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Motivation

e Belief that quantum computers are more powerful and efficient than clas-
sical computers

Shor’s algorithm
Examples Universal quantum simulator

Communication complexity

e To understand that power an interesting perspective is to study restricted
models of computation that can be simulated efficiently by classical devices

Restricted classes of

Quantum universality
quantum computation

Matchgates and classical simulation of quantum circuits 3



Clifford gates

Pauli group = P
Paradigmatic example: e
Cliff = (X, Z, H,P,CNOT)
Stabilizer circuits == Clifford gates

™ Uc Cliff :UPUT C P

Quantum fault-tolerance
Central objects in: {

Quantum error correction

Gottesman-Knill theorem: Stabilizer circuits are classically efficiently simulated

Clifford gates + magic states wmmp Quantum universality
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Matchgates

Valiant '02: Matchgates from theory of perfect matchings in graphs

v

Set of edges s.t. each vertex — \|—/ (cubical graph)

is the end point of exactly one edge /'—\
Matchgates are in general non-unitary set of 2-qubit unitary gates
e

nearest-neighbor matchgates

Terhal and DiVincenzo '01: 1.1, matchgate circuits <— non-interacting fermions
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Matchgates

Matchgates 2-qubit unitary gates

100) [01) |10) [11)
p 0 0 gqg\]lo0

)
10wz 0]lo1) (P q _fw x
G(4,B) = 0 v = 0]]/0) A—(r 3)’ B_(,z/ )
)

r 0 0 s/

A, B e SU(2)
det A = det B

Properties: {
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Matchgates

P A acts on the even parity subspace (ago|00) + 511]11))

Action of G(A, B)
N B acts on the odd parity subspace (01|01) 4 B10]10))

G(A, B)(ago|00) +ap1]|01) 4 B10]10) + B11]11)) = G(A, B) (oo, ao1, P10, B11)*

!

Alagg, B11)t @ B(aor, Bro)*

even parity subspace decoupled from odd parity subspace —> C?C2=C?2qC”
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Main theorem of the paper!!]

Theorem 1.1 Consider any uniform (hence poly-sized) quantum circuit
family comprising only G(A, B) gates such that

e the G(A, B) gates act on nearest neighbour (n.n.) lines only,
e the input state is any product state, and

e the output is a final measurement in the computational basis on any single
line.

Then the output may be classically efficiently simulated. More precisely, for
any k, we can classically efficiently compute the expectation value

po = [{0[¢out)|”

(Zk>out = <¢out|ZkWOUt> —Po— P { |(1|¢ >‘2
P1 = out

[1] Richard Jozsa and Akimasa Miyake. Matchgates and classical simulation of
quantum circuits. Proc. R. Soc. A, (2008) 464, 3089-3106.



Uniform quantum circuit family

e The notion of uniform circuit family shows a connection between the Tur-
ing machine model and the circuit model

input: number x of n bits
P

Circuit family —> collection of circuits {C),} N
output: Cp(x)

e A family {C,,} is said to be uniform if there is some algorithm running on
Turing machine which, for input n, generates a description of C),

classes of functions computable ~ classes of functions computable
by uniform circuit family by a Turing machine
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Efficient classical simulation

Uniform circuit family C,, with specified class of :

product states
(1) input states {
computational basis states

(2) output measurements Z, —> Z-measurement on any single line

C), is classically efficiently simulatable if the outcome probabilities can be com-
puted by classical means to m digits of accuracy in poly(n,m) time
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Mathematical formalism

For n-qubit lines we have a set of 2n Hermitian operators ¢, satisfying

anticommutation

relations {en,cv} = cuew + ey = 26,01, pv=1,...,2n

elements are arbitrary complex linear combinations of
product of generators

Clifford algebra Cy,, ——>

dim Co,, = 22 = 2™ x 2" o Ai L inCiy Gy
1< <l

¢, represented by 2™ x 2™ matrices
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Fermionic physics

Formalism of fermionic physics  —> ¢, Majorana fermions

occupied (|1)) —0—
set of n operators accociated with n fermionic modes
unoccupied (|0)) ——

T

creation operator a;

o {ai,a;} = aia; + aja; =0 = {az,a}}, {ai,a}} = 01
annihilation operator a;

/ standard anticommutation relations
- k =1 n fermionic version of position and momentum
. - © . .
Cop = —Z(ak _ G’L) operators in bosonic systems
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Quadratic Hamiltonians

A quadratic Hamiltonian is an element of Co,

2n x 2n matrix of coeflicients

H being Hermitian (H = HT)
+ w.l.o.g. h,, be real antisymmetric

power series

H — unitary U =e \//

l l

H quadratic — Gaussian operation
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Theorem 4.1

Theorem 4.1 Let H be any quadratic Hamiltonian and U = e be the
corresponding Gaussian operation. Then for all p,

2n

U'c,U =Y Ruc,

v=1

where R € SO(2n). In fact R = e*".
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Proot of Theorem 4.1

/ time evolution operator
U(t) = et

(t)] ] commutator

Heisenberg equation of motion dew(t) = ”L[H s Cp \[a b] = ab — ba

dt

; k,l
ilH, e (t)] = Z[Z Z hicker, Cu(t)] == Z hilerer, e 7 Lkl s

k#l k#l [Cucly ¢y
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Proot of Theorem 4.1

ekl eyl = cila, cul + eks cula
= ci(2cic,) + (2epcp)er (e e} =0)
= —2cpeuer + 2epeu 0
=0

Be careful —> |[ckCy,cCy

eucts cul = culer el + lep, cula

= ¢, (2¢icy,) ({eusev} =0)
= —2C.CuC (c;, =1)
= —2(35

ey, c] = cuew — cuey

= cucw +cucu ({ey, 00} =0)

= 2¢,u0,
Example
hislcica, c1] = —2hiacs
} = —4hjzcy
hailcacy, c1] = hai(—[cica, c1]) = hiz[cica, c1] = —2h1aco
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Proot of Theorem 4.1

dcﬂ(t) = i[H,c,(t)] = —k; hiilerer ey = — ;(—4@[01)

dc# Z4hﬂlcl (t) = c,(t) = ; etMaitey(0)  wmp | cu(t) = Zz: Ryi(t)er(0)

c,(t) =U(t)e, (0)U(t)T l
2n
antisymmetric matrices are —> t=1 UTC U = Z R,c
infinitesimal generators of rotations a —1 :
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Importance of Theorem 4.1

U=¢H =y all products of all generators

e

power series

U CHU f mmmm) anywhere in 22 dimensional linear space Ca,

Theorem 4.1
2n
[t c, U = Z R, c; wep  polynomially small (2n-dim) subspace
=1
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Representation of Clifford algebra

2n Hermitian operators acting on n qubits

k—1
61:X1]I2...]In ngleQ...]In Cgk_l:Zl...Zk_le]Ik+1...]In: ( Zj)Xk
7=1
k—1
CQZYl]Ig...Hn C4:Z1Y2...]In CQk_Zl---Zk—lyk]Ik+1---]1n_( Zj)Yk
7j=1
satisfy {c,,c,} = 26,,1
C2k—1
kth qubit { e

L Jordan-Wigner representation

unique up to unitary equivalence qubits <= fermions

Matchgates and classical simulation of quantum circuits
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Classical efficient simulation

J-W Gaussian o i 1 f n-qubi
. perations class of n-qubit
Cp ——> mn-qubit operators | —> :
g q P (quadratic H) unitary gates

~

U

circuit built of Gaussian gates

Theorem 4.1 /—) product of all SO(2n) matrices

- - 2n |
(C;L)out = <¢in|UTCuUWin> = ;l Rw(wm|cv’wm>

—> [tout) = ﬁwzn)

poly-time computable
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Classical efficient simulation

input product state |¢;,) = |x1) - |xy)

mn
J-W = (Winlep|tin) = _1:[1<$¢|Cu|37i>
€ ——> product operator Py ® ---® P, =

- poly-time computable

)

Zk out = P0 — P1 (Qu)out

\> Z = —iCok—1C2k _
/> Gaussian gates

(Zk)our = (Win| (—1)UTcap—1021U i) = (Win|(—1)(UT cau—1U)(UTearU) 1)

2n ~
— Z R(Zk—l) R(Qk Yug <¢m|( )Crzl Cuy ‘wm>

1 #va=1 poly-time computable
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Classical efficient simulation

Theorem 1.1 Consider any uniform (hence poly-sized) quantum circuit
family comprising only G(A, B) gates such that

e the G(A, B) gates act on nearest neighbour (n.n.) lines only,

e the input state is any product state, and

e the output is a final measurement in the computational basis on any single
line.

Then the output may be classically efficiently simulated. More precisely, for
any k, we can classically efficiently compute the expectation value

Po = |<0‘w0ut)|2

B = o b} = =1 { "
P1 = out
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(Gaussian gates in J-W representation

C1

. _ _ ) qubit line 1
quadratic Hamiltonians involve 2 o
23 qubit line 2
4

—’iClCQ A —iCQCg = XX

trace free
1c1c3 = YX —icocy = XY /

iciea =YY —tc3ey = 12 ™~ preserve the even and odd parity subspaces

!

SU(2) & SU(2) decomposition
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(GGaussian gates in J-W representation

(1) construct the X, Y, Z Pauli operators acting in the two parity subspaces

Idea
(2) generate the two SU(2)’s by exponentiation
odd parity subspace
Example //
3 (XX +YY)(a01|01) + B10]10)) = (B10[01) + cr0110)) X (ao1, f10)" = (Bro, ao1)”
H(XX +YY)(ap|00) + B11]11)) = 0 X(CV90,511)T — 0

/

even parity subspace
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(Gaussian gates in J-W representation

(Gaussian operations
[ — oill n.n. G(A, B) gates
4 ‘) qubit lines 1 + 2
H=14) hucuc,
pFY
For any pair of consecutive lines all n.n. G(A, B) gates

all n.n. G(A, B) gates are Gaussian for the J-W representation

Theorem 1.1 proved
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(GGaussian quantum circuits and Clifford gates

Pauli group P, — P ®---®QP, P, e{l, XY, Z}

Clifford operation U —> UTP,U C P,

J-W representation comprises Pauli products

Cp ¢, = Vie,V  for any unitary V

{cu, e} =26,,1 {ep, e} =20,,1
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(GGaussian quantum circuits and Clifford gates

quadratic Hamiltonian property (anticomm. relations) (1)
Efficient classical simulation
product structure of J-W representation (product states) (2)

= VTCMV for any Clifford unitary V

features (1) + (2) preserved  mp new class of classically .()Hl(.‘i(,‘lll-]'\'
simulatable quantum circuits

NOT as Gaussian of original ¢,
Note:  Clifford unitary V {
NOT as circuit of n.n. G(A, B)
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(GGaussian quantum circuits and Clifford gates

2n
H’ =1 Z h.’UfVCJ,UJC:/ 2n
o — H'=VIi Y h,cuc)V == Upew= VUV
, ; pF Y 4
¢, =V'ie,V
n.n. G(A, B)
V‘win,old> —>| old simulatable circuits /f VZkVT

Extension of class of inpute states and output measurements
maintining classical efficiency
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Universal quantum computation

Matchgates are extremely close to a universal set of gates

_ . XY-interaction _ _
Universal quantum computation sy any pair of qubits
Hx X & X + Y & Y |

I ;

(detT= —det X) G(I,X) = SWAP gate
n.n. G(A, B) + SWAP gate

trivial resource

Crucial condition —> nearest-neighbors interaction
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Outlook

Matchgates G(A,B) —— A ® B (even parity@®odd parity)

Clifford algebra operators ¢, ——  {¢,,¢,} = 20,,1

2n
quadratic H —— Gaussian gates U = ¢/  mmmp Ute, U = Z Ruc
vr=1

classically efficiently circuits of n.n. G(4, B) p— +

simulatable product input states

J-W representation
Z1. measurements

new class of classically efficiently

Clifford unitaries —— = o
simulatable quantum circuits

Universal quantum computation mm) 1.0. G(A, B) + SWAP gate

30



Thank you for your attention!

Matchgates and classical simulation of quantum circuits
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Theorem 5.1 Let H =i ) o v €u€y be any quadratic Hamiltonian with
corresponding Gaussian gate V = e on n qubits. Then, V as an operator on n
qubits is expressible as a circuit of O(n?) n.n. G(A, B) gates, i.e. V =Vy---V
where each U; = e'?i having H j=1) o h,wcuc, with the sum involving only

four ¢’s associated with two n.n. lines.
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