An introduction to contextuality and quantum advantage

Rui Soares Barbosa

rui.soaresbarbosa@inl.int

Quantum and Linear-Optical Computation (QLOC) group meeting 2nd July 2020

Central object of study of quantum information and computation theory: the advantage afforded by quantum resources in information-processing tasks.

- Central object of study of quantum information and computation theory: the advantage afforded by quantum resources in information-processing tasks.
- A range of examples are known and have been studied ... but a systematic understanding of the scope and structure of quantum advantage is lacking.

- Central object of study of quantum information and computation theory: the advantage afforded by quantum resources in information-processing tasks.
- A range of examples are known and have been studied ... but a systematic understanding of the scope and structure of quantum advantage is lacking.
- > A hypothesis: this is related to **non-classical** features of quantum mechancics.

- Central object of study of quantum information and computation theory: the advantage afforded by quantum resources in information-processing tasks.
- A range of examples are known and have been studied ... but a systematic understanding of the scope and structure of quantum advantage is lacking.
- > A hypothesis: this is related to **non-classical** features of quantum mechancics.
- ▶ In this talk, we focus on **non-local** and **contextual** behaviours as quantum resources.
- Contextuality is a feature of **empirical data** that is a key signature of non-classicality.

Quantum mechanics is weird?

Quantum mechanics is weird?

Bohr: "*if anybody says he can think about quantum theory without getting giddy it merely shows that he hasn't understood the first thing about it*"

- Quantum mechanics is weird? Bohr: "if anybody says he can think about quantum theory without getting giddy it merely shows that he hasn't understood the first thing about it"
- It strikes at the heart of how we think: logic and probability.

- Quantum mechanics is weird? Bohr: "if anybody says he can think about quantum theory without getting giddy it merely shows that he hasn't understood the first thing about it"
- It strikes at the heart of how we think: logic and probability.
- Einstein–Podolsky–Rosen (1935): "spooky action at a distance" ~> QM must be incomplete!

- Quantum mechanics is weird? Bohr: "if anybody says he can think about quantum theory without getting giddy it merely shows that he hasn't understood the first thing about it"
- It strikes at the heart of how we think: logic and probability.
- Einstein–Podolsky–Rosen (1935): "spooky action at a distance" ~> QM must be incomplete!
- Bell–Kochen–Specker (60s): Non-locality and contextuality as fundamental empirical phenomena rather than shortcomings of the formalism.

"Shut up and calculate"?

"Shut up and calculate"?

Advent of quantum information and computation (90s)

Not a bug but a feature!

- ▶ How can we make the most of quantum systems as informatic resources?
- ▶ How can we reason systematically and compositionally about them?
- ▶ What extra power do they offer vis-à-vis classical systems?

"Shut up and calculate"?

Advent of quantum information and computation (90s)

Not a bug but a feature!

- How can we make the most of quantum systems as informatic resources?
- ▶ How can we reason systematically and compositionally about them?
- What extra power do they offer vis-à-vis classical systems?
- \blacktriangleright \rightsquigarrow Renewed interest in quantum foundations.

Non-local games

Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information,

Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information,

Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information, but cannot communicate once the game starts.

Bob

Alice and Bob cooperate in solving a task set by Verifier.

Alice and Bob cooperate in solving a task set by Verifier.

Alice and Bob cooperate in solving a task set by Verifier.

Alice and Bob cooperate in solving a task set by Verifier.

Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information, but cannot communicate once the game starts.

They win a play if $o_A \oplus o_B = i_A \wedge i_B$.

Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information, but cannot communicate once the game starts.

They win a play if $o_A \oplus o_B = i_A \wedge i_B$.

A strategy is described by the probabilities $P(o_A, o_B \mid i_A, i_B)$.

A strategy is described by the probabilities $P(o_A, o_B \mid i_A, i_B)$.

A strategy is described by the probabilities $P(o_A, o_B \mid i_A, i_B)$.

Alice and Bob win a play if $o_A \oplus o_B = i_A \wedge i_B$.

A strategy is described by the probabilities $P(o_A, o_B \mid i_A, i_B)$.

Alice and Bob win a play if $o_A \oplus o_B = i_A \wedge i_B$.

Assuming a uniform distribution on inputs, the winning probability is given by:

 $P(o_A \oplus o_B = i_A \wedge i_B)$

A strategy is described by the probabilities $P(o_A, o_B \mid i_A, i_B)$.

Alice and Bob win a play if $o_A \oplus o_B = i_A \wedge i_B$.

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1).$$

A strategy is described by the probabilities $P(o_A, o_B \mid i_A, i_B)$.

Alice and Bob win a play if $o_A \oplus o_B = i_A \wedge i_B$.

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1)$$

A strategy is described by the probabilities $P(o_A, o_B \mid i_A, i_B)$.

Alice and Bob win a play if $o_A \oplus o_B = i_A \wedge i_B$.

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1).$$

A strategy is described by the probabilities $P(o_A, o_B | i_A, i_B)$.

Alice and Bob win a play if $o_A \oplus o_B = i_A \wedge i_B$.

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1).$$

A strategy is described by the probabilities $P(o_A, o_B \mid i_A, i_B)$.

Alice and Bob win a play if $o_A \oplus o_B = i_A \wedge i_B$.

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1)$$

A strategy is described by the probabilities $P(o_A, o_B \mid i_A, i_B)$.

Alice and Bob win a play if $o_A \oplus o_B = i_A \wedge i_B$.

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1).$$

A naïve stragegy

Alice and Bob may agree in advance to always reply with the same outcome

A naïve stragegy

Alice and Bob may agree in advance to always reply with the same outcome

A naïve stragegy

Alice and Bob may agree in advance to always reply with the same outcome

Α	В	(<mark>0</mark> , 0)	(0 , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	1/2	0	0	1/2
1	0	1/2	0	0	1/2
1	1	$^{1/2}$	0	0	$^{1/2}$

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	1/2	0	0	$^{1/2}$
1	0	1/2	0	0	1/2
1	1	$^{1/2}$	0	0	$^{1/2}$

$$\begin{split} P(o_A \oplus o_B = i_A \wedge i_B) &= \frac{1}{4} \, P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} \, P(o_A = o_B \mid i_A = 0, i_B = 1) \\ &+ \frac{1}{4} \, P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} \, P(o_A \neq o_B \mid i_A = 1, i_B = 1) \end{split}$$

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	1/2	0	0	$^{1/2}$
1	0	1/2	0	0	1/2
1	1	$^{1/2}$	0	0	$^{1/2}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 +$$

Α	В	(<mark>0</mark> , 0)	(0 , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	1/2	0	0	1/2
1	0	1/2	0	0	1/2
1	1	$^{1/2}$	0	0	$^{1/2}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 +$$

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	1/2	0	0	1/2
1	0	1/2	0	0	1/2
1	1	$^{1/2}$	0	0	$^{1/2}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1$$

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	1/2	0	0	1/2
1	0	1/2	0	0	1/2
1	1	$^{1/2}$	0	0	$^{1/2}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 0$$

Α	В	(<mark>0</mark> , 0)	(0 , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	1/2	0	0	1/2
1	0	1/2	0	0	1/2
1	1	$^{1/2}$	0	0	$^{1/2}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 0 \\ = \frac{3}{4}$$

Alice and Bob may agree in advance to always reply with the same outcome

Α	В	(<mark>0</mark> , 0)	(0 , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	1/2	0	0	1/2
1	0	1/2	0	0	1/2
1	1	$^{1/2}$	0	0	$^{1/2}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 0 \\ = \frac{3}{4}$$

Can they do any better?

• Alice and Bob share a quantum state $|\psi\rangle$ on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ (e.g. two qubits).

• Alice and Bob share a quantum state $|\psi\rangle$ on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ (e.g. two qubits).

▶ Alice can perform one of two measurements A_0 and A_1 on her system \mathcal{H}_A .

- Alice and Bob share a quantum state $|\psi\rangle$ on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ (e.g. two qubits).
- Alice can perform one of two measurements A_0 and A_1 on her system \mathcal{H}_A .
- ▶ Bob can perform one of two measurements B_0 and B_1 on his system \mathcal{H}_B .

- Alice and Bob share a quantum state $|\psi\rangle$ on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ (e.g. two qubits).
- Alice can perform one of two measurements A_0 and A_1 on her system \mathcal{H}_A .
- ▶ Bob can perform one of two measurements B_0 and B_1 on his system \mathcal{H}_B .
- > All these measurments are dichotomic: two possible outcomes, say 0 and 1 (or +1 and -1).

- Alice and Bob share a quantum state $|\psi\rangle$ on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ (e.g. two qubits).
- Alice can perform one of two measurements A_0 and A_1 on her system \mathcal{H}_A .
- ▶ Bob can perform one of two measurements B_0 and B_1 on his system \mathcal{H}_B .
- ► All these measurments are dichotomic: two possible outcomes, say 0 and 1 (or +1 and -1). E.g. the measurement A₀ consists of two projections A₀⁰ and A₁¹ = 1 - A₀⁰.

- Alice and Bob share a quantum state $|\psi\rangle$ on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ (e.g. two qubits).
- Alice can perform one of two measurements A_0 and A_1 on her system \mathcal{H}_A .
- ▶ Bob can perform one of two measurements B_0 and B_1 on his system \mathcal{H}_B .
- ► All these measurments are dichotomic: two possible outcomes, say 0 and 1 (or +1 and -1). E.g. the measurement A₀ consists of two projections A₀⁰ and A₁¹ = 1 - A₀⁰.
- Alice chooses to perform A_0 or A_1 on her side of the system depending on her input i_A ,

- Alice and Bob share a quantum state $|\psi\rangle$ on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ (e.g. two qubits).
- Alice can perform one of two measurements A_0 and A_1 on her system \mathcal{H}_A .
- ▶ Bob can perform one of two measurements B_0 and B_1 on his system \mathcal{H}_B .
- ► All these measurments are dichotomic: two possible outcomes, say 0 and 1 (or +1 and -1). E.g. the measurement A₀ consists of two projections A₀⁰ and A₁¹ = 1 - A₀⁰.
- Alice chooses to perform A_0 or A_1 on her side of the system depending on her input i_A , and chooses her output o_A according to the observed outcome.

- Alice and Bob share a quantum state $|\psi\rangle$ on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ (e.g. two qubits).
- Alice can perform one of two measurements A_0 and A_1 on her system \mathcal{H}_A .
- ▶ Bob can perform one of two measurements B_0 and B_1 on his system \mathcal{H}_B .
- ► All these measurments are dichotomic: two possible outcomes, say 0 and 1 (or +1 and -1). E.g. the measurement A₀ consists of two projections A₀⁰ and A₁¹ = 1 - A₀⁰.
- Alice chooses to perform A_0 or A_1 on her side of the system depending on her input i_A , and chooses her output o_A according to the observed outcome.
- ▶ Bob chooses to perform B_0 or B_1 on his side of the system depending on his input i_B , and chooses his output o_B according to the observed outcome.

- Alice and Bob share a quantum state $|\psi\rangle$ on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ (e.g. two qubits).
- Alice can perform one of two measurements A_0 and A_1 on her system \mathcal{H}_A .
- ▶ Bob can perform one of two measurements B_0 and B_1 on his system \mathcal{H}_B .
- ► All these measurments are dichotomic: two possible outcomes, say 0 and 1 (or +1 and -1). E.g. the measurement A₀ consists of two projections A₀⁰ and A₁¹ = 1 - A₀⁰.
- Alice chooses to perform A_0 or A_1 on her side of the system depending on her input i_A , and chooses her output o_A according to the observed outcome.
- ▶ Bob chooses to perform B_0 or B_1 on his side of the system depending on his input i_B , and chooses his output o_B according to the observed outcome.
- > The probabilities are given by the Born rule

$$p(o_A, o_B | i_A, i_B) = \langle \psi | A_{i_A}^{o_B} \otimes B_{i_B}^{o_B} | \psi \rangle$$
.

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	3/8	1/8	1/8	3/8
1	0	3/8	1/8	1/8	3/8
1	1	1/8	3/8	3/8	1/8

$$\begin{aligned} P(o_A \oplus o_B = i_A \wedge i_B) &= \frac{1}{4} \, P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} \, P(o_A = o_B \mid i_A = 0, i_B = 1) \\ &+ \frac{1}{4} \, P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} \, P(o_A \neq o_B \mid i_A = 1, i_B = 1) \end{aligned}$$

Α	В	(<mark>0</mark> , 0)	(0, 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	3/8	1/8	1/8	3/8
1	0	3/8	1/8	1/8	3/8
1	1	$^{1/8}$	3/8	3/8	$^{1}/_{8}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 +$$

А	В	(<mark>0</mark> , 0)	(0, 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	3/8	1/8	1/8	3/8
1	0	3/8	1/8	1/8	3/8
1	1	$^{1/8}$	3/8	3/8	$^{1/8}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot \frac{3}{4} +$$

A	В	(<mark>0</mark> , 0)	(0 , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	3/8	1/8	1/8	3/8
1	0	3/8	1/8	1/8	3/8
1	1	$^{1/8}$	3/8	3/8	$^{1/8}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4}$$

A	В	(<mark>0</mark> , 0)	(0 , 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	3/8	1/8	1/8	3/8
1	0	3/8	1/8	1/8	3/8
1	1	1/8	3/8	3/8	$^{1/8}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4}$$

Α	В	(<mark>0</mark> , 0)	(0, 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	3/8	1/8	1/8	3/8
1	0	3/8	1/8	1/8	3/8
1	1	$^{1/8}$	3/8	3/8	$^{1/8}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4} \\ = \frac{13}{16}$$

Sharing a pair of qubits and performing quantum measurements, Alice and Bob can realise:

Α	В	(<mark>0</mark> , 0)	(0, 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	3/8	1/8	1/8	3/8
1	0	3/8	1/8	1/8	3/8
1	1	$^{1/8}$	3/8	3/8	$^{1}/_{8}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4} \\ = \frac{13}{16} = \frac{3.25}{4} \approx 0.81$$

In fact, one can achieve a winning probability of $\frac{2+\sqrt{2}}{4} \approx 0.85$!

Sharing a pair of qubits and performing quantum measurements, Alice and Bob can realise:

Α	В	(<mark>0</mark> , 0)	(0, 1)	(1, 0)	(1, 1)
0	0	1/2	0	0	1/2
0	1	3/8	1/8	1/8	3/8
1	0	3/8	1/8	1/8	3/8
1	1	$^{1/8}$	3/8	3/8	$^{1}/_{8}$

$$P(o_A \oplus o_B = i_A \wedge i_B) = \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 0) + \frac{1}{4} P(o_A = o_B \mid i_A = 0, i_B = 1) \\ + \frac{1}{4} P(o_A = o_B \mid i_A = 1, i_B = 0) + \frac{1}{4} P(o_A \neq o_B \mid i_A = 1, i_B = 1) \\ = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{3}{4} \\ = \frac{13}{16} = \frac{3.25}{4} \approx 0.81$$

In fact, one can achieve a winning probability of $\frac{2+\sqrt{2}}{4}\approx 0.85$!

Logical Bell inequalities

'Logical Bell inequalities', Abramsky & Hardy, Physical Review A, 2012.

▶ Propositional formulae ϕ_1, \ldots, ϕ_N

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\triangleright p_i := \operatorname{Prob}(\phi_i)$

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\blacktriangleright p_i := \operatorname{Prob}(\phi_i)$
- Suppose the ϕ_i are not simultaneously satisfiable. Then $\operatorname{Prob}(\bigwedge \phi_i) = 0$.

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\blacktriangleright p_i := \operatorname{Prob}(\phi_i)$
- Suppose the ϕ_i are not simultaneously satisfiable. Then Prob $(\bigwedge \phi_i) = 0$.
- Using elementary logic and probability:

$$1 = \mathsf{Prob}\left(\neg \bigwedge \phi_i\right)$$

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\blacktriangleright p_i := \operatorname{Prob}(\phi_i)$
- Suppose the ϕ_i are not simultaneously satisfiable. Then $\operatorname{Prob}(\bigwedge \phi_i) = 0$.
- Using elementary logic and probability:

$$1 = \mathsf{Prob}\left(\neg \bigwedge \phi_i
ight) = \mathsf{Prob}\left(igvee \neg \phi_i
ight)$$

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\blacktriangleright p_i := \operatorname{Prob}(\phi_i)$
- Suppose the ϕ_i are not simultaneously satisfiable. Then $\operatorname{Prob}(\bigwedge \phi_i) = 0$.
- Using elementary logic and probability:

$$1 = \operatorname{\mathsf{Prob}}\left(\neg \bigwedge \phi_i
ight) = \operatorname{\mathsf{Prob}}\left(\bigvee \neg \phi_i
ight) \, \leq \, \sum_{i=1}^N \operatorname{\mathsf{Prob}}\left(\neg \phi_i
ight)$$

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\triangleright p_i := \operatorname{Prob}(\phi_i)$
- Suppose the ϕ_i are not simultaneously satisfiable. Then $\operatorname{Prob}(\bigwedge \phi_i) = 0$.
- Using elementary logic and probability:

$$1 = \operatorname{Prob}\left(\neg \bigwedge \phi_i\right) = \operatorname{Prob}\left(\bigvee \neg \phi_i\right) \leq \sum_{i=1}^N \operatorname{Prob}\left(\neg \phi_i\right) = \sum_{i=1}^N (1 - p_i)$$

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\triangleright p_i := \operatorname{Prob}(\phi_i)$
- Suppose the ϕ_i are not simultaneously satisfiable. Then $\operatorname{Prob}(\bigwedge \phi_i) = 0$.
- Using elementary logic and probability:

$$1 = \operatorname{Prob}\left(\neg \bigwedge \phi_i\right) = \operatorname{Prob}\left(\bigvee \neg \phi_i\right) \leq \sum_{i=1}^N \operatorname{Prob}\left(\neg \phi_i\right) = \sum_{i=1}^N (1-p_i) = N - \sum_{i=1}^N p_i \quad .$$
A simple observation

'Logical Bell inequalities', Abramsky & Hardy, Physical Review A, 2012.

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\blacktriangleright p_i := \operatorname{Prob}(\phi_i)$
- Suppose the ϕ_i are not simultaneously satisfiable. Then $\operatorname{Prob}(\bigwedge \phi_i) = 0$.
- Using elementary logic and probability:

$$1 = \operatorname{Prob}\left(\neg \bigwedge \phi_i\right) = \operatorname{Prob}\left(\bigvee \neg \phi_i\right) \leq \sum_{i=1}^{N} \operatorname{Prob}\left(\neg \phi_i\right) = \sum_{i=1}^{N} (1 - p_i) = N - \sum_{i=1}^{N} p_i \quad .$$

Hence,

$$\sum_{i=1}^N p_i \leq N-1$$
 .

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
a_0	b_0	1/2	0	0	1/2
a_0	b_1	3/8	1/8	1/8	3/8
a_1	b_0	3/8	1/8	1/8	3/8
a_1	b_1	1/8	3/8	3/8	1/8

A	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
<i>a</i> 0	b_0	1/2	0	0	1/2
a 0	b_1	3/8	1/8	1/8	3/8
a_1	b_0	3/8	1/8	1/8	3/8
a_1	b_1	1/8	3/8	3/8	1/8

A	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
a_0	b_0	1/2	0	0	1/2
a_0	b_1	3/8	1/8	1/8	3/8
a_1	b_0	3/8	1/8	1/8	3/8
a_1	b_1	1/8	3/8	3/8	1/8

A	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
<i>a</i> 0	b_0	1/2	0	0	1/2
a_0	b_1	3/8	1/8	1/8	3/8
a_1	b_0	3/8	1/8	1/8	3/8
a_1	b_1	1/8	3/8	3/8	1/8

A	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
a_0	b_0	1/2	0	0	1/2
a_0	b_1	3/8	1/8	1/8	3/8
a_1	b_0	3/8	1/8	1/8	3/8
a_1	b_1	1/8	3/8	3/8	1/8

A	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)
<i>a</i> 0	b_0	1/2	0	0	1/2
a 0	b_1	3/8	1/8	1/8	3/8
a_1	b_0	3/8	1/8	1/8	3/8
a_1	b_1	1/8	3/8	3/8	1/8

	А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)	
	<i>a</i> 0	b_0	1/2	0	0	1/2	
	a_0	b_1	3/8	$^{1/8}$	1/8	3/8	
	a_1	b_0	3/8	$^{1/8}$	1/8	3/8	
	a_1	b_1	$^{1/8}$	3/8	3/8	$^{1/8}$	
_	a_0	\leftrightarrow	$b_0 =$	(<i>a</i> ∩ /	(b_0)	∨ (¬ <i>a</i> ∩	. /

These formulae are contradictory.

		А	В	(0 ,	0)	(<mark>0</mark> , 1)	(1, 0)	(1	I,1)	
		<i>a</i> 0	b_0	1/	2	0	0		1/2	
		a_0	b_1	3/	8	1/8	1/8		3/8	
		a_1	b_0	3/	8	1/8	1/8		3/8	
		a_1	b_1	1/	8	3/8	3/8		1/8	
ϕ_1	=	a_0	\leftrightarrow	b_0	=	(<i>a</i> 0 /	(b_0)	\vee	(<i>¬a</i> ($(\wedge \neg b_0)$
ϕ_2	=	a_0	\leftrightarrow	b_1	=	(<i>a</i> 0 /	(b_1)	\vee	(<i>¬a</i> ($(\wedge \neg b_1)$
ϕ_{3}	=	a_1	\leftrightarrow	b_0	=	(a1 /	(b_0)	\vee	$(\neg a_1)$	$(\wedge \neg b_0)$
ϕ_{4}	=	a_1	\oplus	b_1	=	$(\neg a_1$	$\wedge b_1)$	\vee	(a_1)	$\wedge \neg b_1)$.

These formulae are contradictory. But $p_1 + p_2 + p_3 + p_4 = 3.25$. The inequality is violated by 1/4.

▶ The Bell table can be realised in the real world.

- ▶ The Bell table can be realised in the real world.
- So, what was our unwarranted assumption?

- ▶ The Bell table can be realised in the real world.
- So, what was our unwarranted assumption?
- > That all variables could in principle be observed simultaneously,

- > The Bell table can be realised in the real world.
- So, what was our unwarranted assumption?
- ▶ That all variables could *in principle* be observed simultaneously,
- i.e. that one should be able to assign probabilities to empirically unobserved events such as $a_0 \wedge a_1$.

- Not all properties may be observed at once.
- > Jointly observable properties provide **partial snapshots**.

- Not all properties may be observed at once.
- > Jointly observable properties provide **partial snapshots**.

M. C. Escher, Ascending and Descending

- Not all properties may be observed at once.
- > Jointly observable properties provide **partial snapshots**.

Local consistency

- Not all properties may be observed at once.
- > Jointly observable properties provide **partial snapshots**.

Local consistency but Global inconsistency

General framework for contextuality

'The sheaf-theoretic structure of non-locality and contextuality' Abramsky & Brandenburger, New Journal of Physics, 2011.

'Contextuality, cohomology, and paradox'

Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

(cf. Cabello-Severini-Winter, Acín-Fritz-Leverrier-Sainz)

Formalising empirical data

A measurement scenario $\mathbf{X} = \langle X, \Sigma, O \rangle$:

- X a finite set of measurements
- Σ a simplicial complex on X faces are called the measurement contexts
- *O* = (*O_x*)_{x∈X} − for each x ∈ X a non-empty set of possible outcomes *O_x*

Formalising empirical data

A measurement scenario $\mathbf{X} = \langle X, \Sigma, O \rangle$:

- ► X a finite set of measurements
- Σ a simplicial complex on X faces are called the measurement contexts
- O = (O_x)_{x∈X} − for each x ∈ X a non-empty set of possible outcomes O_x

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on **X**:

- each e_σ ∈ Prob (∏_{x∈σ} O_x) is a probability distribution over joint outcomes for σ.
- generalised no-signalling holds: for any $\sigma, \tau \in \Sigma$, if $\tau \subseteq \sigma$,

$$|e_{\sigma}|_{ au} = e_{ au}$$

(i.e. marginals are well-defined)

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)		
a 0	b_0	1/2	0	0	1/2		
a_0	b_1	$^{1/2}$	0	0	$^{1/2}$		
a_1	b_0	$^{1/2}$	0	0	$^{1/2}$		
a_1	b_1	0	$^{1/2}$	$^{1/2}$	0		
$X = \{a_0, a_1, b_0, b_1\}, \ O_x = \{0, 1\}$							
$\Sigma = \downarrow \{ \{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\} \}$							

Formalising empirical data

A measurement scenario $\mathbf{X} = \langle X, \Sigma, O \rangle$:

- ► X a finite set of measurements
- Σ a simplicial complex on X faces are called the measurement contexts
- O = (O_x)_{x∈X} − for each x ∈ X a non-empty set of possible outcomes O_x

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on **X**:

- each e_σ ∈ Prob (∏_{x∈σ} O_x) is a probability distribution over joint outcomes for σ.
- generalised no-signalling holds: for any $\sigma, \tau \in \Sigma$, if $\tau \subseteq \sigma$,

$$|e_{\sigma}|_{ au} = e_{ au}$$

(i.e. marginals are well-defined)

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)		
a 0	b_0	1/2	0	0	1/2		
a_0	b_1	$^{1/2}$	0	0	$^{1/2}$		
a_1	b_0	$^{1/2}$	0	0	$^{1/2}$		
a_1	b_1	0	$^{1/2}$	$^{1/2}$	0		
$X = \{a_0, a_1, b_0, b_1\}, \ O_x = \{0, 1\}$							
$\Sigma = \downarrow \{ \{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\} \}$							

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a distribution d on $\prod_{x \in X} O_x$ such that, for all $\sigma \in \Sigma$:

$$d|_{\sigma} = e_{\sigma}.$$

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a distribution d on $\prod_{x \in X} O_x$ such that, for all $\sigma \in \Sigma$:

$$d|_{\sigma} = e_{\sigma}.$$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a distribution d on $\prod_{x \in X} O_x$ such that, for all $\sigma \in \Sigma$:

$$d|_{\sigma} = e_{\sigma}.$$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is **contextual**.

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a distribution d on $\prod_{x \in X} O_x$ such that, for all $\sigma \in \Sigma$:

$$d|_{\sigma} = e_{\sigma}.$$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is **contextual**.

Contextuality: family of data that is locally consistent but globally inconsistent.

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a distribution d on $\prod_{x \in X} O_x$ such that, for all $\sigma \in \Sigma$:

$$d|_{\sigma} = e_{\sigma}.$$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is **contextual**.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell's and Kochen–Spekker's theorems is that there are behaviours arising from quantum mechanics that are contextual.

Possibilistic collapse

▶ Given an empirical model *e*, define possibilistic model poss(*e*) by taking the support of each distributions.

Possibilistic collapse

- Given an empirical model e, define possibilistic model poss(e) by taking the support of each distributions.
- > Contains the possibilistic, or logical, information of that model.

Possibilistic collapse

- Given an empirical model e, define possibilistic model poss(e) by taking the support of each distributions.
- > Contains the possibilistic, or logical, information of that model.

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)
a 0	b_0	1	1	1	1
a 0	b_1	0	1	1	1
a_1	b_0	0	1	1	1
a_1	b_1	1	1	1	0

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)
<i>a</i> 0	b_0	1	1	1	1
a_0	b_1	0	1	1	1
a_1	b_0	0	1	1	1
a_1	b_1	1	1	1	0

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> ,1)	(1, <mark>0</mark>)	(1, 1)
a 0	b_0	1	1	1	1
a_0	b_1	0	1	1	1
a_1	b_0	0	1	1	1
a_1	b_1	1	1	1	0

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)
a 0	b_0	1	1	1	1
a_0	b_1	0	1	1	1
a_1	b_0	0	1	1	1
a_1	b_1	1	1	1	0

Hardy model

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)
a 0	b_0	1	1	1	1
a_0	b_1	0	1	1	1
a_1	b_0	0	1	1	1
a_1	b_1	1	1	1	0

 $a_1 \vee b_0$

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> ,1)	(1, <mark>0</mark>)	(1, 1)
a 0	b_0	1	1	1	1
a 0	b_1	0	1	1	1
a_1	b_0	0	1	1	1
a_1	b_1	1	1	1	0
$a_1 \vee b_0$			ao V	b ₁	

А	В	(<mark>0,0</mark>)	(<mark>0</mark> ,1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a_0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
		,				
	a_1 V	/ b 0	a_0 V	b_1	\neg ($a_1 \land$	b ₁)

Hardy model

А	В	(<mark>0,0</mark>)	(<mark>0</mark> ,1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a_0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
	a_1 V	/ <u>b</u> o	<i>a</i> ₀ ∨	b_1	¬ (a 1 ∧	b 1)

Hardy model

There are some global sections,

Classical assignment: $[a_0 \mapsto 1, a_1 \mapsto 0, b_0 \mapsto 1, b_1 \mapsto 0]$

Hardy model

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a 0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
	a_1 V	/ <i>b</i> ₀	<i>a</i> ₀ ∨	b_1	¬ (a₁ ∧	. <mark>b</mark> 1)
		[a	$0 \mapsto 0, l$	$b_0 \mapsto 0$]		

Hardy model

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a 0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
	a_1 V	/ <i>b</i> 0	a ₀ ∨	b_1	¬ (a₁ ∧	b 1)
		[a	$h_0\mapsto 0, l$	$b_0 \mapsto 0$]		

Hardy model

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a_0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
	$a_1 \vee$	b_0	a ₀ ∨	b_1	\neg ($a_1 \land$	b ₁)
		[a	$0 \mapsto 0, l$	$b_0 \mapsto 0$]		

Hardy model

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a 0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
	a_1 V	/ <i>b</i> ₀	<i>a</i> ₀ ∨	b_1	¬ (a₁ ∧	<mark>b</mark> 1)
		[a	$0 \mapsto 0, l$	$b_0 \mapsto 0$]		

Hardy model

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a 0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
	a_1 V	/ <i>b</i> ₀	<i>a</i> ₀ ∨	b_1	¬ (a₁ ∧	. <mark>b</mark> 1)
		[a	$0 \mapsto 0, l$	$b_0 \mapsto 0$]		

Hardy model

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a 0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
	a_1 V	/ <i>b</i> ₀	a ₀ ∨	b_1	¬ (a₁ ∧	b 1)
		[a	$h_0 \mapsto 0, l$	$b_0 \mapsto 0$]		

Hardy model

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a 0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
	a_1 V	′ <i>b</i> 0	a ₀ ∨	b_1	¬ (a₁ ∧	. <mark>b</mark> 1)
		[a	$0 \mapsto 0, l$	$b_0 \mapsto 0]$		

Hardy model

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)	
a 0	b_0	1	1	1	1	
a 0	b_1	0	1	1	1	
a_1	b_0	0	1	1	1	
a_1	b_1	1	1	1	0	
	a_1 V	/ <i>b</i> ₀	<i>a</i> ₀ ∨	b_1	¬ (a₁ ∧	. <mark>b</mark> 1)
		[a	$0 \mapsto 0, l$	$b_0 \mapsto 0$]		

There are some global sections, but ...

Logical contextuality: Not all sections extend to global ones.

Popescu–Rohrlich box

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> ,1)	(1, <mark>0</mark>)	(1, 1)
a 0	b_0	1	0	0	1
a_0	b_1	1	0	0	1
a_1	b_0	1	0	0	1
a_1	b_1	0	1	1	0

Strong contextuality:

no event can be extended to a global assignment.

 $a_0 \leftrightarrow b_0 \quad a_0 \leftrightarrow b_1 \quad a_1 \leftrightarrow b_0 \quad a_1 \oplus b_1$

Magic square:

- Fill with 0s and 1s
- rows and first two columns: even parity
- last column: odd parity

A	В	С
D	Е	F
G	Н	1

Magic square:

- Fill with 0s and 1s
- rows and first two columns: even parity
- last column: odd parity

System of linear equations over \mathbb{Z}_2 :

$$A \oplus B \oplus C = 0$$
 $A \oplus D \oplus G = 0$ $D \oplus E \oplus F = 0$ $B \oplus E \oplus H = 0$ $G \oplus H \oplus I = 0$ $C \oplus F \oplus I = 1$

A	В	С
D	Е	F
G	Н	1

Magic square:

- Fill with 0s and 1s
- rows and first two columns: even parity
- last column: odd parity

System of linear equations over \mathbb{Z}_2 :

$$A \oplus B \oplus C = 0$$
 $A \oplus D \oplus G = 0$ $D \oplus E \oplus F = 0$ $B \oplus E \oplus H = 0$ $G \oplus H \oplus I = 0$ $C \oplus F \oplus I = 1$

Clearly, this is not satisfiable in \mathbb{Z}_2 .

A	В	С
D	Е	F
G	Н	1

Magic square:

- Fill with 0s and 1s
- rows and first two columns: even parity
- last column: odd parity

System of linear equations over \mathbb{Z}_2 :

$A \oplus B \oplus C = 0$	$A \oplus D \oplus G = 0$
$D \oplus E \oplus F = 0$	$B \oplus E \oplus H = 0$
$G \oplus H \oplus I = 0$	$C \oplus F \oplus I = 1$

Clearly, this is not satisfiable in \mathbb{Z}_2 . But it has a "quantum solution"!

A	В	С
D	E	F
G	Н	1

- $A \oplus B \oplus C = 0$
- $D \oplus E \oplus F = 0$
- $G \oplus H \oplus I = 0$ $C \oplus F \oplus I = 1$
- $A \oplus D \oplus G = 0$ $B \oplus E \oplus H = 0$

A	В	С
D	E	F
G	Н	1

 $A \oplus B \oplus C = 0 \qquad A \oplus D \oplus G = 0$ $D \oplus E \oplus F = 0 \qquad B \oplus E \oplus H = 0$

$$G \oplus H \oplus I = 0$$

$$B \oplus E \oplus H = 0$$
$$C \oplus F \oplus I = 1$$

$$\{0,1,\oplus\}\longmapsto\{+1,-1,\cdot\}$$

A	В	С
D	Ε	F
G	Н	1

 $A \cdot B \cdot C = +1$ $A \cdot D \cdot G = +1$ $D \cdot E \cdot F = +1$ $B \cdot E \cdot H = +1$ $G \cdot H \cdot I = +1$ $C \cdot F \cdot I = -1$

$$\{0,1,\oplus\}\longmapsto\{+1,-1,\cdot\}$$

A	В	С
D	Ε	F
G	Н	1

 $A \cdot B \cdot C = +1$ $A \cdot D \cdot G = +1$ $D \cdot E \cdot F = +1$ $B \cdot E \cdot H = +1$ $G \cdot H \cdot I = +1$ $C \cdot F \cdot I = -1$

$$\{0,1,\oplus\}\longmapsto\{+1,-1,\cdot\}$$

Quantifying contextuality and quantum advantages

Contextuality and advantages

Contextuality has been associated with quantum advantage in information-processing and computational tasks.

Contextuality and advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
- Measure of contextuality ~> quantify such advantages.

'Contextuality fraction as a measure of contextuality' Abramsky, B, & Mansfield, Physical Review Letters, 2017.

Non-contextuality: global distribution $d \in \operatorname{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C$$
.

Non-contextuality: global distribution $d \in \operatorname{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C$$
 .

Which fraction of a model admits a non-contextual explanation?

Non-contextuality: global distribution $d \in \operatorname{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C$$
 .

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on O^X such that:

$$\forall_{C\in\mathcal{M}}, c|_C \leq e_C$$
 .

Non-contextuality: global distribution $d \in \operatorname{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C$$
 .

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on O^X such that:

$$\forall_{C\in\mathcal{M}}, c|_C \leq e_C$$
 .

Equivalently, it is the maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1-\lambda)e'$$

where e^{NC} is a non-contextual model.

Non-contextuality: global distribution $d \in \operatorname{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C$$
 .

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on O^X such that:

$$\forall_{C\in\mathcal{M}}, c|_C \leq e_C$$
 .

Equivalently, it is the maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda) e^{SC}$$

where e^{NC} is a non-contextual model. e^{SC} is strongly contextual!

Non-contextuality: global distribution $d \in \operatorname{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C$$
 .

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on O^X such that:

$$\forall_{C\in\mathcal{M}}, c|_C \leq e_C$$
 .

Equivalently, it is the maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda) e^{SC}$$

where e^{NC} is a non-contextual model. e^{SC} is strongly contextual!

$$\mathsf{NCF}(e) = \lambda$$
 $\mathsf{CF}(e) = 1 - \lambda$

- CF(e) = 0 iff e is non-contextual.
- CF(e) = 1 iff e is strongly contextual.

- CF(e) = 0 iff e is non-contextual.
- CF(e) = 1 iff e is strongly contextual.
- \triangleright CF(e) is a monotone for free operations in the resource theory of contextuality.

- CF(e) = 0 iff e is non-contextual.
- CF(e) = 1 iff e is strongly contextual.
- \triangleright CF(e) is a monotone for free operations in the resource theory of contextuality.
- > CF(e) is equal to the maximal violation by e of a Bell inequality

- CF(e) = 0 iff e is non-contextual.
- CF(e) = 1 iff e is strongly contextual.
- \triangleright CF(e) is a monotone for free operations in the resource theory of contextuality.
- CF(e) is equal to the maximal violation by e of a Bell inequality
- \triangleright CF(e) is calculated via linear programming, the dual LP yields this inequality.

Contextual fraction and cooperative games

- ▶ Game described by *n* formulae (one for each allowed input).
- ▶ These describe the winning condition that the corresponding outputs must satisfy.

Contextual fraction and cooperative games

- ▶ Game described by *n* formulae (one for each allowed input).
- ▶ These describe the winning condition that the corresponding outputs must satisfy.
- If the formulae are k-consistent (at most k are jointly satisfiable), hardness of the task is n-k/n.

'Logical Bell inequalities', Abramsky & Hardy, Physical Review A, 2012.

Contextual fraction and cooperative games

- ▶ Game described by *n* formulae (one for each allowed input).
- > These describe the winning condition that the corresponding outputs must satisfy.
- If the formulae are k-consistent (at most k are jointly satisfiable), hardness of the task is n-k/n.

'Logical Bell inequalities', Abramsky & Hardy, Physical Review A, 2012.

We have

$$1-ar{p}_{S} \geq \mathsf{NCF} \, rac{n-k}{n}$$
Contextuality and advantage in quantum computation

Measurement-based quantum computation (MBQC)

'Contextuality in measurement-based quantum computation' Raussendorf, Physical Review A, 2013.

Magic state distillation

Contextuality supplies the 'magic' for quantum computation' Howard, Wallman, Veitch, Emerson, Nature, 2014.

Shallow circuits

'*Quantum advantage with shallow circuits*' Bravyi, Gossett, Koenig, Science, 2018.

Contextuality analysis: Aasnæss, Forthcoming, 2020.

E.g. Raussendorf (2013) ℓ 2-MBQC

- E.g. Raussendorf (2013) ℓ 2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)

- E.g. Raussendorf (2013) ℓ 2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- E.g. Raussendorf (2013) ℓ2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

> additional power to compute non-linear functions resides in resource empirical models.

- E.g. Raussendorf (2013) ℓ 2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output
 - only \mathbb{Z}_2 -linear computations.
- ▶ additional power to compute non-linear functions resides in resource empirical models.

- E.g. Raussendorf (2013) ℓ2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- ▶ additional power to compute non-linear functions resides in resource empirical models.
- ► Raussendorf (2013): If an ℓ2-MBQC deterministically computes a non-linear Boolean function f : 2^m → 2^l then the resource must be strongly contextual.

- E.g. Raussendorf (2013) ℓ 2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- > additional power to compute non-linear functions resides in resource empirical models.
- ► Raussendorf (2013): If an ℓ2-MBQC deterministically computes a non-linear Boolean function f : 2^m → 2^l then the resource must be strongly contextual.
- Probabilistic version: non-linear function computed with sufficiently large probability of success implies contextuality.

▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using ℓ 2-MBQC

- ▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using ℓ 2-MBQC
- Hardness of the problem

 $\nu(f) := \min \{ d(f,g) \mid g \text{ is } \mathbb{Z}_2 \text{-linear} \}$

(average distance between f and closest \mathbb{Z}_2 -linear function)

where for Boolean functions f and g, $d(f,g) := 2^{-m} | \{ \mathbf{i} \in 2^m | f(\mathbf{i}) \neq g(\mathbf{i}) \}.$

- ▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using ℓ 2-MBQC
- Hardness of the problem

 $\nu(f) := \min \{ d(f,g) \mid g \text{ is } \mathbb{Z}_2 \text{-linear} \}$

(average distance between f and closest \mathbb{Z}_2 -linear function)

where for Boolean functions f and g, $d(f,g) := 2^{-m} | \{ \mathbf{i} \in 2^m | f(\mathbf{i}) \neq g(\mathbf{i}) \}.$

• Average probability of success computing f (over all 2^m possible inputs): \bar{p}_S .

- ▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using ℓ 2-MBQC
- Hardness of the problem

 $\nu(f) := \min \{ d(f,g) \mid g \text{ is } \mathbb{Z}_2 \text{-linear} \}$

(average distance between f and closest \mathbb{Z}_2 -linear function)

where for Boolean functions f and g, $d(f,g) := 2^{-m} | \{ \mathbf{i} \in 2^m | f(\mathbf{i}) \neq g(\mathbf{i}) \}.$

• Average probability of success computing f (over all 2^m possible inputs): \bar{p}_S .

Then,

$$1-ar{
ho}_{\mathcal{S}}~\geq~\mathsf{NCF}(e)~
u(f)$$

The logic of contextuality: partial Boolean algebras

'*The problem of hidden variables in quantum mechanics*' Kochen & Specker, Journal of Mathematics and Mechanics, 1965.

"Noncommutativity as a colimit"

Heunen & van den Berg, Applied Categorical Structures, 2010.

'The logic of contextuality', Abramsky & B, 2020.

multiple viewpoints and the quantum-mechanical tensor product?

The logic of contextuality: partial Boolean algebras

'The problem of hidden variables in quantum mechanics' Kochen & Specker, Journal of Mathematics and Mechanics, 1965.

'Noncommutativity as a colimit'

Heunen & van den Berg, Applied Categorical Structures, 2010.

'The logic of contextuality', Abramsky & B, 2020.

multiple viewpoints and the quantum-mechanical tensor product?

The topology of contextuality: cohomological witnesses

'*The cohomology of non-locality and contextuality*' Abramsky, B, & Mansfield, CSL 2015.

'Contextuality, cohomology, and paradox' Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

The logic of contextuality: partial Boolean algebras

'The problem of hidden variables in quantum mechanics' Kochen & Specker, Journal of Mathematics and Mechanics, 1965.

'Noncommutativity as a colimit'

Heunen & van den Berg, Applied Categorical Structures, 2010.

'The logic of contextuality', Abramsky & B, 2020.

multiple viewpoints and the quantum-mechanical tensor product?

The topology of contextuality: cohomological witnesses

'*The cohomology of non-locality and contextuality*' Abramsky, B, & Mansfield, CSL 2015.

'Contextuality, cohomology, and paradox' Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

Monogamy relations limiting contextuality

'On monogamy of non-locality and macroscopic averages', B, QPL, 2014.

► A resource theory of contextuality

- When is one a more powerful resource than another?
- When are two behaviours essentially the same?

► A resource theory of contextuality

- When is one a more powerful resource than another?
- When are two behaviours essentially the same?

► A resource theory of contextuality

- When is one a more powerful resource than another?
- When are two behaviours essentially the same?

- Simulations using "free" operations that transform contextual blackboxes
- Adaptivity (a la MBQC) using measurement protocols

► A resource theory of contextuality

- When is one a more powerful resource than another?
- When are two behaviours essentially the same?

- Simulations using "free" operations that transform contextual blackboxes
- Adaptivity (a la MBQC) using measurement protocols
- Graded notions by depth, space, number of copies, other free models, etc.

► A resource theory of contextuality

- When is one a more powerful resource than another?
- When are two behaviours essentially the same?

- Simulations using "free" operations that transform contextual blackboxes
- Adaptivity (a la MBQC) using measurement protocols
- Graded notions by depth, space, number of copies, other free models, etc.
- "No-copying": $e \rightsquigarrow e \otimes e$ iff e is noncontexutal

► A resource theory of contextuality

- When is one a more powerful resource than another?
- When are two behaviours essentially the same?

- Simulations using "free" operations that transform contextual blackboxes
- Adaptivity (a la MBQC) using measurement protocols
- ▶ Graded notions by depth, space, number of copies, other free models, etc.
- "No-copying": $e \rightsquigarrow e \otimes e$ iff e is noncontexutal
- "No-catalysis": $e \not\rightarrow e'$ implies $e \otimes d \not\rightarrow e' \otimes d$.

Questions...

?

R S Barbosa An introduction to contextuality and quantum advantage 30/30