Lógica Quântica Lecture notes and exercise sheet 3 Functors

Rui Soares Barbosa

2022 - 2023

Definition 1. Let C and D be categories. A functor F from C to D, written $F: \mathbb{C} \longrightarrow \mathbb{D}$, is given by;

- an object map, associating to each object A of \mathbf{C} an object FA of \mathbf{D} , and
- an arrow map, associating to each arrow $f: A \longrightarrow B$ of **C** an arrow $F f: F A \longrightarrow F B$ of **D**

such that identities and composition are preserved (functoriality conditions):

- $F(id_A) = id_{FA}$ for all objects A of C,
- $F(g \circ f) = F g \circ F f$ for all arrows $f: A \longrightarrow B$ and $g: B \longrightarrow C$ in **C**.

Examples

Exercise 1. Let P and Q be posets, and regard them as categories (as in exercise 1.4). Show that a functor $P \longrightarrow Q$ is the same as a monotone function. Do you need to check the functoriality conditions? Why?

Exercise 2. Let M and N be monoids, and regard them as (one-object) categories (as in exercise 1.6). Show that a functor $M \longrightarrow N$ is the same as a monoid homomorphism.

Exercise 3. Given a set X, its power set $\mathcal{P}(X)$ is the set of subsets of X, i.e. $\mathcal{P}(X) = \{S \mid S \subseteq X\}$. A function $f: X \longrightarrow Y$ determines the following two functions between the power sets of X and Y (notice the reversal in the second one!):

• the direct image function $f^{\rightarrow} : \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$ is given by for any $S \subseteq X$,

$$f^{\to}(S) = \{ f(x) \mid x \in S \} = \{ y \in Y \mid \exists x \in S. f(x) = y \} .$$

• the inverse image function $f^{\leftarrow} : \mathcal{P}(Y) \longrightarrow \mathcal{P}(X)$ is given by: for any $T \subseteq Y$,

$$f^{\leftarrow}(T) = \{ x \in X \mid \exists y \in T \cdot f(x) = y \} .$$

Show the following:

- (a) The mapping $X \mapsto \mathcal{P}(X)$ on objects and $f \mapsto f^{\rightarrow}$ on arrows determines a functor $\mathcal{P}^{\rightarrow}$: Set \longrightarrow Set (known as the *covariant powerset functor*).
- (b) The mapping $X \mapsto \mathcal{P}(X)$ on objects and $f \mapsto f^{\leftarrow}$ on arrows determines a functor $\mathcal{P}^{\leftarrow} : \mathbf{Set}^{\mathsf{op}} \longrightarrow \mathbf{Set}$ (known as the *contravariant powerset functor*).

Exercise 4. Show that $U: \mathbf{Mon} \longrightarrow \mathbf{Set}$ mapping a monad $\langle M, \cdot, e \rangle$ to its underlying set M (and a monoid homomorphism to itself seen as a bare function) is a functor. This is known as a *forgetful* functor because it 'forgets' the structure. Similar forgetful functors exist for other categories of algebraic structures, e.g. groups or vector spaces.

Exercise 5. Given a set X, write ListX (sometimes the notation X^* is used) for the set of lists of elements from X. We mentioned in the lectures that the assignment $X \mapsto \text{List}X$ extents to a functor List: Set \longrightarrow Set, with the action on arrows (which are functions in this case) given by the 'map' function, i.e. for each function $f: X \longrightarrow Y$, List $f: \text{List}X \longrightarrow \text{List}Y$ applies f to each member of a list.

- (a) Show that this indeed determines a functor, i.e. check that it safisfies the functoriality conditions
- (b) List X comes equipped with a monoid structure given by concatenation. Show that the above map can actually be extended to define functor $M: \mathbf{Set} \longrightarrow \mathbf{Mon}$. What do you need to show?

Exercise 6. Let V be a vector space over a field \mathbb{K} (typically, $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$). Its *dual vector space* V^* has as elements the linear functionals on V, i.e. the linear maps $V \longrightarrow \mathbb{K}$, with addition and scalar multiplication defined pointwise.

- (a) Show that the set V^* indeed has the structure of a vector space.
- (b) Show that there is a functor $(-)^* \colon \mathbf{Vect}_{\mathbb{K}}^{\mathsf{op}} \longrightarrow \mathbf{Vect}_{\mathbb{K}}$ mapping (on objects) each vector space V to its dual V^* and (on arrows) a linear map $f \colon V \longrightarrow W$ to the linear map $f^* \colon W^* \longrightarrow V^*$ defined by $f(\phi) = \phi \circ f$.

Exercise 7. Given a linear map $f: H \longrightarrow K$ between Hilbert spaces H and K, its adjoint is the unique linear map $f^{\dagger}: K \longrightarrow H$ such that, for all $v \in H$ and $w \in K$,

$$\langle f(v), w \rangle = \langle v, f^{\dagger}(w) \rangle$$

Show that this construction is functorial, i.e. it defines a functor $(-)^{\dagger}$: Hilb^{op} \longrightarrow Hilb.

Exercise 8. Given a set X we can construct a vector space with basis X. This is called the *free vector* space on X (over a field \mathbb{K}). The elements of this vector space are the formal K-linear combinations, the expressions

$$\sum_{x \in X} k_x x$$

with $k_x \in \mathbb{K}$ and $k_x = 0$ for all but finitely many x (i.e. the set $\{x \in X \mid k_x \neq 0\}$ is finite).

- (a) Verify that this indeed forms a vector space.¹
- (b) Extend this object map to a functor $F: \mathbf{Set} \longrightarrow \mathbf{Vect}_{\mathbb{K}}$. That is, define the arrow map and verify the functoriality axioms.

Exercise 9. Let G be a group (regarded as a category in the sense of exercise 1.6^2). Show that:

- (a) a functor $G \longrightarrow \mathbf{Set}$ is the same as a G-set, a set with a group action of G on it; see https: //en.wikipedia.org/wiki/Group_action.
- (b) a functor $G \longrightarrow \mathbf{Vect}_{\mathbb{K}}$ is the same as a group representation of G; see https://en.wikipedia. org/wiki/Group_representation.

Functors as arrows

Exercise 10 (The category of categories). Show how one can form a category whose objects are small³ categories and whose arrows are functors.

¹Note that it is built from the set X without imposing any constraints except for the equations imposed by the definition of vector space. Hence the terminology *free*.

²Note that a group is, in particular, a monoid (of a special kind). As a category, it is therefore a one-object category. Among these, it is characterised by the property that every arrow is an isomorphism. For this reason, a category (with any number of objects) where every arrow is an iso is known as a *grupoid*.

³Small means that the class of objects is a set (not a general class). This restriction is necessary to avoid a paradox, for the same reason that there is no 'set of all sets' (check Cantor's beautiful diagonal argument). We could similarly take all locally small categories, those for which $\mathbf{C}(A, B)$ is a set for any pair of objects A, B.

Bifunctors

Exercise 11. Recall the definition of product category from exercise 1.11. Show that the product category construction gives (category-theoretic) products in **Cat**.

A functor whose domain is a product category, i.e. a functor $f: \mathbf{C}_1 \times \mathbf{C}_2 \longrightarrow \mathbf{D}$ is called a *bifunctor*.

Exercise 12. Define a functor SWAP: $\mathbf{C} \times \mathbf{D} \longrightarrow \mathbf{D} \times \mathbf{C}$, which swaps the order of the components (as its type suggests). Verify that it does indeed satisfy functoriality.

Exercise 13. Let **C** be a category with all binary products (i.e. where any two objects have a product). Show that $- \times -: \mathbf{C} \times \mathbf{C} \longrightarrow \mathbf{C}$, which maps a pair of objects to their product and a pair of arrows f and g to $f \times g$ from exercise 2.12, is a functor. What do you need to check?

What is the dual fact that holds for a category with all binary coproducts?

Exercise 14. Show that the tensor product of vector spaces (which is neither a product nor a coproduct in $\mathbf{Vect}_{\mathbb{K}}$) gives a bifunctor $-\otimes -: \mathbf{C} \times \mathbf{C} \longrightarrow \mathbf{C}$.

Exercise 15. Recall the contravariant power set functor from exercise 3 and the dual vector space functor from exercise 6. Note that both are contravariant endofunctors, i.e. functors $\mathbf{C}^{op} \longrightarrow \mathbf{C}$ for some category \mathbf{C} ($\mathbf{C} = \mathbf{Set}$ in one case and $\mathbf{C} = \mathbf{Vect}_{\mathbb{K}}$ in the other).

- (a) Observe that both are functors that send each object A to the arrows from A to a fixed object D. What is this D in each case?
- (b) One can generalise this idea (at least the set-theoretic part). Given a (locally small) category \mathbf{C} and an object D of \mathbf{C} , the contravariant Hom functor at D,

$$\mathbf{C}(-,D)\colon \mathbf{C}^{\mathsf{op}}\longrightarrow \mathbf{Set},$$

is defined as follows:

• on objects: for an objects A of \mathbf{C} ,

$$\mathbf{C}(-,D)(A) = \mathbf{C}(A,D);$$

• on morphisms: for an arrow $f: A \longrightarrow B$ of \mathbf{C} ,

$$\mathbf{C}(-,D)(f)\colon \mathbf{C}(B,D) \longrightarrow (A,D) :: g \longmapsto g \circ f.$$

Show that this is indeed functorial.

(c) Similarly, define a covariant Hom functor at D,

$$\mathbf{C}(D,-)\colon \mathbf{C}\longrightarrow \mathbf{Set}.$$

(d) Generalise the two Hom functors to obtain a bifunctor

$$\mathbf{C}(-,-)\colon \mathbf{C}^{\mathsf{op}}\times\mathbf{C}\longrightarrow\mathbf{Set}.$$

Describe how it is defined on morphisms, and check functoriality.

Properties of functors

Definition 2. A functor $f: \mathbf{C} \longrightarrow \mathbf{D}$ is said to be

• faithful if for all pair of objects A and B of C, the map

$$F_{A,B} \colon \mathbf{C}(A,B) \longrightarrow \mathbf{D}(FA,FB)$$

sending f to Ff is injective;

• full if for all A and B, $F_{A,B}$ is subjective;

- essentially surjective if for any object B of D there is an object A of C such that $FA \cong B$;
- an equivalence if it is faithful, full, and essentially subjective;
- an isomorphism of categories if there is a functor $G: \mathbf{D} \longrightarrow \mathbf{C}$ such that $G \circ F = \mathsf{id}_{\mathbf{C}}$ and $F \circ G = \mathsf{id}_{\mathbf{D}}$.

Exercise 16. Recall the functors from exercise 4 and exercise 5, the *forgetful* functor $U: \mathbf{Mon} \longrightarrow$ Set and the *free* functor $M: \mathbf{Set} \longrightarrow \mathbf{Mon}$. For each of them: is it faithful? is it full?

Exercise 17. Functions can be seen as a special class of relations. Build a functor $R: \mathbf{Set} \longrightarrow \mathbf{Rel}$ that acts as the identity on objects and maps each function $f: X \longrightarrow Y$ to the relation

$$Rf = \{(x, f(x)) \mid x \in A\} = \{(x, y) \mid x \in A, y \in B, f(x) = y\}.$$

Is it faithful? Is it full?

Exercise 18. Recall the category $Mat_{\mathbb{K}}$ from exercise 1.8. Show that there is an equivalence between $Mat_{\mathbb{K}}$ and $Vect_{\mathbb{K}}$. Is this an isomorphism? Why?

Exercise 19. Show that **Rel** is isomorphic to **Rel**^{op}.

Exercise 20. What conditions on **C** must hold to make the functor $- \times -: \mathbf{C} \times \mathbf{C} \longrightarrow \mathbf{C}$ from exercise 13 faithful (resp. full)?

Preservation and reflection

Exercise 21. Let P be any property of arrows. A functor F is said to *preserve* P when for all f, f satisfies P implies that F f satisfies P. It is said to *reflect* P when for all f, F f satisfies P implies f satisfies P.

- (a) Show that any functor preserves isos.
- (b) Show that functors do not necessarily reflect isos by providing a counterexample: a functor F and an arrow f such that F f is an iso but f is not.
- (c) Show that full and faithful functors reflect isos.
- (d) Show that faithful functors reflect monics and epics.
- (e) Show (through an example) that functors need not reflect monics or epics.
- (f) Show that equivalences preserve monics and epics.
- (g) Show that full and faithful need not preserve monics and epics.