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Why
Contextuality is a quintessential marker of non-classicality

and a useful resource conferring advantage in quantum computation:

I Measurement-based quantum computation (MBQC)
‘Contextuality in measurement-based quantum computation’
Raussendorf, Physical Review A, 2013.
‘Contextual fraction as a measure of contextuality’
Abramsky, B, Mansfield, Physical Review Letters, 2017.

I Magic state distillation
‘Contextuality supplies the ‘magic’ for quantum computation’
Howard, Wallman, Veitch, Emerson, Nature, 2014.

I Shallow circuits
‘Quantum advantage with shallow circuits’
Bravyi, Gossett, Koenig, Science, 2018.
‘A generalised construction of quantum advantage with shallow circuits’
Aasnæss, DPhil thesis, 2022.
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Why
Causal structure

I Standard contextuality is a static notion.

I However, computation is dynamic, with nontrivial causal flow between operations.

I This should be taken into account in the analysis.

I Similar motivation applies to basic physics experiments with a given causal background.
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What

Causal refinement of the study of contextuality

I Extends Abramsky–Brandenburger ‘sheaf-theoretic’ framework for contextuality.

I Weakening no-signalling constraint: signalling may occur from only the “past light cone”.
I Also refining the notion of classicality.

Causal structure may arise from:

I fundamental aspects of the physical setting, e.g. causal structure of spacetime;
I the causal structure of an experiment: causal order on measurements;

‘The sheaf-theoretic structure of definite causality’
Gogioso, Pinzani, QPL 2011.

I feed forward in MBQC, and more generally, adaptive computation.
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How
Game semantics of causality

Approach: two-person game between Experimenter and Nature

measurement

outcomes

I The Experimenter’s moves are the choices of measurements to be performed.

I Nature’s moves are the outcomes.

I “Flat” events are generalised to strategies, which capture causal dependencies.

Note Borow ideas from CS: Kahn–Plotkin concrete domains and their representations.
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How

Compositional approach

As in the work of Gogioso and Pinzani:

I Modify the notion of event
I . . . and follow the usual script.

I Appropriate definitions are obtained automatically:
I definition of empirical model
I relaxed no-signalling constraints
I notion of classicality/non-contextuality

I contextual fraction
I logical Bell inequalities
I resource theory
I topological criteria
I connections with logic and computation
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Dual nature of causality

Causality may be:

I imposed by Nature – a causal background

I imposed by the Experimenter – e.g. to achieve computational effects.

We illustrate these two sources of causality in two basic examples.
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Example I: causal background a la G–P

Bipartite Bell scenario: Alice and Bob, with sets of local measurements MA and MB and
outcomes OA and OB.

A twist: Alice’s events causally precede those of Bob.

Thus Bob’s backwards light-cone includes the events where Alice chooses a measurement
and observes an outcome.

In a standard, “flat” scenario, deterministic outcomes are given by functions

sA : MA −→ OA, sB : MB −→ OB,

With these causal constraints, we have functions

sA : MA −→ OA, sB : MA ×MB −→ OB

That is, the responses by Nature to Bob’s measurement may depend on the previous mea-
surement made by Alice.
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Example I ctd

Given measurements x1, x2 ∈ MA, y ∈ MB, we can have

{(x1,0), (y,0)} and {(x2,0), (y, 1)}

as valid histories in a single deterministic model.

Of the usual no-signalling (compatibility) equations

e{xi,y}|{xi} = e{xi}
e{xi,y}|{y} = e{y}

only the first remains: Bob cannot signal to Alice!

e{y} is not even defined, since {y} is not a “causally secured” context.

Thus no-signalling is relaxed in a controlled fashion.
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Example II: Anders–Browne
Uses adaptivity (a form of Experimenter-imposed causality) to promote two sub-universal
computational models (Pauli measurements and mod-2 linear classical processing) to
universal MBQC.

Uses GHZ state as a resource state: GHZ = |↑↑↑〉 + |↓↓↓〉√
2 .

+ + + + +− +−+ +−− −+ + −+− −−+ −−−
XYY 0 1 1 0 1 0 0 1
YXY 0 1 1 0 1 0 0 1
YYX 0 1 1 0 1 0 0 1
XXX 1 0 0 1 0 1 1 0

In terms of parities (product of +1/− 1 outputs):

X1 Y2 Y3 = −1
Y1 X2 Y3 = −1
Y1 Y2 X3 = −1
X1 X2 X3 = +1
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Example II: Anders–Browne

GHZ

i1 i2

o Using GHZ to implement OR
I Taking X as 0, Y as 1, the inputs to an OR-gate determine the

measurements for Alice and Bob.

I The following mapping (XOR) determines Charlie’s measurement:

0, 1 7→ 1
1,0 7→ 1
1, 1 7→ 0
0,0 7→ 0

X,Y 7→ Y
Y,X 7→ Y
Y,Y 7→ X
X,X 7→ X

I The XOR of the outcome bits is taken as the output, implementing
the OR function.

I The above implements one OR gate. An arbitrary Boolean circuit with embedded OR
gates can be represented using (classically computed) feed-forward of measurement
settings.

I Such adaptivity is purely causality employed by the Experimenter; from Nature’s point of
view, it is the standard GHZ construction.
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Contextuality scenarios

(Flat) contextuality scenario (X,O, C):

I X a finite set of measurements.

I O = {Ox}x∈X a set of possible outcomes for each measurement.

I C = {Ci}i∈I a cover of X, consisting of contexts Ci ⊆ X st
⋃

i∈I Ci = X.

An event has the form (x,o), where x ∈ X and o ∈ Ox.

It corresponds to the measurement x being performed, with outcome o.
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Contextuality scenarios

Joint outcome events

I A set s of events is consistent if (x, y), (x, y′) ∈ s implies y = y′.
I dom(s) := {x | ∃o. (x,o) ∈ s}

I A consistent s defines a function from the measurements in its domain to outcomes.

The sheaf of events

A consistent set of events is a section.
I for each U ⊆ X, E(U) is a section with domain U.
I when U ⊆ V, there is a restriction map E(V) −→ E(U).

This is a sheaf! Compatible sections glue consistently.
By adding probabilities D ◦ E contextuality may arise.
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The essence of contextuality

Local consistency

but Global inconsistency
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Causal contextuality scenarios

Causal contextuality scenario (X,O, C,`):

I Additional ingredient: enabling relation, which expresses causal constraints.

I s ` x, where s is a section and x ∈ X
I meaning it is possible to perform x after the events in s have occurred.

Note that constraints refer to the measurement outcomes as well as the measurements
which have been performed. This allows adaptive behaviours to be described.
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Histories

Sets of events that can happen in a causally consistent fashion.

I accessibility relation sB x between sections s and measurements x:
I x 6∈ dom(s)
I for some S ⊆ s, S ` x.

I H, the set of histories over the scenario, is defined inductively:

H0 := {∅}
Hk+1 := Hk ∪ {s ∪ {(x,o)} | s ∈ Hk, sB x,o ∈ Ox}.

I With X finite, we have Hk = Hk+1 for some k, and we takeH = Hk for the least such k.
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Example: instrumental scenario

Λ

X

A B

Outcomes: {1,2}
Measurement settings
I for Alice: {x1, x2}
I for Bob: {y1, y2}
Enablings:

∅ ` xi, (xi, j) ` yj
Thus Alice’s measurement outcome determines Bob’s measurement setting, without any
information as to what Alice’s measurement setting was.
The variant where there is such information flow can also be represented.
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Game

A causal contextuality scenario specifies a game between Experimenter and Nature:

I Events (x,o) correspond to the Experimenter choosing a measurement x, and Nature
responding with outcome o.

I The histories correspond to the plays or runs of the game.
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Strategies

A strategy for Nature is a set of histories σ ⊆ H st:

I σ is downwards closed:
if s, t ∈ H(M) and s ⊆ t ∈ σ, then s ∈ σ.

I σ is deterministic and total:
∅ ∈ σ, and if s ∈ σ and sB x, then there is a unique o ∈ Ox such that s ∪ {(x,o)} ∈ σ.

In any position s reachable under σ, it specifies a unique response to any measurement that
can be chosen by the Experimenter.
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The sheaf of strategies

Given a causal contextuality scenario M = (X,O, C,`), we can define a presheaf

Γ : P(X)op −→ Set

I For U ⊆ X, Γ(U) is the set of strategies for M|U (restriction to measurements in U).
I When U ⊆ V, the restriction map Γ(U ⊆ V) : Γ(V) −→ Γ(U) is given by
σ 7→ σ|U := σ ∩H(MU).

Proposition
Γ is a presheaf, and satisfies the sheaf condition for “causally secured” covers.
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Running the sheaf approach script

Follow Abramsky–Brandenburger, replacing the “flat” event sheaf of local sections by the
sheaf of strategies.

We have the presheaf DRΓ, obtained by composing the distribution functor with Γ.

An empirical model is a family {ei}i∈I, where ei ∈ DRΓ(Ci), subject to the usual compatibility
conditions: for all i, j, ei|Ci∩Cj = ej|Ci∩Cj .
Thus ei assigns a probability to each extensional strategy over MCi .

The model is causally non-contextual if there is a distribution d ∈ DRΓ(X) such that, for all i,
d|Ci = ei.

We can show that this recovers
I Standard “flat” contextuality when the enabling is trivial (all measurements initially

enabled)
I The Gogioso–Pinzani theory of contextuality for causal Bell scenarios
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Experimenter strategies and adaptive computation

But this is only part of the picture!

The strategies considered so far have been strategies for Nature, which choose an outcome
for each measurement which can be chosen by the Experimenter.
Using the duality inherent in game theory, there is also a notion of strategy for Experimenter.

A strategy for Experimenter is a set of histories τ ⊆ H that is co-total:
if s is a non-maximal history in τ , then there is x such that s ∪ {(x,o)} ∈ τ for all o ∈ Ox.

At each stage, Experimenter chooses the next measurement to be performed. It must then
accept any possible response from Nature.

Future choices of the Experimenter can then depend on Nature’s responses, allowing for
adaptive protocols. We can use Experimenter strategies to capture adaptive MBQC.
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The Big Picture

We refer to strategies for Nature as N-strategies, and to strategies for Experimenter as
E-strategies.

An N-strategy σ and an E-strategy τ can be played off against each other:

〈σ | τ〉 := σ ∩ τ.

If τ is deterministic, at each stage τ chooses a uniquemeasurement, and σ a unique outcome
for that measurement, so this gives be the down-set of a unique maximal history s.
In general, it determines a set of histories.

A general empirical model will specify a distribution on N-strategies (“mixed N-strategy”) and
a distribution on E-strategies for each context.
These distributions can be pushed forward through the evaluation map to yield distributions
on histories.

This provides a basis for exploring a wide range of phenomena.
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Where we are

I Abramsky, Samson, Rui Soares Barbosa, and Amy Searle. "Combining contextuality and
causality: a game semantics approach." Philosophical Transactions of the Royal Society A
382.2268 (2024): 20230002.

The paper is an initial proof of concept.

We establish the formal framework, and show that it subsumes:
I Standard “flat” contextuality scenarios
I The (quite extensively developed) Gogioso–Pinzani framework for Bell scenarios with

causal background
I Adaptivity in MBQC setting, e.g. the Anders–Browne construction.

Plenty left to do!
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Thank you for your attention!

Questions...

?



Anders–Browne revisited

We now show how the Anders–Browne construction of an OR gate can be formalised using
an Experimenter strategy.

First, we have the description of the standard GHZ construction. This is given by a flat
measurement scenario with X = {Ai,Bj,Ck | i, j, k ∈ {0, 1}}, and Ox = {0, 1} for all x ∈ X.

The maximal compatible sets of measurements are all sets of the form {Ai,Bj,Ck} with
i, j, k ∈ {0, 1}, i.e. a choice of one measurement per each site or agent. We regard each
measurement as initially enabled. The N-strategies for this scenario form the usual sections
assigning an outcome to each choice of measurement for each site, and the GHZ model
assigns distributions on these strategies as in the table shown previously.

To get the Anders–Browne construction, we consider the E-strategy which initially allows
any A or B measurement to be performed, and after a history {(Ai, o1), (Bj, o2)} chooses the
C-measurement Ci⊕j. Playing this against the GHZ model results in a strategy that computes
the OR function with probability 1.
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Anders-Browne ctd

The full power of adaptivity is required when using this as a building block to implement a
more involved logical circuit.

Suppose that the output of the OR gate above is to be fed as the first input of a second OR
gate, built over a GHZ scenario with measurements labelled {A′i ,B′j ,C′k | i, j, k ∈ {0, 1}}.

The E-strategy implements the first OR gate as above, with any B′ measurement also enabled,
being a free input. After that, the A′-measurement can be determined: after a history con-
taining {(Ai,o1), (Bj,o2), (Ci⊕j,o3)}, the E-strategy chooses the A′-measurement A′o1⊕o2⊕o3

.
The second OR gate is then implemented like the first.

Note that the choice of A′-measurement depends not only on previousmeasurement choices,
but on outcomes provided by Nature.
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