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In a nutshell

Generalise Tarski duality to partial Boolean algebras

I Duality between CABA and Set (Tarski, 1935)
I Simplest of dualities relating algebra and topology
I In logic, between syntax and semantics

I partial Boolean algebras (Kochen & Specker, 1965)
I Algebraic-logical setting for contextuality
I A key signature of nonclassicality in quantum theory
I Includes non-locality (Bell’s theorem) as a special case
I Key role in many instances of quantum computational advantage:magic state distillation, MBQC, shallow circuits, VQE, . . .
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The mirror of mathematics



Dualities between algebra and topology

‘Commutative algebra is like topology, only backwards.’ – John Baez

Awhole landspace of dualities between categories of algebraic structuresand categories of spaces (in logic: syntax vs semantics).

Commutative C∗-algebras Locally compact Hausdorff spaces
Boolean algebras Stone spaces
finite Boolean algebras finite sets
complete atomic Boolean algebras sets
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Commutativity

‘Commutative algebra is like topology, only backwards.’ – John Baez

I Given a space X,
I take the set C(X) of continuous functions X −→ K to scalars K.
I Algebraic operations are defined pointwise
I and thus inherit commutativity from K

I Given an algebra A, the points of the space Σ(A) are homomorphism A −→ K

Here, I mean commutativity in a loose, informal sense.For lattices, this would be distributivity (think: idempotents of a ring).
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The logic of quantum theory



From classical to quantum

John von Neumann (1932), ‘Mathematische Grundlagen der Quantenmechanik’.

Classical mechanics
I Described by commutative C∗-algebras or von Neumann algebras.
I By Gel'fand duality, these are algebras of continuous (or measurable) functions ontopological spaces, the state spaces.
I All measurements have well-defined values on any state.
I Properties or propositions are identified with (measurable) subsets of the state space.
Quantum mechanics
I Described by noncommutative C∗-algebras or von Neumann algebras.
I By GNS, algebras of bounded operators on a Hilbert spaceH, i.e. subalgebras of B(H).
I Measurements are self-adjoint operators, whose eigenvalues are the possible outcomes.
I Quantum properties or propositions are projectors (dichotomic measurements):

p : H −→ H s.t. p = p† = p2
which correspond to closed subspaces ofH.
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From states to properties
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Quantum physics and logic

Traditional quantum logic

Birkhoff & von Neumann (1936), ‘The logic of quantum mechanics’.
I The lattice P(H), of projectors on a Hilbert spaceH, as a non-classical logic for QM.

I Interpret ∧ (infimum) and ∨ (supremum) as logical operations.
I Distributivity fails: p ∧ (q ∨ r) 6= (p ∧ q) ∨ (p ∧ r).
I Taking the phenomenological requirement seriously:in QM, only commuting measurements can be performed together.

So, what is the operational meaning of p ∧ q, when p and q do not commute?
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Quantum physics and logic

An alternative approach

Kochen & Specker (1965), ‘The problem of hidden variables in quantum mechanics’.

I The seminal work on contextuality used partial Boolean algebras.
I Only admit physically meaningful operations,
I representing incompatibility by partiality.
Kochen (2015), ‘A reconstruction of quantum mechanics’.
I Kochen develops a large part of foundations of quantum theory in this framework.
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Classical snapshots

I If A and B commute, then their product AB commutes with both.

I If |ψ〉 is a joint eigenstate with
A |ψ〉 = α |ψ〉 B |ψ〉 = β |ψ〉

then it is an eigenstate for AB with
AB |ψ〉 = (αβ) |ψ〉

I When A,B,C with C = AB are jointly measured on any quantum state, the observedoutcomes a, b, c satisfy c = ab.
I More generally, for A1, . . . ,An pairwise commuting and any Borel f : Rn −→ R, then

f(A1, . . . ,An) commutes with all Ai and eigenvalues satisty the same functional relation.
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The essence of contextuality
I Not all properties may be observed simultaneously.
I Sets of jointly observable properties provide partial, classical snapshots.

Local consistency but Global inconsistency
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Partial Boolean algebras



Boolean algebras

Boolean algebra 〈A,0, 1,¬,∨,∧〉:
I a set A
I constants 0, 1 ∈ A

I a unary operation ¬ : A −→ A

I binary operations ∨,∧ : A2 −→ A

satisfying the usual axioms: 〈A,∨,0〉 and 〈A,∧, 1〉 are commutative monoids,
∨ and ∧ distribute over each other,
a ∨ ¬a = 1 and a ∧ ¬a = 0.

E.g.: 〈P(X),∅,X,∪,∩〉, in particular 2 = {0, 1} ∼= P({?}).
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Partial Boolean algebras

Partial Boolean algebra 〈A,�,0, 1,¬,∨,∧〉:
I a set A
I a reflexive, symmetric binary relation � on A, read commeasurability or compatibility

I constants 0, 1 ∈ A

I (total) unary operation ¬ : A −→ A

I (partial) binary operations ∨,∧ : � −→ A

such that every set S of pairwise-commeasurable elements is contained in a set T of pairwise-commeasurable elements which is a Boolean algebra under the restriction of the operations.
E.g.: P(H), the projectors on a Hilbert spaceH.Conjunction, i.e. meet of projectors, becomes partial, defined only on commuting projectors.
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Partial Boolean algebras

A more concrete formulation of the defining axioms is:
I operations preserve commeasurability: for each n-ary operation f ,

a1 � c, . . . , an � c
f(a1, . . . , an)� c

i.e.
0, 1� a

a� c
¬a� c

a� c, b� c
a ∨ b, a ∧ b� c

I for any triple a, b, c of pairwise-commeasurable elements, the axioms of Boolean algebraare satisfied, e.g.
a� b

a ∧ b = b ∧ a
a� b, a� c, b� c

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
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The category pBA
Morphisms of partial Boolean operations are maps preserving commeasurability, and theoperations wherever defined.This gives a category pBA.

Heunen & van der Berg (2012), ‘Non-commutativity as a colimit’.
I Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.
I Coproduct: A⊕ B is the disjoint union of A and B with identifications 0A = 0B and 1A = 1B.No other commeasurabilities hold between elements of A and elements of B.
I Coequalisers, and general colimits: shown to exist via Adjoint Functor Theorem.

Abramsky & B (2021), ‘The logic of contextality’.
I We give a direct construction of colimits.
I More generally, we show how to freely generate from a given partial Boolean algebra A anew one satisfying prescribed additional commeasurability relations ◦, denoted A[}].
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Contextuality, or the Kochen–Specker theorem

Kochen & Specker (1965).

LetH be a Hilbert space with dimH ≥ 3, and P(H) its pBA of projectors.

There is no pBA homomorphism P(H) −→ 2.

I No assignment of truth values to all propositions which respects logical operations onjointly testable propositions.
I Spectrum of a pBA cannot have points. . .
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An apparent contradiction

I BA is a full subcategory of pBA.

I Given a partial Boolean algebra A, consider the diagram C(A) of its Boolean subalgebras.
I A = lim−→pBA C(A) is the colimit in pBA of the diagram C(A).
I Let B := lim−→BA C(A) be the colimit of the same diagram C(A) but in BA.
I The cocone in BA from C(A) to B is also a cocone in pBA, hence there is A −→ B !
But note that BA is an equational variety of algebras over Set.
As such, it is complete and cocomplete, but it also admits the one-element algebra 1, inwhich 0 = 1. This is the only Boolean algebra that does not have a homomorphism to 2.
If a partial Boolean algebra A has no homomorphism to 2, then lim−→BA C(A) = 1.
We could say that such a diagram is “implicitly contradictory”, and in trying to combine allthe information in a colimit, we obtain the manifestly contradictory 1.
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At the borders of paradox
I There is a Boolean term ϕ(~x) with ϕ(~x) ≡Bool 0 and an assignment ~x 7→ ~a such that ϕ(~a)is well-defined and equals 1.

‘to be sincere contradicting oneself’(Álvaro de Campos, Passagem das Horas, 1916)

At the borders of paradox:the contradiction is never directly observed!
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Quantum realisation

((a⊕ d)⊕ (b⊕ c))⊕ ((a⊕ b)⊕ (c⊕ d))

〈{0, 1},⊕〉 ←→ 〈{1,−1}, ·〉
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No-go theorems for noncommutative dualities

I Reyes (2012)
I Any extension of Zariski spectrum to a functor Rngop −→ Top trivialises on Mn(C) (n ≥ 3).
I Similarly for extension of Gel'fand spectrum to noncommutative C∗-algebras

I Van den Berg & Heunen (2012, 2014)
I Extend this to Stone and Pierce spectra
I Also rules out locales, ringed toposes, schemes, quantales
I Proof goes via partial structures: pBAs, partial C∗-algebras, . . .the obstruction boils down to the Kochen–Specker theorem:

‘What is proved by impossibility proofs is lack of imagination.’ – John S. Bell
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Summary of results



Duality for partial CABAs: key idea

I Replace sets by certain graphs.
I Vertices are possible worlds of maximal information.
I Adjacency represents exclusivity.
I It generalises 6=, thus sets embed as complete graphs.
I These exclusivity graphs are the ‘non-commutative’ spaces in this duality.

I The partial algebra is reconstructed as equivalence classes of cliques, ordouble-neighbourhood closures of cliques.
I Morphisms of exclusivity graphs are certain relations, generalising functional ones fromTarski duality.
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Tarski duality

FinBA FinSetop

FinSet

At

U

P

PF

P

∼=

a a

CABA Setop

Set

At

U

P

PF

P

∼=

a a
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Partial Tarski duality

epFinBA FinXGphop

FinRGph

At

U

K

KF

V

∼=

a a

epCABA XGphop

RGph

At

U

K

KF

V

∼=

a a
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Recap: Tarski duality



Partial order

Let A be a Boolean algebra.
DefinitionFor a, b ∈ A, we write a ≤ b when one (hence all) of the following equivalent conditions hold:
I a ∧ b = a
I a ∨ b = b
I a ∧ ¬b = 0
I ¬a ∨ b = 1
≤ is a partial order.
It determines A as a Boolean algebra: e.g. ∨ (resp. ∧) is supremum (resp. infimum) wrt ≤.
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CABAs

Definition (Complete Boolean algebra)A Boolean algebra A is said to be complete if any subset of elements S ⊆ A has a supremum∨
S in A (and consequently an infimum ∧

S, too). It thus has additional operations∧
,
∨

: P(A) −→ A .

Definition (Atomic Boolean algebra)An atom of a Boolean algebra is a minimal non-zero element, i.e. an element x 6= 0 such that
a ≤ x implies a = 0 or a = x.
A Boolean algebra A is called atomic if every non-zero element sits above an atom, i.e. for all
a ∈ A with a 6= 0 there is an atom x with x ≤ a.
A CABA is a complete, atomic Boolean algebra.
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CABAs

ExampleAny finite Boolean algebra is trivially a CABA.
The powerset P(X) of an arbitrary set X is a CABA.
I completeness: closed under arbitrary unions
I atoms: singletons {x} for x ∈ X
This is in fact the ‘only’ (up to iso) example.

Proposition
In a CABA, every element is the join of the atoms below it:

a =
∨

Ua where Ua := {x ∈ A | x is an atom and x ≤ a} .

Proof.Suppose a 6≤
∨

Ua, i.e. a ∧ ¬∨Ua 6= 0. Atomicity implies there’s an atom x ≤ a ∧ ¬
∨

Ua. On the onehand, x ≤ ¬∨Ua. On the other, x ≤ a, i.e. x ∈ Ua, hence x ≤
∨

Ua. Hence x = 0.  
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Tarski duality

CABA Setop

At

P

∼=
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Tarski duality

CABA Setop

At

P

∼=

P : Setop −→ CABA is the contravariant powerset functor:
I on objects: a set X is mapped to its powerset PX (a CABA).
I on morphisms: a function f : X −→ Y yields a complete Boolean algebra homomorphism

P(f) : P(Y) −→ P(X)

(T ⊆ Y) 7−→ f−1(T) = {x ∈ X | f(x) ∈ T}
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Tarski duality

CABA Setop

At

P

∼=

At : CABAop −→ Set is defined as follows:
I on objects: a CABA A is mapped to its set of atoms.
I on morphisms: a complete Boolean homomorphism h : A −→ B yields a function

At(h) : At(B) −→ At(A)

mapping an atom y of B to the unique atom x of A such that y ≤ h(x).
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Tarski duality
Lemma
Let h : A −→ B in CABA. For all y ∈ At(A), there is a unique x ∈ At(A) with y ≤ h(x).

Proof.Facts about atoms in any BA:
I If x 6= x′ are atoms, then x ∧A x′ = 0.
I If x is an atom and x ≤

∨
S, there is a ∈ S with x ≤ a.

Existence
A complete atomic implies 1A =

∨At(A). Hence,
1B = h(1A) = h(

∨At(A)) =
∨
{h(x) | x ∈ At(A)}

Since y ≤ 1B, we conclude y ≤ h(x) for some x ∈ At(A).
UniquenessIf y ≤ h(x) and y ≤ h(x′), then y ≤ h(x) ∧B h(x′) = h(x ∧ x′), hence x = x′.
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Tarski duality

The duality is witnessed by two natural isomorphisms:

I Given a CABA A, the isomorphism A ∼= P(At(A)) maps a ∈ A to the set of elements
Ua = {x ∈ At(A) | x ≤ a} .

A property is identified with the set of possible worlds in which it holds.

I Given a set X, the bijection X ∼= At(P(X)) maps x ∈ X to the singleton {x}, which is anatom of P(X).
A possible world is identified with its characteristic property (which fully determines it).
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Transitive partial CABAs



Logical exclusivity principle

Let A be a partial Boolean algebra.
For a, b ∈ A, we write a ≤ b to mean a� b and a ∧ b = a.

Definition (exclusive events)Two elements a, b ∈ A are exclusive, written a ⊥ b, if there is a c ∈ A with a ≤ c and b ≤ ¬c.
I a ⊥ b is a weaker requirement than a ∧ b = 0.
I The two are equivalent in a Boolean algebra.
I But in a general partial Boolean algebra, there may be exclusive events that are notcommeasurable (and for which, therefore, the ∧ operation is not defined).
Definition
A is said to satisfy the logical exclusivity principle (LEP) if any two elements that arelogically exclusive are also commeasurable, i.e. if ⊥ ⊆ �.
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Logical exclusivity principle

Note that ≤ is always reflexive and antisymmetric.
DefinitionA partial Boolean algebra is said to be transitive if a ≤ b and b ≤ c implies a ≤ c, i.e. ≤ is(globally) a partial order on A.

Proposition
A partial Boolean algebra satisfies LEP if and only if it is transitive.

We restrict atention to partial Boolean algebras satisfying LEP in this talk.
Theorem
The category epBA of partial Boolean algebras satisfying LEP is a reflective subcategory of
pBA, i.e. the inclusion functor I : epBA −→ pBA has a left adjoint X : pBA −→ epBA.
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Partial CABAs

Definition (partial complete BA)A partial complete Boolean algebra is a pBA with an additional (partial) operation∨
:
⊙
−→ A

satisfying the following property: any set S ∈⊙ is contained in a set T ∈⊙ which forms acomplete Boolean algebra under the restriction of the operations.

Definition (Atomic Boolean algebra)A partial Boolean algebra A is called atomic if every non-zero element sits above an atom,i.e. for all a ∈ A with a 6= 0 there is an atom x with x ≤ a.
A partial CABA is a complete, atomic partial Boolean algebra.
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Partial CABAs from their graphs of atoms



Graph

DefinitionA graph (X,#) is a set equipped with a symmetric irreflexive relation.
Elements of X are called vertices, while unordered pairs {x, y} with x # y are called edges.

Given a vertex x ∈ X and sets of vertices S,T ⊂ X, we write:
I x # S when for all y ∈ S, x # y;
I S # T when for all x ∈ S and y ∈ T, x # y;
I x# := {y ∈ X | y#x} for the neighbourhood of the vertex x;
I S# :=

⋂
x∈S x# = {y ∈ X | y # S} for the common neighbourhood of the set S.

A clique is a set of pairwise-adjacent vertices, i.e. a set K ⊂ X with x # K \ {x} for all x ∈ K.
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Graph of atoms

Definition (Graph of atoms)The graph of atoms of a partial Boolean algebra A, denoted At(A), has as vertices the atomsof A and an edge between atoms x and x′ if and only if x� x′ and x ∧ x′ = 0.

I At(A) is the set of atomic events with an exclusivity relation.
I Can interpret these as worlds of maximal information and incompatibility between them.
I If A is a Boolean algebra, then At(A) is the complete graph on the set of atoms (# is 6=).
Recall that in a CABA, any element is uniquely written as a join of atoms, viz. a =

∨
Ua with

Ua := {x ∈ At(A) | x ≤ a}

In a pBA, Ua may not be pairwise commeasurable, hence their join need not even be defined.
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Elements from atoms

Proposition
Let A be a transitive partial CABA. For any element a ∈ A, it holds that a =

∨
K for any clique

K of At(A) which is maximal in Ua.

Proof.Let a ∈ A and K be a clique of At(A) maximal in Ua.
Being a clique in At(A), K ∈⊙ and thus ∨

K is defined.
Since K ⊂ Ua, all k ∈ K satisfy k ≤ a and in particular k � a. Hence, K ∪ {a} ∈⊙, implying that it iscontained in a complete Boolean subalgebra. Consequently, ∨K ≤ a.
Now, suppose a 6≤

∨
K, i.e. a ∧ ¬∨K 6= 0. Then atomicity implies there is an atom x ≤ a ∧ ¬

∨
K. Bytransitivity, x ≤ a and x ≤ ¬k (hence x ⊥ k) for all k ∈ K. This makes K ∪ {x} a clique of atomscontained in Ua, contradicting maximality of K.
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Elements from atoms

So an element a is the join of any clique that is maximal in Ua.

Given two maximal cliques K and L, this yields an equality∨
K =

∨
L

where the elements in ∨
K and those in ∨

L are not commeasurable.
The key to reconstructing a partial CABA from its atoms lies in characterising such equalities.
Proposition
Let K and L be cliques in At(A). Then

∨
K ≤

∨
L iff L# ⊆ K# iff K ⊆ L## .

Corollary∨
K =

∨
L iff K# = L#.
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Partial CABA from its graph of atomsWriting
K ≡ L : ⇔ K# = L#,

elements of A are in 1-to-1 correspondence with ≡-equivalence classes of cliques of At(A).

Alternatively, take the double neighbourhood closures of cliques K##, yielding the sets Ua.
We can describe the algebraic structure of a partial CABA A from its graph of atoms:
I 0 = [∅].
I 1 = [M] for any maximal clique M.
I ¬[K] = [L] for any L maximal in K#, i.e. for any L#K such that L t K is a maximal clique.
I [K]� [L] iff there exist K′ ≡ K and L′ ≡ L such that K′ ∪ L′ is a clique.
I [K] ∨ [L] = [K′ ∪ L′].
I [K] ∧ [L] = [K′ ∩ L′].

Which conditions on a graph (X,#) allow for such reconstruction?
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Exhaustive exclusivity graphs



Exhaustive exclusivity graphs
DefinitionAn exhaustive exclusivity graph is a graph (X,#) such that for K, L cliques and x, y ∈ X:
1. If K t L is a maximal clique, then K# # L#, i.e. x # K and y # L implies x # y.
2. x# ⊆ y# implies x = y.

x y

K L

∃
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1. If K t L is a maximal clique, then K# # L#, i.e. x # K and y # L implies x # y.
2. x# ⊆ y# implies x = y.

A helpful intuition is to see these as generalising sets with a 6= relation (the complete graph).
I A graph is symmetric and irreflexive.
I To be an inequivalence relation, we need cotransitivity: x # z implies x # y or x # z.

I Condition 1 is a weaker version of cotransitivity.
I Condition 2 eliminates redundant elements: cotransitive + 2 imply 6=.
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Graph of atoms is an exhaustive exclusivity graph

Proposition
Let A be a partial Boolean algebra. Then At(A) is an exhaustive exclusivity graph.

Proof.
Let K, L ⊂ X such that K t L is a maximal clique, and let x, y be atoms of A.
Write c :=

∨
K = ¬

∨
L.

x # K means x ≤ ¬
∨

K = ¬c and x # L means y ≤ ¬
∨

L = c.
By transitivity, we conclude that x� y, hence x ⊥ y.
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The ‘clique powerset’ of an exclusivity graph

Proposition
Let K, L be cliques in an exhaustive exclusivity graph. The following are equivalent:

I [K]� [L], i.e. there exist K′, L′ with K′ ≡ K and L′ ≡ L such that K′ ∪ L′ is a clique.

I The four sets
K## ∩ L##, K## ∩ L#, K# ∩ L##, K# ∩ L#,

have empty common neighbourhood

Choose maximal cliques
M11 ⊂ K## ∩ L##, M10 ⊂ K## ∩ L#, M01 ⊂ K# ∩ L##, M00 ⊂ K# ∩ L#,

and set
[K] ∧ [L] := [M11] and [K] ∨ [L] := [M11 ∪M10 ∪M11] .
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The ‘clique powerset’ of an exclusivity graph

Proposition
Let K, L,M be cliques in an exclusivity graph with [K]� [L], [K]� [M], [L]� [M].
The eight sets

K�1 ∩ L�2 ∩M�3 , �i ∈ {#,##}

are pairwise non-intersecting and have empty common neighbourhood.

Proposition
Let {Ki}i∈I be a set of cliques in an exclusivity graph whose equivalence classes are pairwise
commeasurable. The sets ⋂

i∈I
K�i
i , �i ∈ {#,##}

are pairwise non-intersecting and have empty common neighbourhood.
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Morphisms



Morphisms of exhaustive exclusivity graphs
What about morphisms?
DefinitionA morphism (X,#) −→ (Y,#) is a relation R : X −→ Y satisfying:
1. x R y, x′ R y′, and y # y′ implies x # x′

2. if K is a maximal clique in Y , R−1(K) contains a maximal clique.
3. for each y ∈ Y , (R−1({y}))## = R−1({y}).

For complete graphs:
1. xRy, x′Ry′, and
2. R−1(Y) = X. (left-total)
3. trivialises.
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Morphisms of exclusivity graphs and pCABA homomorphisms

Proposition
Let A and B be transitive partial CABAs. Given h : A −→ B a partial complete Boolean algebra
homomorphism, the relation Rh : At(B) −→ At(A) given by

xRhy iff x ≤ h(y)

is a morphism of exclusivity graphs. Moreover, the assignment h 7→ Rh is functorial.

Proposition
Let X and Y be exhaustive exclusivity graphs. Given R : X −→ Y a morphism of exclusivity
graphs, the function hR : K(Y) −→ K(X) given by hR([K]) := [L] where L is any clique maximal
in R−1(K) is a well-defined partial CABA homomorphism.

Proposition
For any A and B be transitive partial CABAs, epCABA(A,B) ∼= XGph(At(B),At(A)).
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Revisiting contextuality



Global points

Homomorphism A −→ 2 corresponds to morphism K1 −→ At(A),

i.e. a subset of atoms of A satisfying:
1. it is an independent (or stable) set
2. it is a maximal clique transversal, i.e. it has a vertex in each maximal clique
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Outlook



Reconstruction via double-neighbourhood-closed sets
I Recall that K ≡ L iff K# = L#, hence K## = L##

I Moreover, Ua = K## for any clique K maximal in Ua

I This suggests taking double-neighbourhood-closed sets (S## = S) as elements of theCABA built from an exclusivity graph.

x1

x2

x3

x4

x5

x6

x7

x8
I However, not all ##-closed sets are K## for some clique K.
Can we characterise which ##-closed sets arise from cliques?
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Free-forgetful adjunction for CABAs

CABA Setop

Set

At

U

P

PF

P

∼=

a a

I Under the duality, it corresponds to the contravariant powerset self-adjunction.
I It gives the construction of the free CABA as a double powerset.
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Free-forgetful adjunction for partial CABAs

epCABA XGphop

RGph

At

U

K

KF

V

∼=

a a

I Universe of a pCABA is a reflexive (compability) graph 〈A,�〉
I Under duality it corresponds to adjunction between compatibility and exclusivity graphs.

Can we give a concrete construction of the free CABA?
I First attempt: Given 〈P,�〉 build a graph with vertices 〈C, γ : C −→ {0, 1}〉 where Cmaximal compatible set, and edges 〈C, γ〉 # 〈D, δ〉 iff ∃x ∈ C ∩ D. γ(x) 6= δ(x).
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The spatial landscape of partial Boolean algebra
epDLatbs pDLatbs

epDLat pDLat

epBAbs pBAbs

epBA pBA

epCABAbs pCABAbs

epCABA pCABA

I Drop transitivity / LEP
I Relax binary to simplicial compatibility

RGph

ι

>
;;

Kl
> ##

Simpsk1oo

 Czelakowski’s pBAs in a broader sense

I Dropping completeness and atomicity(e.g. P(A) for vN algebra A with factor not of type I)
 analogues of Stone, Priestley, . . .Stone’s motto: ‘always topologise’ – but how?
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The wider spatial landscape of ‘quantum’ logics

Orthocomplementedposets

Orthomodularposets

Orthocomplementedlattices

Orthomodularlattices

(Gudder, 1972)
OLs!Minimal quantum logic(Dishkant, Goldblatt, Dalla Chiara, 1970s)
Stone representation for OLs(Goldblatt, 1975)
I related to our construction
I all graphs, all nhood-regular sets
I nothing on morphisms
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Towards noncommutative dualities?

I Can one find a more encompassing duality theory for ‘noncommutative’ or ‘quantum’structures by viewing them through multiple partial classical snapshots?

49 / 49



Thank you for your attention!

Questions... ?


