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Proposal for quantum computational advantage/supremacy: sample random FLO circuits
 Fermionic analogue of Boson Sampling
 Feasible in near-term architectures

 Hardness guarantees matching Random Circuit Sampling
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How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney! * and Martin Ekera?

L Google Inc., Santa Barbara, California 93117, USA
2KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
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State Expectation
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Classical H: combinatorial optimization problems (MAX-CUT, Spin glasses)
Quantum H: purely quantum problems for example in quantum chemistry (VQE)

Parametric circuits will be useful in the near-term.
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A popular approach: Variational Quantum Alghorithms

Quantum Approximate Optimization of Non-Planar Graph Problems
on a Planar Superconducting Processor

Google AT Quantum and Collaborators®
(Dated: April 10, 2020)

We demonstrate the application of the Google Sycamore superconducting qubit quantum pro-
cessor to discrete optimization problems with the quantum approximate optimization algorithm
(QAOA). Like past QAOA experiments, we study performance for problems defined on the con-
nectivity graph of our hardware; however, we also apply the QAOA to the Sherrington-Kirkpatrick
model and 3-regular MaxCut, both high dimensional graph problems requiring significant compila-
tion. Experimental scans of the QAOA energy landscape show good agreement with theory across
even the largest instances studied (23 qubits) and we are able to perform variational optimization
successfully. For problems defined on the planar graph of our hardware we obtain an approximation
ratio that is independent of problem size and observe, for the first time, that performance increases
with circuit depth. For problems requiring compilation, performance decreases with problem size
but still provides an advantage over random guessing for circuits involving several thousand gates.
This behavior highlights the challenge of using near-term quantum computers to optimize prob-
lems on graphs differing from hardware connectivity. As these graphs are more representative of
real world instances, our results advocate for more emphasis on such problems in the developing
tradition of using the QAOA as a holistic benchmark of quantum processors.

»mplary parametric circuit

[, Spin glasses)
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Parametric circuits will be useful in the near-term.
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Hartree-Fock on a superconducting qubit quantum computer

Google Al Quantum and Collaborators™
(Dated: April 22, 2020)

As the search continues for useful applications of noisy intermediate scale quantum devices, vari-
ational simulations of fermionic systems remain one of the most promising directions. Here, we
perform a series of quantum simulations of chemistry which involve twice the number of qubits and
more than ten times the number of gates as the largest prior experiments. We model the binding
energy of Hg, Hg, Hip and Hy2 chains as well as the isomerization of diazene. We also demonstrate
error-mitigation strategies based on N-representability which dramatically improve the effective fi-
delity of our experiments. Our parameterized ansatz circuits realize the Givens rotation approach to
free fermion evolution, which we variationally optimize to prepare the Hartree-Fock wavefunction.
This ubiquitous algorithmic primitive corresponds to a rotation of the orbital basis and is required by
many proposals for correlated simulations of molecules and Hubbard models. Because free fermion
evolutions are classically tractable to simulate, yet still generate highly entangled states over the
computational basis, we use these experiments to benchmark the performance of our hardware while
establishing a foundation for scaling up more complex correlated quantum simulations of chemistry.
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Quantum computational advantage/supremacy

Alternative paradigm: engineer (non necessarily practical) problem for which
near-term restricted purpose computers could offer potential speedup

Sampling problems:

True distribution

Py

‘ / : X
Simulated distribution Additive error (A)

QXW TV(iph e =5 X p .|

* Pros: (in principle) smaller requirements, hardness based on complexity theory

* Cons: not practical, noise still affects such proposals
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Computer science: polynomial-time computation == efficient

Additive error (A)

V(P 0 =5 2, P-4

T Counjectuves

Efficient sampler that, given V €& | samples x form , >

{qx 7))} approximating {px (V)}in R/A error.

———————

Polynomial Hierarchy collapses

R: Shallow circuits [Terhal-DiVincenzo 2004], IQP [Bremner-Shepard-Jozsa 2010]
A: Boson Sampling [Aaronson-Arkhipov 2010], IQP [Bremner-Montanaro-Shepard 2016],
Random Circuit Sampling (RCS) [Boixo et al. 2018] [Bouland et al. 2018] [Movassagh 2019]
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Quantum computational advantage/supremacy (III)

Main experimental platforms: Random Circuit Sampling & Boson Sampling

credit: Google Al

* Google/ UCSB experiment in 53 qubit Sycamore chip, depth ~20 [Arute et al 2019]

« Heifei Gaussian Boson Sampling with 50-70 photons and 100 modes [Zhong et al 2020]

Issues: certification [Hengleiter et al 2019], spoofing by efficient classical simulations

[Napp et al. 2019] [Renema et al. 2018]




Fermion Sampling with magic input states




Fermion Sampling with magic input states

Y I

G060 $obbdddd




Fermion Sampling with magic input states

(/0011)+]1100))

Wy )

1 =)
&

Y I

G060 $obbdddd

>®N

‘l//in>:‘l/j4




Fermion Sampling with magic input states

(/0011)+]1100))

1 =)
&

Y I

G060 $obbdddd

N

]

Passive FLO Active FLO

d 2d
fiT - ZUjifiT m; — Z;,Ojimi
j=1 =




Fermion Sampling with magic input states

(/0011)+]1100))

1 =)
&

I

G060 $obbdddd

Passive FLO

d
flo2 UL
j=1

1]

Active FLO

* Anticoncentration of PX(VJ//m)
* Average-case #P-hardness of PX(V,‘//,-n)
« Efficient certification of V' € FLO
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Fermionic linear optics

Fermionic system of d modes: H = GBZZO AF (Cd) k -number of fermions
d creation and annihilation operators: {flT,f]} = fleJ _|_fjfiT =0, i,jeld]
2d majorana fermion operators: my, = f +f ,m,=i(f=f) , {m,m}=25,

Fermionic Fock states: |nF> = ﬁ (1" OF>
i=1

Passive FLO:

d
fT-> U, [T, UeU@d)
j=1

V=U*

Representation of U(d)




Fermionic linear optics

Fermionic system of d modes: H = @Zzo AF ((Cd) k -number of fermions
d creation and annihilation operators: {flT,f]} = fleJ _|_fjfl,T =0, i,jeld]

2d majorana fermion operators: my,  =f+f ,m,=i(f=f) , {m,m}=25,

Fermionic Fock states: |nF> = ﬁ (1" 0F>
i1
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Jordan-Wigner transformation

d fermionic modes

) =100 ) DRCAD

My 2,2, 2, X,
Majorana operators ——>—  Pauli operators
m,,

1

lez "'Zi—lyi

Particle-numer measurements ———>— Computational basis measurements

Local particle-preserving 5 Hamiltonians generated by

quadratic hamiltonians Z,Z XY, —-YX,

i+1° i7i+l i+1°

XX, +YY

17+l
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Implementation in supercoducting qubits

Elements of U(d) and SO(2d) can be decomposed into mode-local transformations on a line

—arinininios.

| L

R

I I R B

[Reck—Zelinger 1994] [Clements et al. 2016]

Arbitrary FLO circuit can be realized by circuit of depth ~d in 1D architecture

Necessary gates: native to superconducting architectures [Arute et al 2020]
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Efficient tomography of FLO circuits

Measure Collect

satatistics

Prepare

[+5) =107 V®l+x) ®10)*¢
[+7) =10 el+y) ®j0)*¢ 7

Result: If VeFLO | then the above scheme gives an estimate V(O)

such that |V ~V(0)] <¢ using o[d_

j measurement rounds.
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Hardness of Fermion Sampling

vy Ve

If |W > is free (fermionic Gaussian or Slater determinant), then sampling is

classically easy [Valiant 2000] [Terhal-DiVincenzo 2001] [Jozsa-Miyake 2008]

Striking difference between Fermion Sampling and Boson Sampling!

PP oc| Per(U.) [ pl" o« Der(U,) [

Per(A)= Y f[AG(,.),,. Det(4)= ) sgn(a)ﬁ Asiys

oesS, i=

Avi Wigderson

oeS, i=l

Determinant vs Permanent dichotomy in complexity theory (#P -hardness of Per !)
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Resource states are needed!
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Resource states are needed!

For |l,V,-n> the probability is given by mixed discriminants [[vanov 2017]

Dimitri Ivanov

Px (V(U)a Yin ) o«| D, ,(U,) i D,,U,)= ZDet(Ux,y)

Mixed discriminants are #P-hard to compute.

Alternativelly, |l//4> promote atcive FLO to universality [Bravyi 2006] [Hebenstreit et al. 2019]
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Hardness of computation P,, (Vo) Hardness of A-approximate sampling

for fixed V, €& from {2 (V)} for V ~&

Additive error (A)

TV({p,}.4a.}) = %ZJ po—dy
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Hardness of Fermion Sampling (III)

Hardness of computation Py, (VO) * Hardness of A-approximate sampling
for fixed V, €& from {2 (V)} for V ~&

Holds for Random Quantum Circuits

Anticoncentration — (e
via approximate 2-design property

L gmr

» Conjecture: average-case hardness

Support of Conjecture: average-case hardness

DEEEE
of approximation Py (V) up to error 2PV (NV) of approximating P, (V) in

1 relative error for V' ~ &
Holds for RQC [Movassagh 2019], [Bouland et al. 2018]
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Hardness of computation p, (V(,,I,Vin * Hardness of A-approximate sampling
for fixed V, € FLO from {p,, (V.w, )} for V ~u

Result: Anticoncentration for FLO circuits

L — e

Result: average-case hardness of approximation

» Conjecture: average-case hardness

) OOEEA
of Py, (V,l//,-n) up to error 2 W) of approximating Py (V,Wl-n) in

relative error for V ~ u
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Result: There exist a constant C >0 such that for any O<ax<l

Pry. [pXO(V,\IJm) ﬁ}>(1_a)2o

Proof uses Payley-Zygmund inequality and moments of PX(VaW,-n) computed
using the representation theory of U(d) and SO(2d) .

This is important as ¢ does not form (apprximate) 2-design [Hangleiter et al 2019].

Numerics suggests that for Gaussian # probabilities PX(VJ// ) do not anticoncentrate.




Anticoncentration for Fermion Sampling (II)
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Average-case hardness

e Goal: construct a low-degree rational interpolation between a #P-hard FLO
circuit and generic circuits

e Use polynomial interpolation technique to recover the value of the worst-
case probability from those of generic circuits

e To achieve the goal, we use the Cayley-path deformation [Movassagh 2019]

Generic circuit

_ (1-9)I+(1
90 = 90 19T+ (10)g

Difference to previous worlk: instead of deforming individual gates, we deform
at the level of the symmetry group, which is represented as a global circuit,




Average-case hardness (II)

Result: It is #P-hard to compute values of py, (V, ¥;,) with

probability greater than 2 + pollyN over the choice of V ~ p

Result: It is #P-hard to approximate probability py, (V, ¥;,) to
within accuracy e =exp(—0O(N®)) with probability greater
than 1 — o(N?) over the choice of V ~

e Movassagh's result: e = exp(—©O(N*?)) for the Google's layout

® Supremacy conjecture: constant relative error with constant
probability over the choice of V ~ pu
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Fermion Sampling with magic input states

 Experimentaly feasible

 Strong hardness guarantees
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e Anticoncentration of PX(V,Wm)

Passive FLO Active FLO

 Average case hardness of PX(VJ//m)

 FLO unitaries can be efficiently certified
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Outlook and open problems

Classical simulation of Fermion Sampling/ Matchgate circuits

Verification and certification of Fermion Sampling

Interesting applications originating from this quantum advantage paradigm?
Application to other scenarios (Boson Sampling, Gaussian Boson Sampling)

Thank you!
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