L^{\#}$, hence $K^{\# \#}=L^{\# \#}$
- Moreover, $U_{a}=K \# \#$ for any clique K maximal in U_{a}
- This suggests taking double-neighbourhood-closed sets $\left(S^{\# \#}=S\right)$ as elements of the CABA built from an exclusivity graph.

- However, not all \#\#-closed sets are $K^{\# \#}$ for some clique K.

Reconstruction via double-neighbourhood-closed sets

- Recall that $K \equiv L$ iff $K^{\#}=L^{\#}$, hence $K^{\# \#}=L^{\# \#}$
- Moreover, $U_{a}=K \# \#$ for any clique K maximal in U_{a}
- This suggests taking double-neighbourhood-closed sets $\left(S^{\# \#}=S\right)$ as elements of the CABA built from an exclusivity graph.

- However, not all \#\#-closed sets are $K^{\# \#}$ for some clique K.

Can we characterise which \#\#-closed sets arise from cliques?

The spatial landscape of partial Boolean algebra

The spatial landscape of partial Boolean algebra

- Drop transitivity / LEP

The spatial landscape of partial Boolean algebra

- Drop transitivity / LEP
- Relax binary to simplicial compatibility

\rightsquigarrow Czelakowski's p BAs in a broader sense

The spatial landscape of partial Boolean algebra

- Drop transitivity / LEP
- Relax binary to simplicial compatibility

\rightsquigarrow Czelakowski's p BAs in a broader sense
- Dropping completeness and atomicity (e.g. $\mathrm{P}(A)$ for vN algebra A with factor not of type I)

The spatial landscape of partial Boolean algebra

- Drop transitivity / LEP
- Relax binary to simplicial compatibility

\rightsquigarrow Czelakowski's p BAs in a broader sense
- Dropping completeness and atomicity (e.g. $P(A)$ for $v N$ algebra A with factor not of type I)
\rightsquigarrow analogues of Stone, Priestley, Stone's motto: 'always topologise' - but how?

The wider spatial landscape of 'quantum' logics

The wider spatial landscape of 'quantum' logics

(Gudder, 1972)

The wider spatial landscape of 'quantum' logics

(Gudder, 1972)
transitive partial CABAs

The wider spatial landscape of 'quantum' logics

The wider spatial landscape of 'quantum' logics

Towards noncommutative dualities?

- Can one find a more encompassing duality theory for 'noncommutative' or 'quantum' structures by viewing them through multiple partial classical snapshots?

Questions...

