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WHY STUDY WIGNER NEGATIVITY?



MOTIVATIONS

• Mari and Eisert’s generalisation of Gottesman-Knill theorem1.

• Link between contextuality and Wigner negativity in DV .
• Hard to characterise Wigner negativity in CV for mixed states.
• Can we get an experimentally accessible witness for Wigner
negativity?

1Andrea Mari and Jens Eisert. “Positive Wigner functions render classical simulation of quantum
computation efficient”. In: Physical review letters 109.23 (2012), p. 230503.
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FIDELITY WITH FOCK STATES AS A
WITNESS



FIDELITY WITH FOCK STATES

Figure 1: Wigner function for the first four Fock states. 3

3Picture from Andreas Ketterer’s thesis.
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FIDELITY WITH FOCK STATES

Figure 1: Wigner function for the first four Fock states. 3

⟨n|ρ|n⟩ > F∗n ⇒ ∃α∈ C : Wρ(α) < 0

3Picture from Andreas Ketterer’s thesis.

2/14



GEOMETRIC INTUITION ON THE WITNESS

Wρ ≥ 0

F∗1
F∗2

F∗3

F∗n
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LINEAR PROGRAMMING APPROACH FOR
COMPUTING THE WITNESS



ROTATIONAL SYMMETRY

Applying a random dephasing to ρ:

• does not change its fidelity with any Fock state.

• changes ρ to a mixture of Fock states:
∑∞

k=0 Fk |k⟩⟨k|.
• does not increase Wigner negativity.
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Applying a random dephasing to ρ:

• does not change its fidelity with any Fock state.
• changes ρ to a mixture of Fock states:

∑∞
k=0 Fk |k⟩⟨k|.

• does not increase Wigner negativity.

⇒ Wlog restrict to mixtures of Fock states to detect Wigner negativity
with this witness.
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LINEAR PROGRAM TO COMPUTE F∗n

(Pn)



Find (Fk)k∈N ∈ RN

maximising Fn
subject to

∑
k
Fk = 1

and ∀k ∈ N, Fk ≥ 0

and ∀α ∈ C,
∑
k
FkWk(α) ≥ 0
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DUAL PROGRAM

(Dn)



Find y0 ∈ R, µ ∈ M±(R+)

minimising y0

subject to ∀k ̸= n ∈ N, y0 ≥
∫
R+

Wk dµ

and y0 ≥ 1+
∫
R+

Wn dµ

and µ ≥ 0

6/14



(PARTIALLY) SOLVING THE PROBLEM



GETTING INTERESTING RESULTS FROM AN INFINITE LINEAR PROGRAM?

• Relaxation: eliminating some constraints (outside feasible
solutions).

• Restriction: imposing a form for your solution (inside feasible
solutions):

F∗n ≥ 1
2n

(
n⌊n
2
⌋)
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AN INTERESTING RESTRICTION FOR (Pn)

(SDPn)



Find (Fk)k∈J0,nK ∈ RJ0,nK,Q ∈ Symn(R)

maximising Fn

subject to
n∑
k=0

Fk = 1

and ∀k ∈ J0,nK, Fk ≥ 0

and
n∑
k=0

(−1)kFkLk(x2) = XTQX =
Cholesky

||VX||2

and Q ⪰ 0.
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HOW TO DERIVE AN ANALYTICAL LOWER BOUND?

• Solve as many SDPs as you can (n ≤ 10).

• Write bunch of numbers and hope they are rational numbers
(multiply by 2n?)

• Go to the OEIS website and cross your fingers.
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HOW TO FIND AN ANALYTICAL SOLUTION?

n even:

∀k ∈ J0,nK, k even Fnk =
1
2n

( n
⌊ n2 ⌋

)(⌊ n2 ⌋
⌊ k2 ⌋

)2
(n
k
) =

1
2n

(
k
k
2

)(
n− k
n−k
2

)
∀k ∈ J0,nK, k odd Fnk = 0
∀k ≥ n+ 1, Fnk = 0
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Check that these solutions are feasible for (Pn).
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SHOWING FEASIBILITY

(SDPn)



Find (Fk)k∈J0,nK ∈ RJ0,nK,Q ∈ Symn(R)

maximising Fn

subject to
n∑
k=0

Fk = 1 (1)

and ∀k ∈ J0, nK, Fk ≥ 0 (2)

and
n∑
k=0

(−1)kFkLk(x2) SOS (3)

• Checking (1) is relatively easy.

• Checking (2) is straightforward.
• Checking (3) is hard. Why? Because you have to find an analytical
SOS decomposition (sadly OEIS failed here).
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AN ANALYTICAL SOS DECOMPOSITION FOR CONSTRAINT (3)

Once you find what should be the SOS decomposition, you have to show
that it is valid:

n∑
k=0

(−1)kFkLk(x2) = XTQX
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AN ANALYTICAL SOS DECOMPOSITION FOR CONSTRAINT (3)

Once you find what should be the SOS decomposition, you have to show
that it is valid:

n∑
k=0

(−1)kFkLk(x2) = XTQX

We could not show it analytically.

My dear Zeilberger.
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OVERVIEW OF THE PROGRAMS

(LPn) ↑
(D-LPn) ↓ ≥ 1

2n
( n
⌊ n2 ⌋

)

(SOSNn) ↑
(D-SOSNn) ↓ ≥ 1

2n
( n
⌊ n2 ⌋

)
...

(SOSnn) ↑
(D-SOSnn) ↓ = 1

2n
( n
⌊ n2 ⌋

)
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CONCLUSION & ONGOING WORK

• Goal:
F∗n =?

• we have convergence (Riesz-Haviland). But finite convergence?
• insightful upperbounds?
• how tight are the lower bounds?
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THANK YOU
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