Inequalities witnessing coherence, nonlocality, and contextuality

Rui Soares Barbosa

\{ rafael.wagner, rui.soaresbarbosa, ernesto.galvao \}@inl.int

INTERNATIONAL IBERIAN
NANOTECHNOLOGY
LABORATORY
uff
Universidade Federal Fluminense

20th International Conference on Quantum Physics and Logic (QPL 2023) Paris, 20th July 2023

Introduction

Coherence, nonlocality, and contextuality are

- nonclassical features of quantum theory
- resources providing advantage in metrology, communication, computation

Introduction

Coherence, nonlocality, and contextuality are

- nonclassical features of quantum theory
- resources providing advantage in metrology, communication, computation

Can we understand the interplay between them?

Overview

We introduce a graph-based approach to derive classicality inequalities:

Overview

We introduce a graph-based approach to derive classicality inequalities:

- generalises basis-independent coherence witnesses

Overview

We introduce a graph-based approach to derive classicality inequalities:

- generalises basis-independent coherence witnesses
- recovers all noncontextuality inequalities from the CSW approach

Overview

We introduce a graph-based approach to derive classicality inequalities:

- generalises basis-independent coherence witnesses
- recovers all noncontextuality inequalities from the CSW approach
- also related to preparation contextuality in a specific setup

Event graph approach

Event graph approach

Take a graph G (event graph).

Event graph approach

Take a graph G (event graph).

- Vertex $i \in V(G)$ represents random variable A_{i} valued in \wedge

Event graph approach

Take a graph G (event graph).

- Vertex $i \in V(G)$ represents random variable A_{i} valued in \wedge
- Edge weight $r_{i j}=\operatorname{Prob}\left(A_{i}=A_{j}\right)$
- Note: in dichotomic case $\Lambda=\{-1,+1\},\left\langle A_{i} A_{j}\right\rangle=2 r_{i j}-1$.

Event graph approach

Take a graph G (event graph).

- Vertex $i \in V(G)$ represents random variable A_{i} valued in \wedge
- Edge weight $r_{i j}=\operatorname{Prob}\left(A_{i}=A_{j}\right)$
- Note: in dichotomic case $\Lambda=\{-1,+1\},\left\langle A_{i} A_{j}\right\rangle=2 r_{i j}-1$.

An edge weighting $r: E(G) \longrightarrow[0,1]$ is classical if it arises in this fashion from jointly distributed $\left\{A_{i}\right\}_{i \in V(H)}$.
\rightsquigarrow Classical polytope $\quad C_{G} \subseteq[0,1]^{E(H)}$.

Vertices of the classical polytope

- Vertices of C_{G} are deterministic edge-labellings $\alpha: E(G) \longrightarrow\{0,1\}$

Vertices of the classical polytope

- Vertices of C_{G} are deterministic edge-labellings $\alpha: E(G) \longrightarrow\{0,1\}$
- arising from underlying vertex labelling $V(H) \longrightarrow \Lambda$ with 1 meaning $=, 0$ meaning \neq

Allowed labellings are those that do not violate the transitivity of equality

The classical polytope

Inequalities from logical conditions

Boole's 'conditions of possible experience' (cf. Pitowsky, Abramsky-Hardy's 'logical Bell inequalities')

Inequalities from logical conditions

Boole's 'conditions of possible experience' (cf. Pitowsky, Abramsky-Hardy's 'logical Bell inequalities') Inconsistent statements

$$
A_{1}=A_{2} \quad A_{2}=A_{3} \quad A_{1} \neq A_{3}
$$

yield inequality

$$
\operatorname{Pr}\left(A_{1}=A_{2}\right)+\operatorname{Pr}\left(A_{2}=A_{3}\right)+\operatorname{Pr}\left(A_{1} \neq A_{3}\right) \leq 2
$$

Inequalities from logical conditions

Boole's 'conditions of possible experience' (cf. Pitowsky, Abramsky-Hardy's 'logical Bell inequalities') Inconsistent statements

$$
A_{1}=A_{2} \quad A_{2}=A_{3} \quad A_{1} \neq A_{3}
$$

yield inequality

$$
\begin{array}{ll}
& \operatorname{Pr}\left(A_{1}=A_{2}\right)+\operatorname{Pr}\left(A_{2}=A_{3}\right)+\operatorname{Pr}\left(A_{1} \neq A_{3}\right) \leq 2 \\
\Leftrightarrow & \operatorname{Pr}\left(A_{1}=A_{2}\right)+\operatorname{Pr}\left(A_{2}=A_{3}\right)+\left(1-\operatorname{Pr}\left(A_{1}=A_{3}\right)\right) \leq 2 \\
\Leftrightarrow & \operatorname{Pr}\left(A_{1}=A_{2}\right)+\operatorname{Pr}\left(A_{2}=A_{3}\right)-\operatorname{Pr}\left(A_{1}=A_{3}\right) \leq 1 \\
\Leftrightarrow & \\
& r_{12}+r_{23}-r_{13} \leq 1
\end{array}
$$

Classical polytope inequalities

- Cycle inequalities (Brod-Galvão arXiv:1902.11039 [quant-ph])

$$
\sum_{i=1}^{n-1} r_{i, i+1}-r_{1 n} \leq n-2
$$

$$
\begin{gathered}
G_{n}:=K_{n} \backslash R_{n} \\
\text { (1) } \\
\text { ! } \\
! \\
! \\
\text { ! } \\
\text { (4) }
\end{gathered}
$$

Classical polytope inequalities

- Cycle inequalities (Brod-Galvão arXiv:1902.11039 [quant-ph])

$$
\sum_{i=1}^{n-1} r_{i, i+1}-r_{1 n} \leq n-2
$$

- New inequality for K_{4}

$$
\left(r_{12}+r_{13}+r_{14}\right)-\left(r_{23}+r_{34}+r_{24}\right) \leq 1
$$

Classical polytope inequalities

- Cycle inequalities (Brod-Galvão arXiv:1902.11039 [quant-ph])

$$
\sum_{i=1}^{n-1} r_{i, i+1}-r_{1 n} \leq n-2
$$

- New inequality for K_{4}

$$
\left(r_{12}+r_{13}+r_{14}\right)-\left(r_{23}+r_{34}+r_{24}\right) \leq 1
$$

- Family of inequalities for K_{n}

$$
\begin{aligned}
& G_{n}:=K_{n} \backslash R_{n} \\
& \text { (1)- } \\
&!=(2) \\
&! \\
&! \\
& \text { (4) } R_{n}:=K_{n-1}
\end{aligned}
$$

$$
\sum_{i=2}^{n} r_{1 i}-\sum_{i \neq j=2}^{n} r_{i j} \leq 1
$$

Classical polytope inequalities

- Cycle inequalities (Brod-Galvão arXiv:1902.11039 [quant-ph])

$$
\sum_{i=1}^{n-1} r_{i, i+1}-r_{1 n} \leq n-2
$$

- New inequality for K_{4}

$$
\left(r_{12}+r_{13}+r_{14}\right)-\left(r_{23}+r_{34}+r_{24}\right) \leq 1
$$

- Family of inequalities for K_{n}

$$
\sum_{i=2}^{n} r_{1 i}-\sum_{i \neq j=2}^{n} r_{i j} \leq 1
$$

$$
G_{n}:=\{\{1, i\} \mid i=2, \ldots, n\} \quad R_{n}:=E\left(K_{n}\right) \backslash G_{n}
$$

$$
\sum_{e \in G_{n}} r_{e}-\sum_{e \in R_{n}} r_{e}=k-\sum_{e \in R_{n}} r_{e} \leq k-\binom{k}{2}=1-\binom{k-1}{2} \leq 1
$$

Classical polytope inequalities

Coherence

Coherence

- The study of coherence is usually with respect to a fixed reference basis.
- We are interested in a basis independent notion

Coherence

- The study of coherence is usually with respect to a fixed reference basis.
- We are interested in a basis independent notion
- Relational property of a set of states
- A set os states is coherence-free if these can be simultaneously diagonalised

Coherence

Set of states $\left\{\left|\phi_{i}\right\rangle\right\}_{i \in V(H)}$ and consider overlaps $r_{i j}=\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right|^{2}=\operatorname{Tr}\left(\rho_{i} \rho_{j}\right)$.

Coherence

Set of states $\left\{\left|\phi_{i}\right\rangle\right\}_{i \in V(H)}$ and consider overlaps $r_{i j}=\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right|^{2}=\operatorname{Tr}\left(\rho_{i} \rho_{j}\right)$.

- Equals probability of preparing $\left|\phi_{i}\right\rangle$ and projecting onto $\left|\phi_{j}\right\rangle$

Coherence

Set of states $\left\{\left|\phi_{i}\right\rangle\right\}_{i \in V(H)}$ and consider overlaps $r_{i j}=\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right|^{2}=\operatorname{Tr}\left(\rho_{i} \rho_{j}\right)$.

- Equals probability of preparing $\left|\phi_{i}\right\rangle$ and projecting onto $\left|\phi_{j}\right\rangle$
- Can be measured using a SWAP test: $p(0)=\frac{1+|\langle\phi \mid \psi\rangle|^{2}}{2}$

Coherence

Set of states $\left\{\left|\phi_{i}\right\rangle\right\}_{i \in V(H)}$ and consider overlaps $r_{i j}=\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right|^{2}=\operatorname{Tr}\left(\rho_{i} \rho_{j}\right)$.

- Equals probability of preparing $\left|\phi_{i}\right\rangle$ and projecting onto $\left|\phi_{j}\right\rangle$
- Can be measured using a SWAP test: $p(0)=\frac{1+|\langle\phi \mid \psi\rangle|^{2}}{2}$

If coherence-free $\rho=\left(\begin{array}{ccc}\rho_{11} & 0 & 0 \\ 0 & \ddots & \\ 0 & 0 & \rho_{d d}\end{array}\right) \quad \sigma=\left(\begin{array}{ccc}\sigma_{11} & 0 & 0 \\ 0 & \ddots & \\ 0 & 0 & \sigma_{d d}\end{array}\right)$ then $\operatorname{Tr}(\rho \sigma)=\sum_{i} \rho_{i i} \sigma_{i i}=\sum_{i=j} \rho_{i i} \sigma_{j j}$

Coherence

Set of states $\left\{\left|\phi_{i}\right\rangle\right\}_{i \in V(H)}$ and consider overlaps $r_{i j}=\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right|^{2}=\operatorname{Tr}\left(\rho_{i} \rho_{j}\right)$.

- Equals probability of preparing $\left|\phi_{i}\right\rangle$ and projecting onto $\left|\phi_{j}\right\rangle$
- Can be measured using a SWAP test: $p(0)=\frac{1+|\langle\phi \mid \psi\rangle|^{2}}{2}$

If coherence-free $\rho=\left(\begin{array}{ccc}\rho_{11} & 0 & 0 \\ 0 & \ddots & \\ 0 & 0 & \rho_{d d}\end{array}\right) \quad \sigma=\left(\begin{array}{ccc}\sigma_{11} & 0 & 0 \\ 0 & \ddots & \\ 0 & 0 & \sigma_{d d}\end{array}\right)$ then $\operatorname{Tr}(\rho \sigma)=\sum_{i} \rho_{i i} \sigma_{i i}=\sum_{i=j} \rho_{i i} \sigma_{j j}$

Any $r \in C_{G}$ admits realisation by coherence-free set of states

Quantum violations

Nonlocality and contextuality

CHSH inequality

- Cycle inequality $r_{12}+r_{23}+r_{34}-r_{14} \leq 2$

CHSH inequality

- Cycle inequality $r_{12}+r_{23}+r_{34}-r_{14} \leq 2$
- Interpret vertices as Alice's or Bob's local measurements: $v_{1}=A_{1}, \quad v_{2}=B_{1}, \quad v_{3}=A_{2}, \quad v_{4}=B_{2}$

- As a contextuality scenario, only non-trivial inequalities given by correlations

CHSH inequality

- Cycle inequality $r_{12}+r_{23}+r_{34}-r_{14} \leq 2$
- Interpret vertices as Alice's or Bob's local measurements: $v_{1}=A_{1}, \quad v_{2}=B_{1}, \quad v_{3}=A_{2}, \quad v_{4}=B_{2}$

- As a contextuality scenario, only non-trivial inequalities given by correlations
- Measuring on singlet state: $r_{A B}=p_{\neq}^{A B}=1-p_{=}^{A B}$

CHSH inequality

- Cycle inequality $r_{12}+r_{23}+r_{34}-r_{14} \leq 2$
- Interpret vertices as Alice's or Bob's local measurements: $v_{1}=A_{1}, \quad v_{2}=B_{1}, \quad v_{3}=A_{2}, \quad v_{4}=B_{2}$

- As a contextuality scenario, only non-trivial inequalities given by correlations
- Measuring on singlet state: $r_{A B}=p_{\neq}^{A B}=1-p_{=}^{A B}$
- So the facet inequality is rewritten as

$$
p_{\neq}^{A_{1} B_{1}}+p_{\neq}^{A_{2} B_{1}}+p_{\neq}^{A_{2} B_{2}}-p_{\neq}^{A_{1} B_{2}} \leq 2 .
$$

CHSH inequality

CSW approach: exclusivity graphs

Take a graph H, interpreted as exclusivity graph:

- vertices: measurement events
- edges: exclusive events (distinguishable by a measurement)

In quantum mechanics:

- vertices: projectors (PVM elements)
- edges: orthogonality

CSW approach: exclusivity graphs

Take a graph H, interpreted as exclusivity graph:

- vertices: measurement events
- edges: exclusive events (distinguishable by a measurement)

In quantum mechanics:

- vertices: projectors (PVM elements)
- edges: orthogonality

Consider assignments of probabilities to events $V(H) \longrightarrow[0,1]$.

CSW approach: noncontextual polytope

Deterministic assignments $V(H) \longrightarrow\{0,1\}$ - equivalently, subsets of $V(H)$.
Which are valid truth-values assignments?

CSW approach: noncontextual polytope

Deterministic assignments $V(H) \longrightarrow\{0,1\}$ - equivalently, subsets of $V(H)$.
Which are valid truth-values assignments?

- $S \subseteq V(H)$ is stable if no two vertices are adjacent
- Take $\chi_{s}: V(H) \longrightarrow\{0,1\}$
- Stability indicates that exclusive measurement events cannot be simultaneously true

Noncontextual polytope $\operatorname{STAB}(H) \subseteq[0,1]^{V(H)}$:

$$
\operatorname{STAB}(H):=\operatorname{ConvHull}\left\{\chi_{S} \in[0,1]^{V(H)} \mid S \subseteq V(H) \text { stable }\right\}
$$

Recovering the noncontextual polytope

Start with a graph H, thought of as an exclusivity graph (in CSW sense)

Recovering the noncontextual polytope

Start with a graph H, thought of as an exclusivity graph (in CSW sense)
Define a new graph H_{*} by adjoining a new vertex connected to every existing vertices:

- $V\left(H_{*}\right):=V(H) \sqcup\{\psi\}$
- $E\left(H_{*}\right):=E(H) \cup\{\{v, \psi\} \mid v \in V(H)\}$

Recovering the noncontextual polytope

Start with a graph H, thought of as an exclusivity graph (in CSW sense)
Define a new graph H_{*} by adjoining a new vertex connected to every existing vertices:

- $V\left(H_{*}\right):=V(H) \sqcup\{\psi\}$
- $E\left(H_{*}\right):=E(H) \cup\{\{v, \psi\} \mid v \in V(H)\}$

Impose overlap 0 on the edges of H.

Recovering the noncontextual polytope

Imposing overlap 0 on the edges of H determines a cross-section subpolytope of C_{H} :

$$
C_{H^{*}}^{0}:=\left\{r \in C_{H} \mid \forall e \in E(H) . r_{e}=0\right\}
$$

Recovering the noncontextual polytope

Imposing overlap 0 on the edges of H determines a cross-section subpolytope of C_{H} :

$$
C_{H^{*}}^{0}:=\left\{r \in C_{H} \mid \forall e \in E(H) . r_{e}=0\right\}
$$

Then

$$
C_{H^{*}}^{0} \cong \operatorname{STAB}(H)
$$

Recovering the noncontextual polytope

Imposing overlap 0 on the edges of H determines a cross-section subpolytope of C_{H} :

$$
C_{H^{*}}^{0}:=\left\{r \in C_{H} \mid \forall e \in E(H) . r_{e}=0\right\}
$$

Then

$$
C_{H^{*}}^{0} \cong \operatorname{STAB}(H)
$$

Concretely,

$$
C_{H^{*}}^{0}=\left\{\mathbf{0}_{E(H)}\right\} \times \operatorname{STAB}(H)
$$

Recovering the noncontextual polytope

Imposing overlap 0 on the edges of H determines a cross-section subpolytope of C_{H} :

$$
C_{H^{*}}^{0}:=\left\{r \in C_{H} \mid \forall e \in E(H) . r_{e}=0\right\}
$$

Then

$$
C_{H^{*}}^{0} \cong \operatorname{STAB}(H)
$$

Concretely,

$$
C_{H^{*}}^{0}=\left\{\mathbf{0}_{E(H)}\right\} \times \operatorname{STAB}(H)
$$

Noncontextuality inequalites obtained from $C_{H^{*}}$ ineqs by setting $E(H)$ coefficients to zero.

Recovering noncontextality ineqalities

 6-vertex wheel graph $W_{6}$$C_{W_{6}}$ has a facet-defining inequality:

$$
-r_{12}-r_{23}-r_{34}-r_{45}-r_{15}+r_{16}+r_{26}+r_{36}+r_{46}+r_{56} \leq 2
$$

Recovering noncontextality ineqalities

 6-vertex wheel graph $W_{6}$$C_{W_{6}}$ has a facet-defining inequality:
$-r_{12}-r_{23}-r_{34}-r_{45}-r_{15}+r_{16}+r_{26}+r_{36}+r_{46}+r_{56} \leq 2$

- Central vertex: quantum state
- Neighboring vertices in outer 5-cycle: orthogonal projectors

- $r_{v} 6=$ probability of successful projection of the central vertex state onto the projector associated with vertex v.

Recovering noncontextality ineqalities

6 -vertex wheel graph W_{6}
$C_{W_{6}}$ has a facet-defining inequality:
$-r_{12}-r_{23}-r_{34}-r_{45}-r_{15}+r_{16}+r_{26}+r_{36}+r_{46}+r_{56} \leq 2$

- Central vertex: quantum state
- Neighboring vertices in outer 5-cycle: orthogonal projectors

- $r_{v} 6=$ probability of successful projection of the central vertex state onto the projector associated with vertex v.

Imposing exclusivity constraints $r_{i j}=0$ in the outer cycle yields the inequality

$$
r_{16}+r_{26}+r_{36}+r_{46}+r_{56} \leq 2
$$

> KCBS inequality

Application: quantum interrogation in MZ interferometer

Questions...

