

Jake Bulmer QLOC seminar ØJakeBulmer7

People

Jake Bulmer (PhD student)

Stefano Paesani (postdoc)

Anthony Laing (boss)

Zixin Huang

(Quantum comms theory collaborators)

Cosmo Lupo

Who am I?

Who am I?

- Master's Imperial College London
 - Supervised by P. Shadbolt + T. Rudolph
- PsiQuantum
 - LOQC theory/architectures
- PhD pt. 1 University of Oxford
 - Ian Walmsley's group
 - Superconducting photon detectors (TES)
 - ... and some theory side projects
- PhD pt. 2 University of Bristol
 - Anthony Laing's group
 - Silicon quantum photonics
 - ... and some theory side projects

In this talk

- Silicon quantum photonics toolkit
- Scattershot Boson sampling
- Quantum correlated sampling machines
- Quantum PIN verification?

Waveguides

Waveguides

Waveguides

 $\left[a,a^{\dagger}\right] = 1$

Couplers

Couplers

Couplers

$a_2^{\dagger} \rightarrow \frac{1}{\sqrt{2}} \left(a_1^{\dagger} + a_2^{\dagger} \right)$

 $H = ca_{1}^{\dagger}a_{2} + c^{*}a_{1}a_{2}^{\dagger}$

Phase shifters

$$\frac{dn}{dT} = 1.86 \times 10^{-4} K^{-1}$$

Thermo-optic effect

- Programmable :D
- Convenient :D
- Precise :D
- Slow :((Typically kHz)

 $a^{\dagger} \to \exp(i\phi)a^{\dagger}$

Programmable unitaries

Programmable unitaries

Programmable unitaries

How do we make the photons?

How do we make photons?

pump + scattered photons

 $H = \xi a_r^{\dagger} a_b^{\dagger} - \xi^* a_r a_b$

How do we make photons?

Frequency demultiplexing

Off-chip tools

Pulsed laser

b)

Superconducting nanowire single photon detectors (0.8K)

Fiber optic filters

Fast detector readout electronics

Heater control electronics

In this talk

- Silicon quantum photonics toolkit
- Scattershot Boson sampling
- Quantum correlated sampling machines

 \checkmark

• Quantum PIN verification?

What we cannot do with this toolkit (today)

- Scalable universal quantum computing requires *feedforward*
- Slow switches mean no feedforward

What can we use this for?

Scattershot Boson sampling

Scattershot Boson sampling

$p(\text{output}|\text{input}) = |\text{Perm}(U_{out,in})|^2$

#P (exponential time)

Quantum advantage?

Quantum advantage? We are trying...

Generation and sampling of quantum states of light in a silicon chip

Stefano Paesani¹⁶, Yunhong Ding^{2,3,6*}, Raffaele Santagati¹, Levon Chakhmakhchyan¹, Caterina Vigliar¹, Karsten Rottwitt^{2,3}, Leif K. Oxenløwe^{2,3}, Jianwei Wang^{14,5*}, Mark G. Thompson^{1*} and Anthony Laing^{1*}

10+ pairs in next version?*

4 photon pairs

Challenges

- Verification
 - Efficiently verifying that your data is due to quantum interference
- Applications
 - Is it useful for anything other than showing a quantum advantage?

partial time reversal

 $H_{squeezing} = \xi a_r^{\dagger} a_b^{\dagger} - \xi^* a_r a_b$ time reverse blue photon $\xi a_r^{\dagger} a_b - \xi^* a_r a_b^{\dagger} = H_{coupler}$

$$\xi a_r^{\dagger} a_b - \xi^* a_r a_b^{\dagger} = H_{coupler}$$

+ post-selection

 $p(A,B) = \left| \operatorname{Perm}([V^T U]_{A,B}) \right|^2$

The problem:

You shouldn't trust the ATM!

The alphabet:

$U_1, U_2, ..., U_K$

Chosen from Haar measure

	Bank is honest	Bank is dishonest
Customer is honest	Perfect correlation	Random correlation
Customer is dishonest	Random correlation	Random correlation

Experiment

Experiment

Experimental results: 1 photon tomography

Experimental results: 2 photon tomography

Experimental results: scattershot

Experimental results: perfect correlations

2 photon outcomes

4 photon outcomes

Thanks!

Questions?

