Wigner negativity and contextuality are equivalent for continuous-variable quantum measurements

Robert I. Booth March 9, 2022

0. 1/27

Robert I. Booth, Ulysse Chabaud, and Pierre-Emmanuel Emeriau. "Contextuality and Wigner Negativity Are Equivalent for Continuous-Variable Quantum Measurements". Nov. 2021. arXiv: 2111.13218

0. 2/27

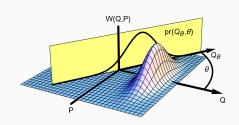
What's the Wigner function?

Wigner's function

The Wigner function associated to a quantum state of N particles is a *real-valued* function on the phase space \mathbb{R}^{2N} .

Wigner's function

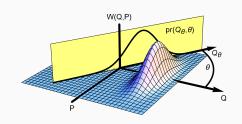
The Wigner function associated to a quantum state of N particles is a *real-valued* function on the phase space \mathbb{R}^{2N} .



Wigner's function

The Wigner function associated to a quantum state of N particles is a *real-valued* function on the phase space \mathbb{R}^{2N} .

Key property: its marginals give the probability distributions for position and momentum measurements.

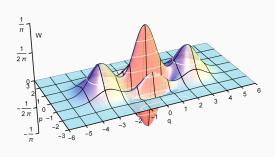


A quasi-probability distribution

When it is non-negative, it can be interpreted as a kind of classical probability distribution.

A quasi-probability distribution

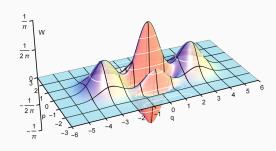
When it is non-negative, it can be interpreted as a kind of classical probability distribution.



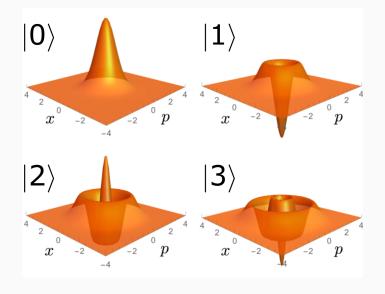
A quasi-probability distribution

When it is non-negative, it can be interpreted as a kind of classical probability distribution.

It often takes negative values. In quantum optics, this is taken to a be an indicator of non-classicality.



Often takes negative values



Negativity relates to incompatibility of measurements

Recall the canonical commutation relations:

$$[Q,P]=i\hbar.$$

Negativity relates to incompatibility of measurements

Recall the canonical commutation relations:

$$[Q, P] = i\hbar.$$

The laws of quantum theory permits one to make simultaneous measurements of commuting observables but not of non-commuting observables.

Negativity relates to incompatibility of measurements

Recall the canonical commutation relations:

$$[Q, P] = i\hbar.$$

The laws of quantum theory permits one to make simultaneous measurements of commuting observables but not of non-commuting observables.

One can show that the negative area of the Wigner function is always proportional to at most a few \hbar .

Negativity is necessary for Quantum speedup

Negativity of the Wigner function is a necessary resource for quantum speedup.

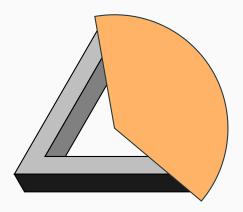
$$\rho_0 \longrightarrow \rho_1 \longrightarrow \cdots \longrightarrow \rho_t \Rightarrow$$
 classical outcome

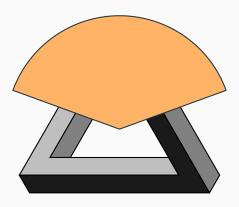
Mari and Eisert's¹ generalisation of Gottesman-Knill theorem: if for all i, $W_i \ge 0$ (including measurement and providing that local probability distributions may be sampled efficiently) then computation can be simulated efficiently.

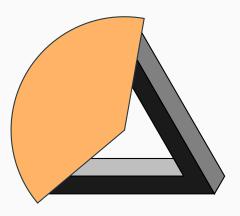
1. What's the Wigner function?

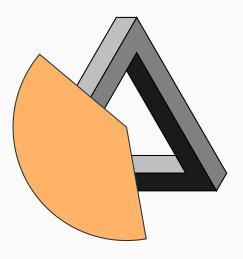
¹Andrea Mari and Jens Eisert. "Positive Wigner functions render classical simulation of quantum computation efficient". In: *Physical review letters* 109.23 (2012), p. 230503.

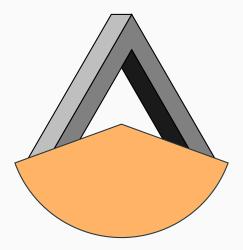
Continuous-variable contextuality

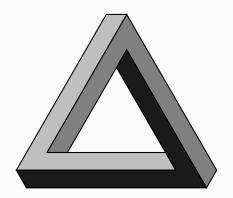










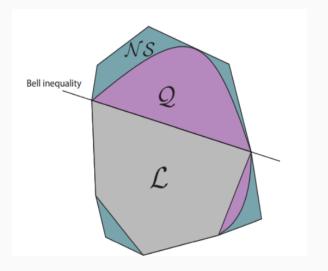


What is contextuality?

Correlations are *locally consistent* but cannot be explained *globally*.

What is contextuality?

Correlations are *locally consistent* but cannot be explained *globally*.



Sheaf-theoretic framework for contextuality

Two main ingredients:

measurement scenarios;

Sheaf-theoretic framework for contextuality

Two main ingredients:

- measurement scenarios;
- empirical models.

A measurement scenario is a triple (X, \mathcal{M}, O) where:

• X a finite set of measurements

e.g.
$$X = \{a, a', b, b'\}$$

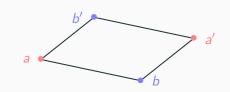
A measurement scenario is a triple $(X, \mathcal{M}, \mathcal{O})$ where:

• X a finite set of measurements

e.g.
$$X = \{a, a', b, b'\}$$

• \mathcal{M} the (maximal) contexts

e.g.
$$\mathcal{M} = \{\{a, b\}, \{a, b'\}, \{a', b\}, \{a', b'\}\}$$



A measurement scenario is a triple $\langle X, \mathcal{M}, O \rangle$ where:

• X a finite set of measurements

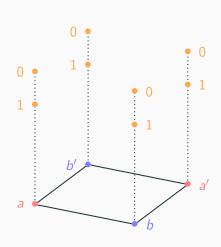
e.g.
$$X = \{a, a', b, b'\}$$

• \mathcal{M} the (maximal) contexts

e.g.
$$\mathcal{M} = \{\{a, b\}, \{a, b'\}, \{a', b\}, \{a', b'\}\}$$

• $O = (O_x)_{x \in X}$ a family of outcomes sets

e.g.
$$O = \{0, 1\}$$



A measurement scenario is a triple $\langle X, \mathcal{M}, \mathcal{O} \rangle$ where:

• X a finite set of measurements

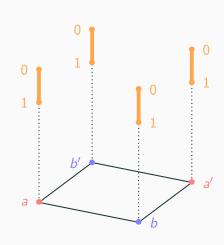
e.g.
$$X = \{a, a', b, b'\}$$

ullet $\mathcal M$ the (maximal) contexts

e.g.
$$\mathcal{M} = \{\{a,b\}, \{a,b'\}, \{a',b\}, \{a',b'\}\}$$

• $O = (O_x)_{x \in X}$ a family of measurable spaces

e.g.
$$O = \mathbb{R}$$
 or $O = [0, 1]$



Empirical model

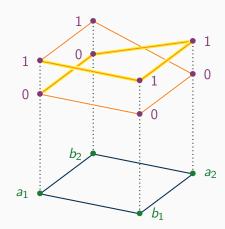
On a measurement scenario $\langle X, \mathcal{M}, \mathcal{O} \rangle$ an empirical model e specifies the joint probability distribution for each context.

Empirical model

On a measurement scenario $\langle X, \mathcal{M}, \mathcal{O} \rangle$ an empirical model e specifies the joint probability distribution for each context.

e.g. a PR box.

Α	В	00	01	10	11	
a_1	b_1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	_
a_1	b_1 b_2 b_1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	
a_2	b_1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	
a_2	b_2	0	$\frac{1}{2}$	$\frac{1}{2}$	0	



Empirical model

Definition (Empirical model)

An empirical model on a measurement scenario $(X, \mathcal{M}, \mathbf{0})$ is a family $e = (e_C)_{C \in \mathcal{M}}$, where e_C is a probability measure on the space O_C for each maximal context $C \in \mathcal{M}$. It satisfies the compatibility conditions:

$$\forall C, C' \in \mathcal{M}, \quad e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}$$

Noncontextuality

Definition (Noncontextuality or extendability)

An empirical model e on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O} \rangle$ is said to be noncontextual (or extendable) if there exists a global probability measure μ on global assignments \mathbf{O}_X such that $\forall C \in \mathcal{M}, e_C = \mu|_C$.

Hidden-variable model

Definition (hidden-variable model)

A hidden-variable model on a measurement scenario $\langle X, \mathcal{M}, \mathbf{O} \rangle$ consists of the triple $\langle \mathbf{\Lambda}, p, (k_C)_{C \in \mathcal{M}} \rangle$ where:

- $\bullet~\Lambda = \langle \Lambda, \mathcal{F}_{\Lambda} \rangle$ is the measurable space of hidden variables,
- p is a probability distribution on Λ ,
- for each context $C \in \mathcal{M}$, k_C is a probability kernel between the measurable spaces Λ and O_C satisfying the following compatibility condition:

$$\forall C, C' \in \mathcal{M}, \forall \lambda \in \Lambda, \quad k_C(\lambda, -)|_{C \cap C'} = k_{C'}(\lambda, -)|_{C \cap C'}$$
(2)

Hidden-variable model

Definition (hidden-variable model)

A hidden-variable model on a measurement scenario $(X, \mathcal{M}, \mathbf{0})$ consists of the triple $(\Lambda, p, (k_{\mathcal{C}})_{\mathcal{C} \in \mathcal{M}})$ where:

- $\Lambda = \langle \Lambda, \mathcal{F}_{\Lambda} \rangle$ is the measurable space of hidden variables,
- p is a probability distribution on Λ ,
- for each context $C \in \mathcal{M}$, k_C is a probability kernel between the measurable spaces Λ and O_C

satisfying the following compatibility condition:

For every measurable set of joint outcomes
$$B \in \mathcal{F}_C$$
,
$$e_C(B) = \int_{A} k_C(\neg, B) \, dp = \int_{A \subset A} k_C(\lambda, B) \, dp(\lambda) \tag{3}$$

 $\forall C, C' \in \mathcal{M}, \forall \lambda \in \Lambda, \quad k_C(\lambda, -)|_{C \cap C'} = k_{C'}(\lambda, -)|_{C \cap C'}$

2. Continuous-variable contextuality

(2)

FAB theorem

Theorem (Fine-Abramsky-Brandenburger theorem)

Equivalence between:

- extendability;
- deterministic hidden-variable model;
- factorisable hidden-variable model.

Main question

At an intuitive level, these two notions of non-classicality seek to capture similar features of quantum theory. But the question remains:

Main question

At an intuitive level, these two notions of non-classicality seek to capture similar features of quantum theory. But the question remains:

What is the precise relationship between Wigner negativity and contextuality?

State of the art

Wigner positivity sometimes implies non-contextuality

- Robert W Spekkens. "Negativity and contextuality are equivalent notions of nonclassicality". In: *Physical review letters* 101.2 (2008), p. 020401
- Konrad Banaszek and Krzysztof Wódkiewicz. "Nonlocality of the Einstein-Podolsky-Rosen State in the Wigner Representation". In: *Physical Review A* 58.6 (Dec. 1998), pp. 4345–4347
- Zeng-Bing Chen et al. "Maximal Violation of Bell's Inequalities for Continuous Variable Systems". In: Physical Review Letters 88.4 (Jan. 2002), p. 040406

3. State of the art 18/27

Actual equivalence results

- Mark Howard et al. "Contextuality Supplies the Magic for Quantum Computation". In: *Nature* 510.7505 (June 2014), pp. 351–355. arXiv: 1401.4174
- Nicolas Delfosse et al. "Equivalence between Contextuality and Negativity of the Wigner Function for Qudits". en. In: *New Journal of Physics* 19.12 (Dec. 2017), p. 123024
- Robert Raussendorf et al. "Contextuality and Wigner Function Negativity in Qubit Quantum Computation". In: *Physical Review A* 95.5 (May 2017), p. 052334. arXiv: 1511.08506

3. State of the art

And in continuous variables?

?

3. State of the art

Equivalence between contextuality

and Wigner negativity

Equivalence between contextuality

and Wigner negativity

The measurement scenario

Definition

We fix the measurement scenario $(X, \mathcal{M}, \mathbf{0})$ as follows:

• the set of measurement labels consists of all points in phase-space i.e. all points generated by linear combinations of Q_k and P_i ;

Definition

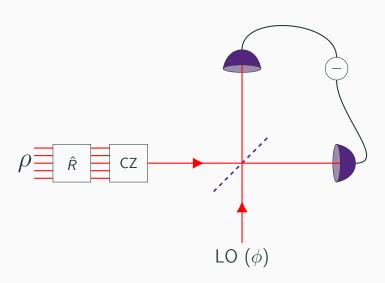
We fix the measurement scenario $(X, \mathcal{M}, \mathbf{0})$ as follows:

- the set of measurement labels consists of all points in phase-space i.e. all points generated by linear combinations of Q_k and P_j ;
- the maximal contexts are maximal subsets of X of commuting quadratures;

Definition

We fix the measurement scenario $\langle X, \mathcal{M}, \mathbf{0} \rangle$ as follows:

- the set of measurement labels consists of all points in phase-space i.e. all points generated by linear combinations of Q_k and P_j ;
- the maximal contexts are maximal subsets of X of commuting quadratures;
- for each $\mathbf{x} \in X$, $\mathbf{O}_{\mathbf{x}} := \langle \mathbb{R}, \mathcal{B}_{\mathbb{R}} \rangle$ so that for any set of measurement labels $U \subseteq X$, $O_U \cong \mathbb{R}^U$ can be seen as the set of functions from U to \mathbb{R} with its product σ -algebra \mathcal{F}_U .



4. Equivalence between contextuality and Wigner negativity

Equivalence between contextuality

and Wigner negativity

Admissible empirical models

Which empirical models?

• Empirical models on previously defined measurement scenario. Recall $O_U \cong \mathbb{R}^U$.

Which empirical models?

- ullet Empirical models on previously defined measurement scenario. Recall $O_U\cong\mathbb{R}^U$.
- Quantum! In particular verify the Born rule.

Equivalence between contextuality

and Wigner negativity

The equivalence

Main result

Theorem

If ρ is the density operator of a quantum system with Hilbert space $L^2(\mathbb{R}^N)$, and $N \geqslant 2$, there is a deterministic hidden-variable model for the measurements in \mathcal{M} on ρ if and only if the Wigner function of ρ is both integrable and non-negative.

Three barriers to the proof:

• An arbitrary noncontextual HVM can be pretty weird...

.

- An arbitrary noncontextual HVM can be pretty weird...
 - \to there is always a HVM where the hidden variables are just the global value assignments. In our case, \mathbb{R}^X .

- An arbitrary noncontextual HVM can be pretty weird...
 - \to there is always a HVM where the hidden variables are just the global value assignments. In our case, \mathbb{R}^X .
- But the Wigner function is defined on the phase space X, not \mathbb{R}^X ...

- An arbitrary noncontextual HVM can be pretty weird...
 - \to there is always a HVM where the hidden variables are just the global value assignments. In our case, \mathbb{R}^X .
- But the Wigner function is defined on the phase space X, not \mathbb{R}^X ...
 - \rightarrow value assignements can be taken to be linear, so the HVM can be replaced by one on the dual of $X^* \cong X$.
- The probability measure of the HVM and the Wigner function now have the same Fourier transform.

Implications

This equivalence gives a stronger grounding for both notions as indicators of non-classicality:

• Foundationally, negativity of the Wigner function no longer means that just this classical representation is bad, but in fact none exist whatsoever;

Implications

This equivalence gives a stronger grounding for both notions as indicators of non-classicality:

- Foundationally, negativity of the Wigner function no longer means that just this classical representation is bad, but in fact none exist whatsoever;
- Computationally, it implies that contextuality is necessary to obtain any kind of quantum computational advantage in the standard model of CV quantum computation.

• Better methods for witnessing contextuality in an experimental setting;

Better methods for witnessing contextuality in an experimental setting;
 continuous-variable Bell inequalities?

Stronger link between measures of non-classicality?

 $\bullet \ \ \mathsf{Better} \ \mathsf{methods} \ \mathsf{for} \ \mathsf{witnessing} \ \mathsf{contextuality} \ \mathsf{in} \ \mathsf{an} \ \mathsf{experimental} \ \mathsf{setting};$

- Stronger link between measures of non-classicality?
- Characterising Wigner positive states?

 $\bullet \ \ \mathsf{Better} \ \mathsf{methods} \ \mathsf{for} \ \mathsf{witnessing} \ \mathsf{contextuality} \ \mathsf{in} \ \mathsf{an} \ \mathsf{experimental} \ \mathsf{setting};$

- Stronger link between measures of non-classicality?
- Characterising Wigner positive states?
- Other *s*-QPDs?

• Better methods for witnessing contextuality in an experimental setting;

- Stronger link between measures of non-classicality?
- Characterising Wigner positive states?
- Other s-QPDs?
- Extending these methods to treat different measurement scenarios corresponding to different phase spaces.