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What’s the Wigner function?



Wigner’s function

The Wigner function associated to a quan-
tum state of N particles is a real-valued
function on the phase space R2N .

Key property: its marginals give the
probability distributions for position and
momentum measurements.
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A quasi-probability distribution

When it is non-negative, it can be inter-
preted as a kind of classical probability
distribution.

It often takes negative values. In
quantum optics, this is taken to a be an
indicator of non-classicality.
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Often takes negative values
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Negativity relates to incompatibility of measurements

Recall the canonical commutation relations:

[Q,P] = iℏ.

The laws of quantum theory permits one to make simultaneous measurements of commuting
observables but not of non-commuting observables.

One can show that the negative area of the Wigner function is always proportional to at most a
few ℏ.
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Negativity is necessary for Quantum speedup

Negativity of the Wigner function is a necessary resource for quantum speedup.

ρ0 −→ ρ1 −→ · · · −→ ρt ⇒ classical outcome

Mari and Eisert’s1 generalisation of Gottesman-Knill theorem: if for all i , Wi ≥ 0 (including

measurement and providing that local probability distributions may be sampled efficiently) then computation can be
simulated efficiently.

1Andrea Mari and Jens Eisert. “Positive Wigner functions render classical simulation of quantum computation efficient”. In: Physical review letters
109.23 (2012), p. 230503.
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Continuous-variable contextuality



Intuition?
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What is contextuality?

Correlations are locally consistent but cannot be explained globally.
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Sheaf-theoretic framework for contextuality

Two main ingredients:

• measurement scenarios;

• empirical models.
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Measurement scenario

A measurement scenario is a triple
⟨X ,M,O⟩ where:

• X a finite set of measurements

e.g. X = {a, a′, b, b′}

• M the (maximal) contexts

e.g. M = {{a, b}, {a, b′}, {a′, b}, {a′, b′}}
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Empirical model

On a measurement scenario ⟨X ,M,O⟩
an empirical model e specifies the joint
probability distribution for each context.

e.g. a PR box.
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Empirical model

Definition (Empirical model)

An empirical model on a measurement scenario ⟨X ,M,O⟩ is a family e = (eC )C∈M, where eC

is a probability measure on the space OC for each maximal context C ∈ M. It satisfies the
compatibility conditions:

∀C ,C ′ ∈ M, eC |C∩C ′ = eC ′ |C∩C ′ (1)
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Noncontextuality

Definition (Noncontextuality or extendability)

An empirical model e on a measurement scenario ⟨X ,M,O⟩ is said to be noncontextual (or
extendable) if there exists a global probability measure µ on global assignments OX such that
∀C ∈ M, eC = µ|C .

2. Continuous-variable contextuality 14/27



Hidden-variable model

Definition (hidden-variable model)
A hidden-variable model on a measurement scenario ⟨X ,M,O⟩ consists of the triple ⟨Λ, p, (kC )C∈M⟩
where:

• Λ = ⟨Λ,FΛ⟩ is the measurable space of hidden variables,

• p is a probability distribution on Λ,

• for each context C ∈ M, kC is a probability kernel between the measurable spaces Λ and OC

satisfying the following compatibility condition:

∀C ,C ′ ∈ M,∀λ ∈ Λ, kC (λ,−)|C∩C ′ = kC ′(λ,−)|C∩C ′ (2)

For every measurable set of joint outcomes B ∈ FC ,

eC (B) =

∫
Λ
kC (–,B) d p =

∫
λ∈Λ

kC (λ,B) d p(λ) (3)
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FAB theorem

Theorem (Fine–Abramsky–Brandenburger theorem)
Equivalence between:

• extendability;

• deterministic hidden-variable model;

• factorisable hidden-variable model.
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Main question

At an intuitive level, these two notions of non-classicality seek to capture similar features of
quantum theory. But the question remains:

What is the precise relationship between Wigner negativity and contextuality?
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State of the art



Wigner positivity sometimes implies non-contextuality

• Robert W Spekkens. “Negativity and contextuality are equivalent notions of nonclassicality”.
In: Physical review letters 101.2 (2008), p. 020401

• Konrad Banaszek and Krzysztof Wódkiewicz. “Nonlocality of the Einstein-Podolsky-Rosen
State in the Wigner Representation”. In: Physical Review A 58.6 (Dec. 1998), pp. 4345–4347

• Zeng-Bing Chen et al. “Maximal Violation of Bell’s Inequalities for Continuous Variable
Systems”. In: Physical Review Letters 88.4 (Jan. 2002), p. 040406
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Actual equivalence results

• Mark Howard et al. “Contextuality Supplies the Magic for Quantum Computation”. In:
Nature 510.7505 (June 2014), pp. 351–355. arXiv: 1401.4174

• Nicolas Delfosse et al. “Equivalence between Contextuality and Negativity of the Wigner
Function for Qudits”. en. In: New Journal of Physics 19.12 (Dec. 2017), p. 123024

• Robert Raussendorf et al. “Contextuality and Wigner Function Negativity in Qubit Quantum
Computation”. In: Physical Review A 95.5 (May 2017), p. 052334. arXiv: 1511.08506
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And in continuous variables?

?
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Equivalence between contextuality
and Wigner negativity



Equivalence between contextuality
and Wigner negativity

The measurement scenario



Measurement scenario

Definition

We fix the measurement scenario ⟨X ,M,O⟩ as follows:

• the set of measurement labels consists of all points in phase-space i.e. all points generated
by linear combinations of Qk and Pj ;

• the maximal contexts are maximal subsets of X of commuting quadratures;

• for each x ∈ X , Ox := ⟨R,BR⟩ so that for any set of measurement labels U ⊆ X , OU
∼= RU

can be seen as the set of functions from U to R with its product σ-algebra FU .
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Measurement scenario

ρ R̂ CZ

LO (ϕ)

−
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Equivalence between contextuality
and Wigner negativity

Admissible empirical models



Which empirical models?

• Empirical models on previously defined measurement scenario. Recall OU
∼= RU .

• Quantum! In particular verify the Born rule.
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Equivalence between contextuality
and Wigner negativity

The equivalence



Main result

Theorem

If ρ is the density operator of a quantum system with Hilbert space L2(RN), and N ⩾ 2, there is
a deterministic hidden-variable model for the measurements in M on ρ if and only if the Wigner
function of ρ is both integrable and non-negative.
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Proof ideas

Three barriers to the proof:

• An arbitrary noncontextual HVM can be pretty weird...

→ there is always a HVM where the hidden variables are just the global value assignments.
In our case, RX

.

• But the Wigner function is defined on the phase space X , not RX ...

→ value assignements can be taken to be linear, so the HVM can be replaced by one on the
dual of X ∗ ∼= X

.

• The probability measure of the HVM and the Wigner function now have the same Fourier
transform.
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Implications

This equivalence gives a stronger grounding for both notions as indicators of non-classicality:

• Foundationally, negativity of the Wigner function no longer means that just this classical
representation is bad, but in fact none exist whatsoever;

• Computationally, it implies that contextuality is necessary to obtain any kind of quantum
computational advantage in the standard model of CV quantum computation.
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Outlook

• Better methods for witnessing contextuality in an experimental setting;

continuous-variable Bell inequalities?

• Stronger link between measures of non-classicality?

• Characterising Wigner positive states?

• Other s-QPDs?

• Extending these methods to treat different measurement scenarios corresponding to different
phase spaces.
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