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Fermion Sampling with magic input states

Proposal for quantum computational advantage/supremacy: sample random FLO circuits

• Fermionic analogue of Boson Sampling 

• Feasible in near-term architectures

• Hardness guarantees matching Random Circuit Sampling

FLOV
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Near-term quantum computers

• Present-day quantum computers are noisy, imperfect and not scalable.

• Implementation of complicated quantum algorithms (like Shor algorithm)

in the near-term is science-fiction

• Still, we hope that near-term quantum computers

will be useful for something [Preskill, 2018]  
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Quantum computational advantage/supremacy

• Alternative paradigm: engineer (non necessarily practical) problem for which 

near-term restricted purpose computers could offer potential speedup

• Sampling problems:

• Pros: (in principle) smaller requirements, hardness based on complexity theory

• Cons: not practical, noise still affects such proposals

1({ },{ }) | |
2

TV p q p q= −¦x x x xx

| |p q c p� − dx x xx

Relative error (R) 

Additive error (A) 

True distribution

Simulated distribution
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Quantum computational advantage/supremacy (II)

Computer science: polynomial-time computation == efficient

R: Shallow circuits [Terhal-DiVincenzo 2004], IQP [Bremner-Shepard-Jozsa 2010]

A: Boson Sampling [Aaronson-Arkhipov 2010], IQP [Bremner-Montanaro-Shepard 2016],

Random Circuit Sampling (RCS)  [Boixo et al. 2018] [Bouland et al. 2018] [Movassagh 2019]

Polynomial Hierarchy collapses 
Efficient sampler that, given         , samples x form

approximating in R/A error.{ ( )}p Vx{ ( )}q Vx

V �
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Quantum computational advantage/supremacy (III)

Main experimental platforms: Random Circuit Sampling & Boson Sampling

• Google/ UCSB experiment in 53 qubit Sycamore chip, depth ~20 [Arute et al. 2019]

• Heifei Gaussian Boson Sampling with 50-70 photons and 100 modes [Zhong et al. 2020]

Issues: certification [Hengleiter et al. 2019], spoofing by efficient classical simulations

[Napp et al. 2019] [Renema et al. 2018]
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[Reck–Zelinger 1994] [Clements et al. 2016] 

Implementation in supercoducting qubits

Arbitrary FLO  circuit can be realized by circuit of depth in 1D architecture

Elements of         and             can be decomposed into mode-local transformations on a line

d

( )U d (2 )SO d

Necessary gates: native to superconducting architectures [Arute et al. 2020] 
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Efficient tomography of FLO circuits

V
Prepare

Measure

Result: If , then the above scheme gives an estimate
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If is free (fermionic Gaussian or Slater determinant), then sampling is

classically easy [Valiant 2000] [Terhal-DiVincenzo 2001] [Jozsa-Miyake 2008]
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Mixed discriminants are #P-hard to compute. 

Alternativelly,       promote atcive FLO to universality [Bravyi 2006] [Hebenstreit et al. 2019]   

Hardness of Fermion Sampling (II)

( ) 2
2,2( ), | ( ) |inp V U D U\ vx x

Resource states are needed!

 
  
  
  

  

 

( )4
1 0011 1100
2

\ = +

V
4

N
in\ \ �=

( ), inp V \x

2,2 ,( ) ( )D U Det U=¦x x y
y

For        the probability is given by mixed discriminants [Ivanov 2017]  in\

4\

Dimitri Ivanov



Hardness of Fermion Sampling (III)



Hardness of Fermion Sampling (III)

Hardness of computation

for fixed

( )
0 0p Vx

0V �



Hardness of  A-approximate sampling

from               for

Hardness of Fermion Sampling (III)

Hardness of computation

for fixed

( )
0 0p Vx

( ){ }p Vx0V � ~V

1({ },{ }) | |
2

TV p q p q= −¦x x x xx

Additive error (A) 

?



Hardness of  A-approximate sampling

from               for

Hardness of Fermion Sampling (III)

Hardness of computation

for fixed

( )
0 0p Vx

( ){ }p Vx0V � ~V

1({ },{ }) | |
2

TV p q p q= −¦x x x xx

Additive error (A) 



Hardness of  A-approximate sampling

from               for

Hardness of Fermion Sampling (III)

Hardness of computation

for fixed

Efficient A-approximate

sampling from

for ~V

( )
0 0p Vx

( ){ }p Vx0V � ~V

( ){ }p Vx
1({ },{ }) | |
2

TV p q p q= −¦x x x xx

Additive error (A) 



Hardness of  A-approximate sampling

from               for

Hardness of Fermion Sampling (III)

Hardness of computation

for fixed

Efficient A-approximate

sampling from

for

Approximation of

in relative error on average

(for ) in third level of PH

( )
0

p Vx

~V~V

( )
0 0p Vx

( ){ }p Vx0V � ~V

Anticoncentration

( ){ }p Vx



Hardness of  A-approximate sampling

from               for

Hardness of Fermion Sampling (III)

Hardness of computation

for fixed

Efficient A-approximate

sampling from

for

Approximation of

in relative error on average

(for ) in third level of PH

( )
0

p Vx

~V~V

( )
0 0p Vx

( ){ }p Vx0V � ~V

PH colapses

Conjecture: average-case hardness

of approximating in 

relative error for      

( )
0

p Vx

~V

Anticoncentration

( ){ }p Vx



Hardness of  A-approximate sampling

from               for

Hardness of Fermion Sampling (III)

Hardness of computation

for fixed

Efficient A-approximate

sampling from

for

Approximation of

in relative error on average

(for ) in third level of PH

( )
0

p Vx

~V~V

( )
0 0p Vx

( ){ }p Vx0V � ~V

PH colapses

Conjecture: average-case hardness

of approximating in 

relative error for      

( )
0

p Vx

~V

Anticoncentration

Support of Conjecture: average-case hardness

of approximation up to error ( )
0

p Vx
( )2 poly N−

( ){ }p Vx



Hardness of  A-approximate sampling

from               for

Hardness of Fermion Sampling (III)

Hardness of computation

for fixed

Efficient A-approximate

sampling from

for

Approximation of

in relative error on average

(for ) in third level of PH

( )
0

p Vx

~V~V

( )
0 0p Vx

( ){ }p Vx0V � ~V

PH colapses

Conjecture: average-case hardness

of approximating in 

relative error for      

( )
0

p Vx

~V

Anticoncentration

Support of Conjecture: average-case hardness

of approximation up to error ( )
0

p Vx
( )2 poly N−

Holds for Random Quantum Circuits

via approximate 2-design property

( ){ }p Vx



Hardness of  A-approximate sampling

from               for

Hardness of Fermion Sampling (III)

Hardness of computation

for fixed

Efficient A-approximate

sampling from

for

Approximation of

in relative error on average

(for ) in third level of PH

( )
0

p Vx

~V~V

( )
0 0p Vx

( ){ }p Vx0V � ~V

PH colapses

Conjecture: average-case hardness

of approximating in 

relative error for      

( )
0

p Vx

~V

Anticoncentration

Support of Conjecture: average-case hardness

of approximation up to error ( )
0

p Vx
( )2 poly N−

Holds for Random Quantum Circuits

via approximate 2-design property

Holds for RQC [Movassagh 2019], [Bouland et al. 2018]

( ){ }p Vx



Hardness of  A-approximate sampling

from                      for

Hardness of Fermion Sampling (IV)

Hardness of computation

for fixed

Approximation of

in relative error on average

(for ) in third level of PH

( )
0 0 , inp V \x

( )
0

{ , }inp V \x0V FLO� ~V P

PH colapses

Conjecture: average-case hardness

of approximating in 

relative error for      

Efficient A-approximate

sampling from

for

( )
0

{ , }inp V \x

( )
0
, inp V \x

~V P

~V P

( )
0
, inp V \x

Anticoncentration for FLO circuits



Hardness of  A-approximate sampling

from                      for

Hardness of Fermion Sampling (IV)

Hardness of computation

for fixed

Approximation of

in relative error on average

(for ) in third level of PH

( )
0 0 , inp V \x

( )
0

{ , }inp V \x0V FLO� ~V P

PH colapses

Conjecture: average-case hardness

of approximating in 

relative error for      

Result: Anticoncentration for FLO circuits

Efficient A-approximate

sampling from

for

( )
0

{ , }inp V \x

( )
0
, inp V \x

~V P

~V P

( )
0
, inp V \x



Hardness of  A-approximate sampling

from                      for

Hardness of Fermion Sampling (IV)

Hardness of computation

for fixed

Approximation of

in relative error on average

(for ) in third level of PH

( )
0 0 , inp V \x

( )
0

{ , }inp V \x0V FLO� ~V P

PH colapses

Conjecture: average-case hardness

of approximating in 

relative error for      

Result: Anticoncentration for FLO circuits

Result: average-case hardness of approximation

of up to error 
6( )2 N−4

Efficient A-approximate

sampling from

for

( )
0

{ , }inp V \x

( )
0
, inp V \x

~V P

~V P

( )
0
, inp V \x( )

0
, inp V \x



Anticoncentration for Fermion Sampling



Anticoncentration for Fermion Sampling

Result: There exist a constant such that for any0C ! 0 1D� �

P



Anticoncentration for Fermion Sampling

Result: There exist a constant such that for any0C ! 0 1D� �

Proof uses Payley-Zygmund inequality and moments of                computed

using the representation theory of          and           .   

( ), inp V \x

( )U d (2 )SO d

P



Anticoncentration for Fermion Sampling

Result: There exist a constant such that for any0C ! 0 1D� �

Proof uses Payley-Zygmund inequality and moments of                computed
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Anticoncentration for Fermion Sampling (II)

Proof sketch:



Average-case hardness
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Average-case hardness (II) 



Fermion Sampling with magic input states

• Experimentaly feasible

• Strong hardness guarantees

• Anticoncentration of 

• Average case hardness of 

• FLO unitaries can be efficiently certified

Conclusions
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Outlook and open problems

• Classical simulation of Fermion Sampling/ Matchgate circuits
• Verification and certification of Fermion Sampling
• Interesting applications originating from this quantum advantage paradigm?
• Application to other scenarios (Boson Sampling, Gaussian Boson Sampling)
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Thank you!
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