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Quantum computational advantage

+ Building a universal guantum computer is really hard!Lcitation needed]

+ Demonstration of “raw computational power” in the near future?

+ Several proposals:
BosonSampling (standard, scattershot, Gaussian);
Random circuit sampling;

Alternatives (circuits of commuting gates, magic-state
fermionsampling, and a host of others);



Quantum computational advantage

+ Cons:
High susceptibility to noise (no error correction);
No concrete practical applications (yet!);

Hard to check if the device is working (very intense debate!);

+ Pros:
Simpler resource requirements;
New insights on quantum computing (and optics);

Pushes technological development;
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BosonSampling 101
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BosonSampling 101

+ Computational task: Sample from output distribution.
For a quantum device, this is “easy”;
There is evidence that it is very hard for classical computers!
Dy:Pr (T = S) o« |Per(Us)|?
Even approximate simulation is hard!
Dy: Dy — Dyl <€

Permanent for n-photon transition: time O(n2")

Milestone: 50 — 200 photons?

[Aaronson e Arkhipov, Theo. Comput. 9, 143 (2013)]



First experiments (12/2012)

input modes

output modes

[Broome et al, Science 339, 794 (2013). Spring et al, Science 339, 798 (2013).
Tillman et al, Nat. Phot. 7, 540 (2013). Crespi et al, Nat. Phot. 7, 545 (2013).]



Experimental advances

+ 20 photons in 60 modes;

+ Largest (?) experiment within original BS proposal;
Uses quantum dot sources.

GBS experiments to appear later on!

[Wang et al, PRL 123, 250503 (2019)]



BosonSampling 101 — Main proof outline

+ Step 1: From distributions to probabilities;

Very generic step — used in most proposals.

+ Step 2: From probabilities to hard functions (permanents);

Specific to each proposal (BosonSampling, GBS, RCS, etc).

+ otep 3: Enter the conjectures (i.e., where the magic happens);

Same for our proposal and BS — stronger than GBS.

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ Step 1: From distributions to probabilities;

+ Assumption: efficient classical algorithm € to sample from Dy

1D, — Dyll; < €

OO
001001
| 010010
L

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ Step 1: From distributions to probabilities;

+ Suppose: Given outcome S, there is a class of states (Hs) that
“look the same™ as S.

e.g., U Haar-random — permutation invariance of outcomes.

+ Use Stockmeyer's algorithm;

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ Step 1: From distributions to probabilities;

+ Conclusion: Moderately superpowerful classical machine
(BPPNP) can efficiently estimate Pr(S) to error

e/|Hs]
.@I ’*
O, /
001001
010010 = ‘ I
011010
U

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ Step 2: From probabilities to hard functions;

+ For BosonSampling, sort-of trivial:

Pr(T - S) = ST |Per (Usr)|?
al |b| c

v=\[del D) 5 = (2 )
gl [h] 7J Y

T =(1,1,0), S = (0,11

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ Step 2: From probabilities to hard functions;

+ For BosonSampling, sort-of trivial:

Pr(T - S) = - |Per (Usy) |

S1!...5y

+ Conclusion: Moderately superpowerful classical machine (BPPNF)
can compute |Per(Usr)|? to error

€
| Hs|

Sl Sy!

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ oStep 3: Enter the conjectures (where the magic happens!)

+ Choices:

U Is Haar-random, and
m = 0(n?);

+ logether, these imply:
No-collision states (every s; is 0 or 1) dominate;

if m = 0(n>1)*, submatrices look independently Gaussian;

L» Important: two independent reasons to require m = 0(n?)!

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ oStep 3: Enter the conjectures (where the magic happens!)

+ Conjecture 1 (anti-concentration):
Permanents of Gaussian matrices do not concentrate too much
around O;

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ Step 3: Enter the conjectures (where the magic happens!)

+ Conjecture 2 (Permanent-of-Gaussians):

Permanents of Gaussian matrices are typically super extra hard
problems (#P-hard).

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ otep 3: Enter the conjectures (where the magic happens!)

Steps 1 + 2 = Moderately superpowerful classical machines (BPPNF)
can approximate Gaussian permanents;

Conjectures 1 + 2 = Gaussian permanents are super extra hard (#P)
to compute;

Collision-free subspace is large enough to match the two, and thus:

+ Conclusion: Moderately superpowerful classical machines
(BPPNP) can solve super extra hard problems (#P-hard).

= Unlikely, and so evidence that original assumption is false.

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 — Main proof outline

+ Step 3: Enter th
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BosonSampling 101 — Main proof outline

+ O summarize:

Step 1: From distributions to probabilities;

We don’'t touch this!
Generic complexity argument;

Step 2: From probabilities to hard functions; | | |
- Main new idea lives here.

Step 3: Conjectures involving hard functions Where most of the

+ standard complexity-theoretic arguments hard work went.
= Proof of hardness!

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]
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Gaussian BosonSampling
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Squeezed states Photon number varies!
Mean: (n)

[Hamilton et al, PRL 119, 170501 (2017).
Kruse et al, PRA 100, 032326 (2019)]



Gaussian BosonSampling
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+ Probabilities now given by:
2
1 [Haf(A,)]
Pr(S) = ,

VAT L

where

2m
Z = 1_[ cosh(r;)
i=1

Squeezing in mode i



Gaussian BosonSampling
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+ Main differences to standard BosonSampling:

Easier to implement in the lab than Fock states; ©



Gaussian BosonSampling

_k %@\?07 kHﬁrFr)llﬂse Laser system .

& 144 single-photon
detectors

CW@1450 nm
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Phase locking Coincidence counter

+ Largest GBS experiment to date;

- Up to 113 detected photons in 144 modes;

Compare to 20 photons in 60 modes in standard BS — but not too much.

. Larger experiments are on the way!

[Zhong et al, PRL 127, 180502 (2021)]



Gaussian BosonSampling
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+ Main differences to standard BosonSampling:
Easier to implement in the lab than Fock states; ©
Variable photon number; &

Complexity argument not so tight / needs new conjectures;



Gaussian BosonSampling

+ Whatis (or was) missing?
+ Original proposal was very light on complexity-theoretic details;
+ A priori, GBS requires new conjectures (analogous to BS).

+ SO what?

Hafnian is a way less studied function;
For permanents, weaker versions of the conjectures hold;
“Conjectures are as good as the attacks they withstood”;

The fewer conjectures the better;
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BipartiteGBS
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BipartiteGBS
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Squeezed states
(with variable parameters)

*Is a particular case of GBS and generalizes scattershot BS.



BipartiteGBS
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+ Probabllities can be written as:
1 |Haf(4.)|? 1 IPer(Cer)|?
Pr(S) = [Haf(4, )| = Pr(S;T) = =k
4 S!S, .55, Z Sqliospltq! . ty,!

where
C = U.diag(tanhry). W’



BipartiteGBS

C = U.diag(tanhr;).V?

+ Slngular value decomposition of arbitrary complex matrix.

+ We can implement random Gaussian matrices directly.

This removes one barrier to the m « n® regime.

+ QOther matrix ensembles:
Better/simpler hardness proofs?

Applications?



BipartiteGBS

+ oounds like free lunch! What's the catch?
+ If Cis random, so are the squeezing parameters — so what?

+ Problem 1: Are the squeezing parameters likely (over choice of
C) to require extreme resources?

+ Solution: RMT literature has bounds on largest singular value;



BipartiteGBS

+ Sounds like free lunch! What’s the catch?

+ If Ci1s random, so are the squeezing parameters — so what?

+ Problem 2:

1 (tanh 1;)?

(n) = 2/Z.1 - (tanh 1;)?

Lemma 4. For any é > 0, we have

[ mi_ 512m 1 [2
Pr (n)—a2 > = +a2\/;]S5

m >2\/ﬁ+ 3 84\/m 512m]§5

P .0
r||n 22| Z 373 a53/4+a2\/3+ "

whenever a > 6, and m > In(1/9). The first probability is over the choice of Gaussian matriz C, whereas the second
probability is over both the choice of C and over the photon number distribution.




BipartiteGBS

+ Sounds like free lunch! What’s the catch?

+ If Ci1s random, so are the squeezing parameters — so what?

2m
Z = 1_[ cosh(r;)
i=1

+ Problem 3:

Lemma 5. For any 6 >0
2 m/a® _272m/a*
Pr | 2> Se e <0; (18)

whenever a > 6, and m > In(1/6).

Recall that o = ©(m!/4) in the dilute limit, and so Lemma 5 implies that Z behaves asymptotically as e™/ a®




BipartiteGBS — Main proof outline

+ Step 1: From distributions to probabilities;

+ Step 2: From probabilities to hard functions;
Permanents, as in BS (instead of Hafnians, as in GBS);

Arbitrary transition matrices (instead of unitary, as in BS);

No need for m = 0(n>?1) to get Gaussian matrices;

+ oStep 3: Conjectures involving hard functions

Permanents of Gaussian matrices:

Same two conjectures as standard BS! &/

This obstacle to improving
m VS n regime remains.

Still uses no-collision subspace



Additional result: dealing with collisions

+ Recall:
1 |Per(Csp)|?

Z syl sy lty! ity

Pr(S;T) =

+ Collisions = Permanents with repeated rows/columns;

Too many collisions = easy to simulate classically;

+« What about a few collisions?

+ Method: intervention only on step 2;

Ability to compute |per(.)|? Ability to compute |per(.)|?
for Gaussian matrix with = for (smaller) Gaussian matrix
repetitions (to error ¢) with no repetitions (to error €)

Inspired by: [Aaronson and Brod, PRA 93, 012335 (2016)]



Additional result: dealing with collisions

+ A:c X ¢ Gaussian matrix;

+ Ag: (c+ k) X (c + k) matrix obtained by repeating k
rows/columns of 4 (according to S).

A Y1 Y2 V3
A= az) 5 A= a, Y1 Y2 Y
— as o, S — 2 1 2 3

Az Uy Yo Vs Ve
/ \513 Ay Y4 Vs 3’6/

*Everv y; needs to be a Gaussian random variable.
Vi



Additional result: dealing with collisions

+ A:c X ¢ Gaussian matrix;

+ Ag: (c+ k) X (c + k) matrix obtained by repeating k
rows/columns of 4 (according to S).

/ A, Y1 V2
a W1 Y2

A= (a3 a4) = Ag|z] = dz N Y2
A3z Uy Z.Ys Z.)Ys
\ag Ay Z.VYa Z.Ys

Z. Y3

Z. Y3

Z.Y3
Ve
Yo

|Per(Aq[z])|? = a |Perd|? + vz + v, z% + - + ¥, 2"

\
/




Additional result: dealing with collisions

oy

A: ¢ X ¢ Gaussian matrix;

Aq: (c + k) X (¢ + k) matrix obtained by repeating k
rows/columns of 4 (according to S).

¢(2) = |Per(As[z])|* = a |PerA|* + y1z + v, 2° + - + y; 2"
By assumption, we can estimate ¢(z) for z = 1.
We want ¢ (0).

Solution: Compute ¢(z) for k + 1 values of z = 1 and use least
squares method.



Additional result

+ Working out all the details:

Theorem 14. Given access to an oracle for |RGPE|3: with error (c+ k)! [] si't;!, it is possible to use O(k) calls to
the oracle to solve |GPE|i with additive error ec!, for

(C-I- k)2kk2k
B 0( 53k+1/29k © (50)

Whenever k = O(1), we have € = poly(c, €, 9).

+ This scales quite poorly with number of collisions k. &

+ Only implies hardness for k = 0(1).

Still, the method has some promising features.
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Conclusions

oy

oy

oy

New proposal: Bipartite GBS;

Improves on standard BS by allowing for arbitrary matrices;

Provably removes need for m = 0(n>1), suggests m = 0(n?) can be
improved.

Caveat: Few people took the m = 0(n>1) scaling too seriously.

Improves on standard GBS by not needing new conjectures;
Unifies the complexities of GBS and BS;

Caveat: something similar could be said of scattershot BosonSampling;

Makes everything robust to 0(1) collisions;



Outlook

+ New proposal: Bipartite GBS;

+ Leverage the fact that we can implement an arbitrary matrix?
For applications (encode some interesting problem);
To prove something in the m = 0(n) regime?

Different matrix ensembles (Bernoulli, etc) where conjectures are
easier to prove?

+ Improvement on robustness to collisions?



