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Quantum computational advantage

✤ Building a universal quantum computer is really hard![citation needed]

✤ Demonstration of “raw computational power” in the near future?

✤ Several proposals:

• BosonSampling (standard, scattershot, Gaussian);

• Random circuit sampling;

• Alternatives (circuits of commuting gates, magic-state 

fermionsampling, and a host of others);



Quantum computational advantage

✤ Cons:

• High susceptibility to noise (no error correction);

• No concrete practical applications (yet!);

• Hard to check if the device is working (very intense debate!);

✤ Pros:

• Simpler resource requirements;

• New insights on quantum computing (and optics);

• Pushes technological development;
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Distribution 𝒟𝑈

𝑆

𝑆 = (𝑠1, 𝑠2, … 𝑠𝑚)

Pr(𝑆)

BosonSampling 101

𝑎𝑖 → σ𝑗𝑈𝑖𝑗𝑎𝑗



BosonSampling 101

✤ Computational task: Sample from output distribution.

• For a quantum device, this is “easy”;

• There is evidence that it is very hard for classical computers!

𝐷𝑈: Pr 𝑇 → 𝑆 ∝ 𝑃𝑒𝑟 𝑈𝑆𝑇
2

• Even approximate simulation is hard!

෩𝐷𝑈: ǁ෩𝐷𝑈 − 𝐷𝑈ǁ1 < 𝜖

• Permanent for 𝑛-photon transition: time O(𝑛2𝑛)

• Milestone: 50 – 200 photons?

[Aaronson e Arkhipov, Theo. Comput. 9, 143 (2013)]



First experiments (12/2012)

[Broome et al, Science 339, 794 (2013). Spring et al, Science 339, 798 (2013). 

Tillman et al, Nat. Phot. 7, 540 (2013). Crespi et al, Nat. Phot. 7, 545 (2013).]



Experimental advances

✤ 20 photons in 60 modes;

✤ Largest (?) experiment within original BS proposal;

• Uses quantum dot sources.

• GBS experiments to appear later on!

[Wang et al, PRL 123, 250503 (2019)]



BosonSampling 101 – Main proof outline

✤ Step 1: From distributions to probabilities;

• Very generic step – used in most proposals.

✤ Step 2: From probabilities to hard functions (permanents);

• Specific to each proposal (BosonSampling, GBS, RCS, etc).

✤ Step 3: Enter the conjectures (i.e., where the magic happens);

• Same for our proposal and BS – stronger than GBS.

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 – Main proof outline

✤ Step 1: From distributions to probabilities;

✤ Assumption: efficient classical algorithm 𝐶 to sample from ෩𝐷𝑈: 

ǁ෩𝐷𝑈 − 𝐷𝑈ǁ1 < 𝜖

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]
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BosonSampling 101 – Main proof outline

✤ Step 1: From distributions to probabilities;

✤ Suppose: Given outcome 𝑆, there is a class of states (ℋ𝑆) that 

“look the same” as 𝑆.

• e.g., 𝑈 Haar-random → permutation invariance of outcomes.

✤ Use Stockmeyer’s algorithm;

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 – Main proof outline

✤ Step 1: From distributions to probabilities;

✤ Conclusion: Moderately superpowerful classical machine 

(BPPNP) can efficiently estimate Pr(𝑆) to error 

𝜖/|ℋ𝑆|

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]
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BosonSampling 101 – Main proof outline

✤ Step 2: From probabilities to hard functions;

✤ For BosonSampling, sort-of trivial:

Pr 𝑇 → 𝑆 =
1

𝑠1! … 𝑠𝑚!
𝑃𝑒𝑟 𝑈𝑆𝑇

2

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]

𝑈 =

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑗

𝑇 = 1,1,0 , 𝑆 = (0,1,1)

⇒ 𝑈𝑆𝑇 =
𝑑 𝑒
𝑔 ℎ



BosonSampling 101 – Main proof outline

✤ Step 2: From probabilities to hard functions;

✤ For BosonSampling, sort-of trivial:

Pr 𝑇 → 𝑆 =
1

𝑠1! … 𝑠𝑚!
𝑃𝑒𝑟 𝑈𝑆𝑇

2

✤ Conclusion: Moderately superpowerful classical machine (BPPNP) 

can compute Per 𝑈𝑆𝑇
2 to error

𝜖

ℋ𝑆
𝑠1! … 𝑠𝑚!

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 – Main proof outline

✤ Step 3: Enter the conjectures (where the magic happens!)

✤ Choices: 

• 𝑈 is Haar-random, and 

• 𝑚 = 𝑂 𝑛2 ;

✤ Together, these imply:

• No-collision states (every 𝑠𝑖 is 0 or 1) dominate;

• If 𝑚 = 𝑂 𝑛5.1 *, submatrices look independently Gaussian;

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]

Important: two independent reasons to require  𝑚 = 𝑂 𝑛2 !



BosonSampling 101 – Main proof outline

✤ Step 3: Enter the conjectures (where the magic happens!)

✤ Conjecture 1 (anti-concentration):

Permanents of Gaussian matrices do not concentrate too much 

around 0;

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 – Main proof outline

✤ Step 3: Enter the conjectures (where the magic happens!)

✤ Conjecture 2 (Permanent-of-Gaussians): 

Permanents of Gaussian matrices are typically super extra hard

problems (#P-hard).

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 – Main proof outline

✤ Step 3: Enter the conjectures (where the magic happens!)

• Steps 1 + 2 ⇒ Moderately superpowerful classical machines (BPPNP) 

can approximate Gaussian permanents;

• Conjectures 1 + 2 ⇒ Gaussian permanents are super extra hard (#P) 

to compute;

• Collision-free subspace is large enough to match the two, and thus:

✤ Conclusion: Moderately superpowerful classical machines 

(BPPNP) can solve super extra hard problems (#P-hard).

⇒ Unlikely, and so evidence that original assumption is false. 

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]



BosonSampling 101 – Main proof outline

✤ Step 3: Enter the conjectures (where the magic happens!)

• Steps 1 + 2 ⇒ Moderately superpowerful classical machines (BPPNP) 

can approximate Gaussian permanents;

• Conjectures 1 + 2 ⇒ Gaussian permanents are super extra hard (#P) 

to compute;

• Collision-free subspace is large enough to match the two, and thus:

✤ Conclusion: Moderately superpowerful classical machines 

(BPPNP) can solve super extra hard problems (#P-hard)

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]

Fix this fig!

   

    

 



BosonSampling 101 – Main proof outline

✤ To summarize:

• Step 1: From distributions to probabilities;  

• Generic complexity argument;

• Step 2: From probabilities to hard functions;

• Step 3: Conjectures involving hard functions

• + standard complexity-theoretic arguments

= Proof of hardness!

[Aaronson e Arkhipov, Theo. Comput. 9, 13 (2013)]

We don’t touch this!

Main new idea lives here.

Where most of the

hard work went.
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Gaussian BosonSampling

Squeezed states

𝑆

Photon number varies!

Mean: ⟨𝑛⟩

  

[Hamilton et al, PRL 119, 170501 (2017).

Kruse et al, PRA 100, 032326 (2019)]



✤ Probabilities now given by:

Pr 𝑆 =
1

𝒵

Haf 𝐴𝑠
2

𝑠1! 𝑠2! … 𝑠2𝑚!
,

where

𝒵 =ෑ

𝑖=1

2𝑚

cosh(𝑟𝑖)

Gaussian BosonSampling

Squeezing in mode 𝑖

  



✤ Main differences to standard BosonSampling:

• Easier to implement in the lab than Fock states; 

Gaussian BosonSampling

  



Gaussian BosonSampling

✤ Largest GBS experiment to date;

• Up to 113 detected photons in 144 modes;

• Compare to 20 photons in 60 modes in standard BS – but not too much.

• Larger experiments are on the way!

[Zhong et al, PRL 127, 180502 (2021)]



✤ Main differences to standard BosonSampling:

• Easier to implement in the lab than Fock states; 

• Variable photon number; 

• Complexity argument not so tight / needs new conjectures; 

Gaussian BosonSampling

  



Gaussian BosonSampling

✤ What is (or was) missing?

✤ Original proposal was very light on complexity-theoretic details;

✤ A priori, GBS requires new conjectures (analogous to BS). 

✤ So what?

• Hafnian is a way less studied function;

• For permanents, weaker versions of the conjectures hold;

• “Conjectures are as good as the attacks they withstood”;

• The fewer conjectures the better;
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BipartiteGBS

Squeezed states

𝑆

Photon number varies!

Mean: ⟨𝑛⟩

  



 

  

BipartiteGBS

Squeezed states

(with variable parameters)

𝑆 = (s1, s2, … sm)

𝑇 = (t1, t2, … tm)

*is a particular case of GBS and generalizes scattershot BS.



BipartiteGBS

✤ Probabilities can be written as:

where

𝐶 = 𝑈. diag tanh 𝑟𝑖 .𝑊
𝑇

⇒ Pr 𝑆; 𝑇 =
1

𝒵

Per 𝐶𝑆𝑇
2

𝑠1! … 𝑠𝑚! 𝑡1! … 𝑡𝑚!
Pr 𝑆 =

1

𝒵

Haf 𝐴𝑠
2

𝑠1! 𝑠2! … 𝑠2𝑚!

 

  



𝐶 = 𝑈. diag tanh 𝑟𝑖 . 𝑉
𝑇

✤ Singular value decomposition of arbitrary complex matrix.

✤ We can implement random Gaussian matrices directly.

• This removes one barrier to the 𝑚 ≪ 𝑛2 regime.

✤ Other matrix ensembles:

• Better/simpler hardness proofs?

• Applications?

BipartiteGBS



BipartiteGBS

✤ Sounds like free lunch! What’s the catch?

✤ If 𝐶 is random, so are the squeezing parameters – so what?

✤ Problem 1: Are the squeezing parameters likely (over choice of 

𝐶) to require extreme resources?

✤ Solution: RMT literature has bounds on largest singular value;



BipartiteGBS

✤ Sounds like free lunch! What’s the catch?

✤ If 𝐶 is random, so are the squeezing parameters – so what?

✤ Problem 2:

⟨𝑛⟩ =
1

2
෍

tanh 𝑟𝑖
2

1 − tanh 𝑟𝑖
2

✤ We need to make sure the 𝑛 doesn’t vary too wildly.

✤ Solution: do a bunch of RMT to it!



✤ Sounds like free lunch! What’s the catch?

✤ If 𝐶 is random, so are the squeezing parameters – so what?

✤ Problem 3:

𝒵 =ෑ

𝑖=1

2𝑚

cosh(𝑟𝑖)

✤ Error in the estimate of the permanent given by

𝜀

|ℋ𝑆|
𝒵𝑚𝑛𝛼2𝑛

✤ Choose ℋ𝑆 to be no-collision outcomes, and upper bound 𝒵.

BipartiteGBS



BipartiteGBS – Main proof outline

✤ Step 1: From distributions to probabilities;  

✤ Step 2: From probabilities to hard functions;

• Permanents, as in BS (instead of Hafnians, as in GBS);

• Arbitrary transition matrices (instead of unitary, as in BS);

• No need for 𝑚 = 𝑂 𝑛5.1 to get Gaussian matrices; 

✤ Step 3: Conjectures involving hard functions

• Permanents of Gaussian matrices: 

• Same two conjectures as standard BS!

• Still uses no-collision subspace 
This obstacle to improving 

𝑚 vs 𝑛 regime remains.



Additional result: dealing with collisions

✤ Recall:

Pr 𝑆; 𝑇 =
1

𝒵

𝑃𝑒𝑟 𝐶𝑆𝑇
2

𝑠1! … 𝑠𝑚! 𝑡1! … 𝑡𝑚!

✤ Collisions ⇒ Permanents with repeated rows/columns;

• Too many collisions ⇒ easy to simulate classically;

✤ What about a few collisions?

✤ Method: intervention only on step 2;

Ability to compute per . 2

for Gaussian matrix with 

repetitions (to error 𝜖)

Ability to compute per . 2

for (smaller) Gaussian matrix 

with no repetitions (to error 𝜀)
⇒

Inspired by: [Aaronson and Brod, PRA 93, 012335 (2016)]



Additional result: dealing with collisions 

✤ 𝐴: 𝑐 × 𝑐 Gaussian matrix;

✤ 𝐴𝑆: 𝑐 + 𝑘 × (𝑐 + 𝑘) matrix obtained by repeating 𝑘
rows/columns of 𝐴 (according to 𝑆).

𝐴 =
𝑎1 𝑎2
𝑎3 𝑎4

⇒ 𝐴𝑆 =

𝑎1 𝑎2 𝑦1 𝑦2 𝑦3
𝑎1 𝑎2 𝑦1 𝑦2 𝑦3
𝑎1 𝑎2 𝑦1 𝑦2 𝑦3
𝑎3 𝑎4 𝑦4 𝑦5 𝑦6
𝑎3 𝑎4 𝑦4 𝑦5 𝑦6

*Every 𝑦𝑖 needs to be a Gaussian random variable.

𝑆 = (3,2)



Additional result: dealing with collisions 

✤ 𝐴: 𝑐 × 𝑐 Gaussian matrix;

✤ 𝐴𝑆: 𝑐 + 𝑘 × (𝑐 + 𝑘) matrix obtained by repeating 𝑘
rows/columns of 𝐴 (according to 𝑆).

𝐴 =
𝑎1 𝑎2
𝑎3 𝑎4

⇒ 𝐴𝑆 [𝑧] =

𝑎1 𝑎2 𝑦1 𝑦2 𝑧. 𝑦3
𝑎1 𝑎2 𝑦1 𝑦2 𝑧. 𝑦3
𝑎1 𝑎2 𝑦1 𝑦2 𝑧. 𝑦3
𝑎3 𝑎4 𝑧. 𝑦4 𝑧. 𝑦5 𝑦6
𝑎3 𝑎4 𝑧. 𝑦4 𝑧. 𝑦5 𝑦6

Per 𝐴𝑆 𝑧
2 = 𝛼 Per𝐴 2 + 𝛾1𝑧 + 𝛾2 𝑧

2 +⋯+ 𝛾𝑘𝑧
𝑘



Additional result: dealing with collisions 

✤ 𝐴: 𝑐 × 𝑐 Gaussian matrix;

✤ 𝐴𝑆: 𝑐 + 𝑘 × (𝑐 + 𝑘) matrix obtained by repeating 𝑘
rows/columns of 𝐴 (according to 𝑆).

𝜙 𝑧 ≔ Per 𝐴𝑆 𝑧
2 = 𝛼 Per𝐴 2 + 𝛾1𝑧 + 𝛾2 𝑧

2 +⋯+ 𝛾𝑘𝑧
𝑘

✤ By assumption, we can estimate 𝜙(𝑧) for 𝑧 ≈ 1.

✤ We want 𝜙 0 .

✤ Solution: Compute 𝜙(𝑧) for 𝑘 + 1 values of 𝑧 ≈ 1 and use least 

squares method.



Additional result

✤ Working out all the details:

✤ This scales quite poorly with number of collisions 𝑘.

✤ Only implies hardness for 𝑘 = O 1 .

• Still, the method has some promising features.
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Conclusions

✤ New proposal: BipartiteGBS;

✤ Improves on standard BS by allowing for arbitrary matrices;

• Provably removes need for 𝑚 = 𝑂 𝑛5.1 , suggests 𝑚 = 𝑂 𝑛2 can be

improved.

• Caveat: Few people took the 𝑚 = 𝑂 𝑛5.1 scaling too seriously.

✤ Improves on standard GBS by not needing new conjectures;

• Unifies the complexities of GBS and BS;

• Caveat: something similar could be said of scattershot BosonSampling;

✤ Makes everything robust to 𝑂 1 collisions;



Outlook

✤ New proposal: BipartiteGBS;

✤ Leverage the fact that we can implement an arbitrary matrix?

• For applications (encode some interesting problem);

• To prove something in the 𝑚 = 𝑂(𝑛) regime?

• Different matrix ensembles (Bernoulli, etc) where conjectures are 

easier to prove?

✤ Improvement on robustness to collisions?


