
An introduction to contextuality and quantum advantage

Rui Soares Barbosa

rui.soaresbarbosa@inl.int

Quantum and Linear-Optical Computation (QLOC) group meeting
2nd July 2020

rui.soaresbarbosa@inl.int


Overview



Overview

I Central object of study of quantum information and computation theory:
the advantage afforded by quantum resources in information-processing tasks.

I A range of examples are known and have been studied . . . but a systematic understanding of
the scope and structure of quantum advantage is lacking.

I A hypothesis: this is related to non-classical features of quantum mechancics.

I In this talk, we focus on non-local and contextual behaviours as quantum resources.

I Contextuality is a feature of empirical data that is a key signature of non-classicality.
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Motivation

I Quantum mechanics is weird?

Bohr: “if anybody says he can think about quantum theory without

getting giddy it merely shows that he hasn’t understood the first

thing about it”

I It strikes at the heart of how we think: logic and probability.

I Einstein–Podolsky–Rosen (1935): “spooky action at a distance”
 QM must be incomplete!

I Bell–Kochen–Specker (60s):
Non-locality and contextuality as fundamental empirical
phenomena rather than shortcomings of the formalism.
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Motivation

“Shut up and calculate”?

I Advent of quantum information and computation (90s)

Not a bug but a feature!

I How can we make the most of quantum systems as informatic resources?

I How can we reason systematically and compositionally about them?

I What extra power do they offer vis-à-vis classical systems?

I  Renewed interest in quantum foundations.
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Non-local games



The AND game

Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information,

but cannot communicate once the game starts.

Alice

Alice

Bob

Bob

Alice Bob

VerifierVerifier

iA ∈ {0, 1} iB ∈ {0, 1}

oA ∈ {0, 1} oB ∈ {0, 1}

Verifier:
oA ⊕ oB =
iA ∧ iB ?

They win a play if oA ⊕ oB = iA ∧ iB .

A strategy is described by the probabilities P(oA, oB | iA, iB).
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The AND game

A strategy is described by the probabilities P(oA, oB | iA, iB).

A B (0, 0) (0, 1) (1, 0) (1, 1)

0 0

0 1

1 0

1 1

Alice and Bob win a play if oA ⊕ oB = iA ∧ iB .

Assuming a uniform distribution on inputs, the winning probability is given by:

P(oA ⊕ oB = iA ∧ iB)

=
1

4
P(oA = oB | iA = 0, iB = 0) +

1

4
P(oA = oB | iA = 0, iB = 1)

+
1

4
P(oA = oB | iA = 1, iB = 0) +

1

4
P(oA 6= oB | iA = 1, iB = 1).
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A näıve stragegy
Alice and Bob may agree in advance to always reply with the same outcome

A B (0, 0) (0, 1) (1, 0) (1, 1)
0 0 1 0 0 0
0 1 1 0 0 0
1 0 1 0 0 0
1 1 1 0 0 0

P(oA ⊕ oB = iA ∧ iB) =
1

4
P(oA = oB | iA = 0, iB = 0) +

1

4
P(oA = oB | iA = 0, iB = 1)

+
1

4
P(oA = oB | iA = 1, iB = 0) +

1

4
P(oA 6= oB | iA = 1, iB = 1)

=
1

4
· 1 +

1

4
· 1 +

1

4
· 1 +

1

4
· 0

=
3

4

I Can they do any better?
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A näıve stragegy
Alice and Bob may agree in advance to always reply with the same outcome

A B (0, 0) (0, 1) (1, 0) (1, 1)
0 0 1/2 0 0 1/2

0 1 1/2 0 0 1/2

1 0 1/2 0 0 1/2

1 1 1/2 0 0 1/2

P(oA ⊕ oB = iA ∧ iB) =
1

4
P(oA = oB | iA = 0, iB = 0) +

1

4
P(oA = oB | iA = 0, iB = 1)

+
1

4
P(oA = oB | iA = 1, iB = 0) +

1

4
P(oA 6= oB | iA = 1, iB = 1)

=
1

4
· 1 +

1

4
· 1 +

1

4
· 1 +

1

4
· 0

=
3

4

I Can they do any better?

R S Barbosa An introduction to contextuality and quantum advantage 6/30
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Using quantum resources
I Alice and Bob share a quantum state |ψ〉 on a Hilbert space HA ⊗HB (e.g. two qubits).

I Alice can perform one of two measurements A0 and A1 on her system HA.

I Bob can perform one of two measurements B0 and B1 on his system HB .

I All these measurments are dichotomic: two possible outcomes, say 0 and 1 (or +1 and −1).
E.g. the measurement A0 consists of two projections A0

0 and A1
1 = 1− A0

0.

I Alice chooses to perform A0 or A1 on her side of the system depending on her input iA,
and chooses her output oA according to the observed outcome.

I Bob chooses to perform B0 or B1 on his side of the system depending on his input iB ,
and chooses his output oB according to the observed outcome.

I The probabilities are given by the Born rule

p(oA, oB |iA, iB) = 〈ψ|AoB
iA
⊗ BoB

iB
|ψ〉 .
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A quantum-realisable strategy
Sharing a pair of qubits and performing quantum measurements, Alice and Bob can realise:

A B (0, 0) (0, 1) (1, 0) (1, 1)
0 0 1/2 0 0 1/2

0 1 3/8 1/8 1/8 3/8

1 0 3/8 1/8 1/8 3/8

1 1 1/8 3/8 3/8 1/8

P(oA ⊕ oB = iA ∧ iB) =
1

4
P(oA = oB | iA = 0, iB = 0) +

1

4
P(oA = oB | iA = 0, iB = 1)

+
1

4
P(oA = oB | iA = 1, iB = 0) +

1

4
P(oA 6= oB | iA = 1, iB = 1)

=
1

4
· 1 +

1

4
· 3

4
+

1

4
· 3

4
+

1

4
· 3

4

=
13

16
=

3.25

4
≈ 0.81

In fact, one can achieve a winning probability of 2+
√

2
4 ≈ 0.85 !
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Logical Bell inequalities



A simple observation

‘Logical Bell inequalities’, Abramsky & Hardy, Physical Review A, 2012.

I Propositional formulae φ1, . . . , φN

I pi := Prob(φi )

I Suppose the φi are not simultaneously satisfiable. Then Prob (
∧
φi ) = 0.

I Using elementary logic and probability:

1 = Prob
(
¬
∧
φi

)

= Prob
(∨
¬φi
)

≤
N∑
i=1

Prob (¬φi )

=
N∑
i=1

(1− pi )

= N −
N∑
i=1

pi .

I Hence, N∑
i=1

pi ≤ N − 1 .
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Analysis of the Bell table

A B (0, 0) (0, 1) (1, 0) (1, 1)
a0 b0

1/2 0 0 1/2

a0 b1
3/8 1/8 1/8 3/8

a1 b0
3/8 1/8 1/8 3/8

a1 b1
1/8 3/8 3/8 1/8

φ1 = a0 ↔ b0 = (a0 ∧ b0) ∨ (¬a0 ∧ ¬b0)
φ2 = a0 ↔ b1 = (a0 ∧ b1) ∨ (¬a0 ∧ ¬b1)
φ3 = a1 ↔ b0 = (a1 ∧ b0) ∨ (¬a1 ∧ ¬b0)
φ4 = a1 ⊕ b1 = (¬a1 ∧ b1) ∨ (a1 ∧ ¬b1) .

These formulae are contradictory. But p1 +p2 +p3 +p4 = 3.25. The inequality is violated by 1/4.
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Contextuality

I The Bell table can be realised in the real world.

I So, what was our unwarranted assumption?

I That all variables could in principle be observed simultaneously,

I i.e. that one should be able to assign probabilities to empirically unobserved events such as
a0 ∧ a1.
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The essence of contextuality

I Not all properties may be observed at once.

I Jointly observable properties provide partial snapshots.

Local consistency but Global inconsistency
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General framework for contextuality

‘The sheaf-theoretic structure of non-locality and contextuality ’

Abramsky & Brandenburger, New Journal of Physics, 2011.

‘Contextuality, cohomology, and paradox ’

Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

(cf. Cabello–Severini–Winter, Aćın–Fritz–Leverrier–Sainz)



Formalising empirical data

A measurement scenario X = 〈X ,Σ,O〉:
I X – a finite set of measurements

I Σ – a simplicial complex on X
faces are called the measurement contexts

I O = (Ox)x∈X – for each x ∈ X a non-empty
set of possible outcomes Ox

An empirical model e = {eσ}σ∈Σ on X:

I each eσ ∈ Prob
(∏

x∈σ Ox

)
is a probability

distribution over joint outcomes for σ.

I generalised no-signalling holds: for any
σ, τ ∈ Σ, if τ ⊆ σ,

eσ|τ = eτ

(i.e. marginals are well-defined)

A B (0, 0) (0, 1) (1, 0) (1, 1)

a0 b0

a0 b1

a1 b0

a1 b1

X = {a0, a1, b0, b1}, Ox = {0, 1}

Σ = ↓ { {a0, b0}, {a0, b1}, {a1, b0}, {a1, b1} }.

•a0 • b0

• a1
•b1

•0
•1

•
•

• 0
• 1

•
•
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Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d |σ = eσ.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Kochen–Spekker’s theorems is that there are behaviours arising from
quantum mechanics that are contextual.
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Hierarchy of contextuality

Possibilistic collapse

I Given an empirical model e, define possibilistic model poss(e) by taking the support of each
distributions.

I Contains the possibilistic, or logical, information of that model.

A B (0, 0) (0, 1) (1, 0) (1, 1)
a0 b0

1/2 0 0 1/2

a0 b1
3/8 1/8 1/8 3/8

a1 b0
3/8 1/8 1/8 3/8

a1 b1
1/8 3/8 3/8 1/8

7−→

A B (0, 0) (0, 1) (1, 0) (1, 1)
a0 b0 1 0 0 1
a0 b1 1 1 1 1
a1 b0 1 1 1 1
a1 b1 1 1 1 1
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Hierarchy of contextuality

Hardy model

A B (0, 0) (0, 1) (1, 0) (1, 1)

a0 b0 1 1 1 1
a0 b1 0 1 1 1
a1 b0 0 1 1 1
a1 b1 1 1 1 0

a1 ∨ b0 a0 ∨ b1 ¬(a1 ∧ b1)

[a0 7→ 0, b0 7→ 0]
•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

There are some global sections,

but . . .
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Classical assignment: [a0 7→ 1, a1 7→ 0, b0 7→ 1, b1 7→ 0]
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There are some global sections, but . . .

Logical contextuality: Not all sections extend to global ones.
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Hierarchy of contextuality

Popescu–Rohrlich box

A B (0, 0) (0, 1) (1, 0) (1, 1)

a0 b0 1 0 0 1
a0 b1 1 0 0 1
a1 b0 1 0 0 1
a1 b1 0 1 1 0

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Strong contextuality:
no event can be extended to a global assignment.

a0 ↔ b0 a0 ↔ b1 a1 ↔ b0 a1 ⊕ b1
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Peres–Mermin magic square

A B C

D E F

G H I

Magic square:

I Fill with 0s and 1s

I rows and first two columns: even parity

I last column: odd parity

System of linear equations over Z2:

A ⊕ B ⊕ C = 0 A ⊕ D ⊕ G = 0

D ⊕ E ⊕ F = 0 B ⊕ E ⊕ H = 0

G ⊕ H ⊕ I = 0 C ⊕ F ⊕ I = 1

Clearly, this is not satisfiable in Z2. But it has a “quantum solution”!
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Peres–Mermin magic square

A B C

D E F

G H I

A · B · C = + 1 A · D · G = + 1

D · E · F = + 1 B · E · H = + 1
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Quantifying contextuality
and quantum advantages



Contextuality and advantages

I Contextuality has been associated with quantum advantage in information-processing and
computational tasks.

I Measure of contextuality  quantify such advantages.

‘Contextuality fraction as a measure of contextuality ’
Abramsky, B, & Mansfield, Physical Review Letters, 2017.
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The contextual fraction
Non-contextuality: global distribution d ∈ Prob(OX ) such that:

∀C∈M. d |C = eC .

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on OX such that:

∀C∈M. c |C ≤ eC .

Equivalently, it is the maximum weight λ over all convex decompositions

e = λeNC + (1− λ)e′

where eNC is a non-contextual model.

NCF(e) = λ CF(e) = 1− λ
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The contextual fraction as a measure of contextuality

I CF(e) = 0 iff e is non-contextual.

I CF(e) = 1 iff e is strongly contextual.

I CF(e) is a monotone for free operations in the resource theory of contextuality.

I CF(e) is equal to the maximal violation by e of a Bell inequality

I CF(e) is calculated via linear programming, the dual LP yields this inequality.
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Contextual fraction and cooperative games

I Game described by n formulae (one for each allowed input).

I These describe the winning condition that the corresponding outputs must satisfy.

I If the formulae are k-consistent (at most k are jointly satisfiable),
hardness of the task is n−k

n .

‘Logical Bell inequalities’, Abramsky & Hardy, Physical Review A, 2012.

I We have

1− p̄S ≥ NCF
n − k

n
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Contextuality and advantage in quantum computation

I Measurement-based quantum computation (MBQC)

‘Contextuality in measurement-based quantum computation’
Raussendorf, Physical Review A, 2013.

I Magic state distillation

‘Contextuality supplies the ‘magic’ for quantum computation’
Howard, Wallman, Veitch, Emerson, Nature, 2014.

I Shallow circuits

‘Quantum advantage with shallow circuits’
Bravyi, Gossett, Koenig, Science, 2018.

I Contextuality analysis: Aasnæss, Forthcoming, 2020.
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Contextuality and MBQC

E.g. Raussendorf (2013) `2-MBQC

I measurement-based quantum computing scheme
(m input bits, l output bits, n parties)

I classical control:
I pre-processes input
I determines the flow of measurements
I post-processes to produce the output

only Z2-linear computations.

I additional power to compute non-linear functions resides in resource empirical models.

Impact of contributions

Classical
Dependence logics
(Hyttinen, Paolini, Väänänen ’15)

Binary constraint systems
(Kolaitis ’16)

Complexity
(Abramsky, Gottlob, Kolaitis ’13)

Quantum

Stronger no-go theorems
Unifies non-locality and
contextuality
Power of computational models
(Raussendorf ’13)

“MBQC” models
(Raussendorf, Briegel ’01)

Using our framework: “non-linearity implies contextuality”

5 / 9
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Contextuality and MBQC
E.g. Raussendorf (2013) `2-MBQC

I measurement-based quantum computing scheme
(m input bits, l output bits, n parties)

I classical control:
I pre-processes input
I determines the flow of measurements
I post-processes to produce the output

only Z2-linear computations.

I additional power to compute non-linear functions resides in resource empirical models.

I Raussendorf (2013): If an `2-MBQC deterministically computes a non-linear Boolean
function f : 2m −→ 2l then the resource must be strongly contextual.

I Probabilistic version: non-linear function computed with sufficently large probability of
success implies contextuality.
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Contextual fraction and MBQC

I Goal: Compute Boolean function f : 2m −→ 2l using `2-MBQC

I Hardness of the problem

ν(f ) := min {d(f , g) | g is Z2-linear}

(average distance between f and closest Z2-linear function)

where for Boolean functions f and g , d(f , g) := 2−m| {i ∈ 2m | f (i) 6= g(i)}.

I Average probability of success computing f (over all 2m possible inputs): p̄S .

I Then,

1− p̄S ≥ NCF(e) ν(f )
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I Average probability of success computing f (over all 2m possible inputs): p̄S .

I Then,

1− p̄S ≥ NCF(e) ν(f )
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Some further topics I
I The logic of contextuality: partial Boolean algebras

‘The problem of hidden variables in quantum mechanics’
Kochen & Specker, Journal of Mathematics and Mechanics, 1965.

‘Noncommutativity as a colimit’
Heunen & van den Berg, Applied Categorical Structures, 2010.

‘The logic of contextuality ’, Abramsky & B, 2020.

I multiple viewpoints and the quantum-mechanical tensor product?

I The topology of contextuality: cohomological witnesses

‘The cohomology of non-locality and contextuality ’
Abramsky, B, & Mansfield, CSL 2015.

‘Contextuality, cohomology, and paradox ’
Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

I Monogamy relations limiting contextuality

‘On monogamy of non-locality and macroscopic averages’, B, QPL, 2014.
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Some further topics II

I A resource theory of contextuality

‘A comonadic view on simulations and quantum resources’
Abramsky, B, Karvonen, & Mansfield, LiCS 2019.

I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

I Simulations using “free” operations that transform contextual blackboxes
I Adaptivity (a la MBQC) using measurement protocols
I Graded notions by depth, space, number of copies, other free models, etc.
I “No-copying”: e  e ⊗ e iff e is noncontexutal
I “No-catalysis”: e 6 e′ implies e ⊗ d 6 e′ ⊗ d .
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Questions...

?

R S Barbosa An introduction to contextuality and quantum advantage 30/30


