Free transformations in the resource theory of contextuality

Rui Soares Barbosa

rui.soaresbarbosa@inl.int

Martti Karvonen

Shane Mansfield

martti.karvonen@uottawa.ca

AQUANDELA

shane.mansfield@quandela.com

QLOC group meeting 9th June 2021

This talk

Pre-print available at arXiv:2104.11241 [quant-ph].

Quantum Physics

[Submitted on 22 Apr 2021]

Closing Bell: Boxing black box simulations in the resource theory of contextuality

Rui Soares Barbosa, Martti Karvonen, Shane Mansfield

This chapter contains an exposition of the sheaf-theoretic framework for contextuality emphasising resource-theoretic aspects, as well as some original results on this topic. In particular, we consider functions that transform empirical models on a scenario S to empirical models on another scenario T, and characterise those that are induced by classical procedures between S and T corresponding to 'free' operations in the (non-adaptive) resource theory of contextuality. We proceed by expressing such functions as empirical models themselves, on a new scenario built from S and T. Our characterisation then boils down to the non-contextuality of these models. We also show that this construction on scenarios provides a closed structure in the category of measurement scenarios.

Comments: 36 pages. To appear as part of a volume dedicated to Samson Abramsky in Springer's Outstanding Contributions to Logic series

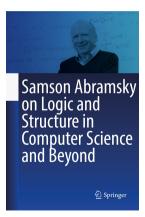
Subjects: Quantum Physics (quant-ph); Logic in Computer Science (cs.LO); Category Theory (math.CT)

Cite as: arXiv:2104.11241 [quant-ph]

(or arXiv:2104.11241v1 [quant-ph] for this version)

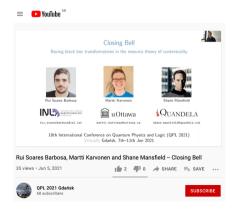
This talk

- Pre-print available at arXiv:2104.11241 [quant-ph].
- ▶ To appear in a volume of Springer's *Outstanding Contributions to Logic* series.



This talk

- Pre-print available at arXiv:2104.11241 [quant-ph].
- ▶ To appear in a volume of Springer's *Outstanding Contributions to Logic* series.
- (Abridged version of) this talk at QPL 2021: y2u.be/rShNOuaim_U.



Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- > It has been established as a useful resource conferring advantage in informatic tasks.

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.

Resource theory

▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.

Resource theory

- ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
- $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.

Resource theory

- ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
- $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.

Resource theory

- ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
- $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.
- In this talk, we focus on non-adaptive procedures.

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
 - $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
 - The 'free' operations are given by classical procedures $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
 - $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
 - The 'free' operations are given by classical procedures $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - Construct a scenario [S, T] from S and T.

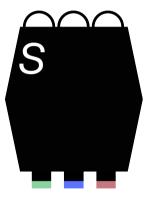
- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
 - $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
 - The 'free' operations are given by classical procedures $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - Construct a scenario [S, T] from S and T.
 - F yields an empirical model $e_F : [S, T]$.

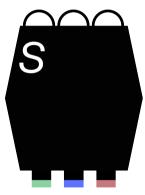
- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
 - $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
 - The 'free' operations are given by classical procedures $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - Construct a scenario [S, T] from S and T.
 - F yields an empirical model $e_F : [S, T]$.
 - ▶ *F* realisable by classical procedure $S \longrightarrow T$ iff e_F is noncontextual

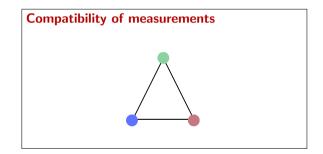
- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
 - $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
 - The 'free' operations are given by classical procedures $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - Construct a scenario [S, T] from S and T.
 - F yields an empirical model $e_F : [S, T]$.
 - F realisable by classical procedure $S \longrightarrow T$ iff e_F is noncontextual (and satisfies a certain predicate)

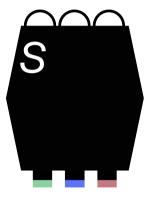
- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
 - $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
 - The 'free' operations are given by classical procedures $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - Construct a scenario [S, T] from S and T.
 - F yields an empirical model $e_F : [S, T]$.
 - F realisable by classical procedure $S \longrightarrow T$ iff e_F is noncontextual (and satisfies a certain predicate)
 - ▶ [-,-] provides a **closed structure** on the category of measurement scenarios

Contextuality

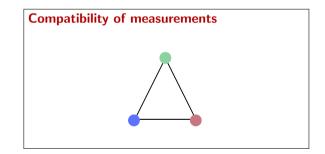


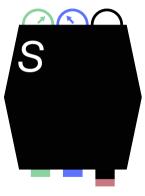




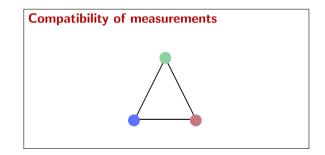


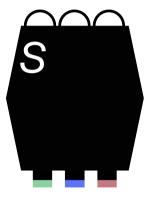
 Interaction with system: perform measurements and observe respective outcomes



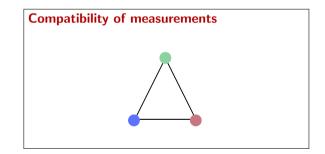


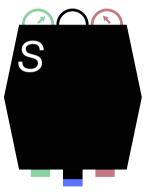
 Interaction with system: perform measurements and observe respective outcomes



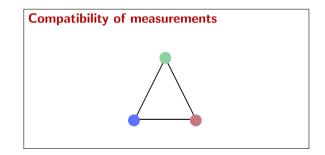


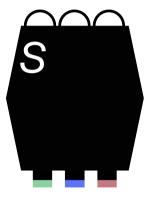
 Interaction with system: perform measurements and observe respective outcomes



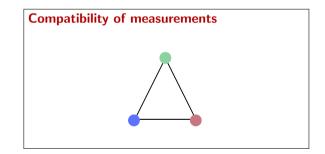


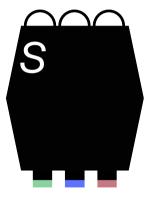
 Interaction with system: perform measurements and observe respective outcomes

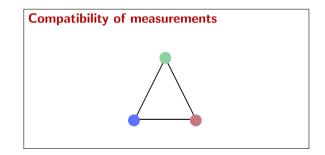




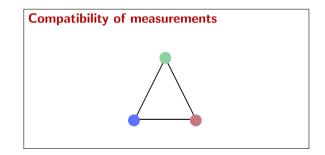
 Interaction with system: perform measurements and observe respective outcomes



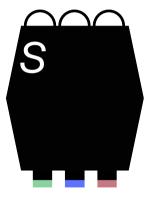


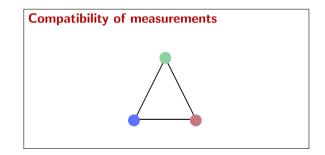


- Some subsets of measurements can be performed together . . .
- but some combinations are forbibben!

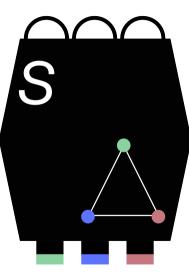


- Some subsets of measurements can be performed together . . .
- but some combinations are forbibben!

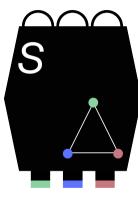


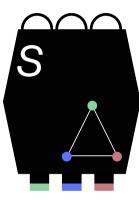


- Some subsets of measurements can be performed together . . .
- but some combinations are forbibben!



Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

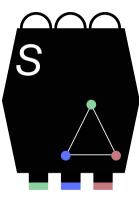




Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

► *X_S* is a finite set of **measurements**;

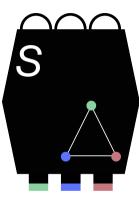
$$X_{\mathcal{S}} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\},\$$



Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

- X_S is a finite set of measurements;
- ▶ O_S = (O_{S,x})_{x∈Xs} specifies for each x ∈ X_S a non-empty set O_{S,x} of allowed outcomes

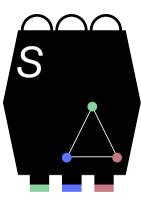
$$X_{S} = \{x, y, z\}, \quad O_{S,x} = O_{S,y} = O_{S,z} = \{0, 1\},$$



Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

- X_S is a finite set of measurements;
- ▶ O_S = (O_{S,x})_{x∈Xs} specifies for each x ∈ X_S a non-empty set O_{S,x} of allowed outcomes
- Σ_S is an abstract simplicial complex on X_S whose faces are the measurement contexts;

$$X_{S} = \{x, y, z\}, \quad O_{S,x} = O_{S,y} = O_{S,z} = \{0, 1\},$$



Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

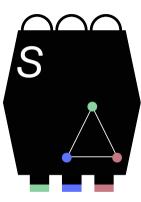
- X_S is a finite set of measurements;
- ▶ O_S = (O_{S,x})_{x∈Xs} specifies for each x ∈ X_S a non-empty set O_{S,x} of allowed outcomes
- Σ_S is an abstract simplicial complex on X_S whose faces are the measurement contexts;
 i.e. a set of subsets of X_s that:
 - contains all singletons:

 $\{x\} \in \Sigma_S$ for all $x \in X_S$;

is downwards closed:

 $\sigma \in \Sigma_S$ and $\tau \subset \sigma$ implies $\tau \in \Sigma_S$.

 $X_{\mathcal{S}} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}, \quad O_{\mathcal{S}, \mathbf{x}} = O_{\mathcal{S}, \mathbf{y}} = O_{\mathcal{S}, \mathbf{z}} = \{0, 1\},$



Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

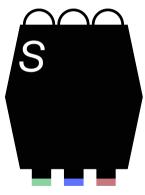
- X_S is a finite set of measurements;
- ▶ O_S = (O_{S,x})_{x∈Xs} specifies for each x ∈ X_S a non-empty set O_{S,x} of allowed outcomes
- Σ_S is an abstract simplicial complex on X_S whose faces are the measurement contexts;
 i.e. a set of subsets of X_s that:
 - contains all singletons:

 $\{x\} \in \Sigma_S$ for all $x \in X_S$;

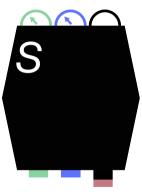
is downwards closed:

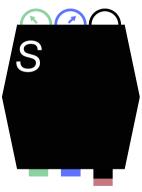
 $\sigma \in \Sigma_S$ and $\tau \subset \sigma$ implies $\tau \in \Sigma_S$.

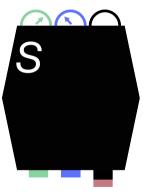
 $X_{\mathcal{S}} = \{\mathsf{x}, \mathsf{y}, \mathsf{z}\}, \quad O_{\mathcal{S}, \mathsf{x}} = O_{\mathcal{S}, \mathsf{y}} = O_{\mathcal{S}, \mathsf{z}} = \{0, 1\}, \quad \Sigma_{\mathcal{S}} = \downarrow \{\{\mathsf{x}, \mathsf{y}\}, \{\mathsf{y}, \mathsf{z}\}, \{\mathsf{x}, \mathsf{z}\}\}.$

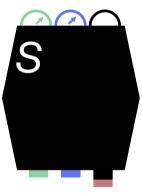


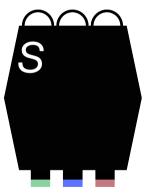
		(0, 0)	(0, 1)	(1, 0)	(1, 1)
X	У				
У	Ζ				
X	Ζ				

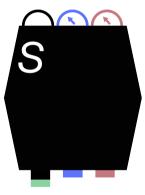


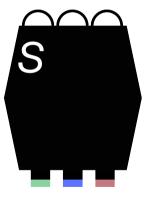




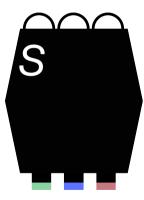








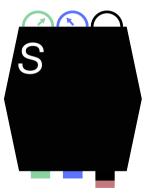
		(0,0)	(0, 1)	(1, 0)	(1, 1)
х	у	3/8	1/8	1/8	3/8
у	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	1/8	³ /8	³ /8	$^{1/8}$



 Behaviour of system is described by measurement statistics

		(0, 0)	(0, 1)	(1, 0)	(1, 1)
X	у	³ /8	$^{1/8}$	1/8	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
X	Ζ	$^{1/8}$	³ /8	3/8	$^{1/8}$

No-signalling / no-disturbance



 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
Х	у	3/8	1/8	1/8	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	1/8	3/8	3/8	$^{1/8}$

No-signalling / no-disturbance

Marginal distributions agree

 $P(\mathbf{x}, \mathbf{y} \mapsto a, \mathbf{b})$

 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
Х	у	3/8	1/8	1/8	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	1/8	3/8	3/8	$^{1/8}$

No-signalling / no-disturbance

Marginal distributions agree

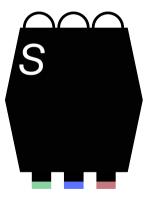
 $P(\mathbf{x}, \mathbf{y} \mapsto a, \mathbf{b})$

 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
Х	у	3/8	$^{1/8}$	$^{1/8}$	3/8
У	Ζ	3/8	$^{1}/8$	$^{1/8}$	3/8
x	Ζ	1/8	³ /8	³ /8	$^{1}/_{8}$

No-signalling / no-disturbance

$$\sum_{b} P(\mathbf{x}, \mathbf{y} \mapsto a, \mathbf{b})$$



 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
Х	у	3/8	1/8	1/8	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	1/8	3/8	3/8	$^{1/8}$

No-signalling / no-disturbance

$$\sum_{b} P(\mathbf{x}, \mathbf{y} \mapsto a, \mathbf{b})$$

 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
Х	у	3/8	$^{1/8}$	$^{1/8}$	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	1/8	³ /8	³ /8	$^{1}/_{8}$

No-signalling / no-disturbance

$$\sum_{b} P(\mathbf{x}, \mathbf{y} \mapsto a, b) \qquad P(\mathbf{x}, \mathbf{z} \mapsto a, c)$$

 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
Х	у	3/8	1/8	1/8	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	1/8	3/8	3/8	$^{1/8}$

No-signalling / no-disturbance

$$\sum_{b} P(\mathbf{x}, \mathbf{y} \mapsto a, b) \qquad \qquad P(\mathbf{x}, \mathbf{z} \mapsto a, c)$$

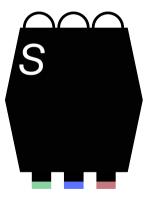
 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
Х	у	3/8	1/8	1/8	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	1/8	3/8	3/8	$^{1/8}$

No-signalling / no-disturbance

$$\sum_{b} P(\mathbf{x}, \mathbf{y} \mapsto a, \mathbf{b})$$

$$\sum_{c} P(\mathbf{x}, \mathbf{z} \mapsto a, c)$$



 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	$^{1/8}$	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	1/8	3/8	³ /8	$^{1/8}$

No-signalling / no-disturbance

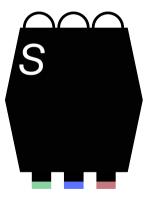
$$\sum_{b} P(\mathbf{x}, \mathbf{y} \mapsto a, b) = \sum_{c} P(\mathbf{x}, \mathbf{z} \mapsto a, c)$$

 Behaviour of system is described by measurement statistics

		(0, 0)	(0, 1)	(1, 0)	(1, 1)
X	у	³ /8	$^{1/8}$	$^{1/8}$	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	$^{1/8}$	³ /8	3/8	$^{1/8}$

No-signalling / no-disturbance

$$\sum_{b} P(\mathbf{x}, \mathbf{y} \mapsto a, b) \qquad \sum_{c} P(\mathbf{x}, \mathbf{z} \mapsto a, c) = P(\mathbf{x} \mapsto a)$$

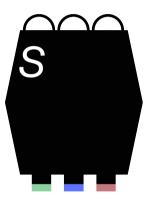


 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	1/8	3/8
У	Ζ	3/8	$^{1/8}$	$^{1/8}$	3/8
x	Ζ	1/8	3/8	3/8	$^{1/8}$

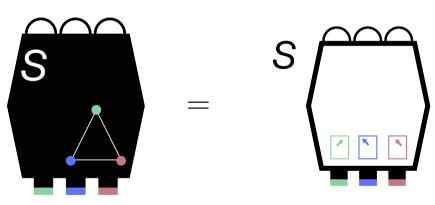
No-signalling / no-disturbance

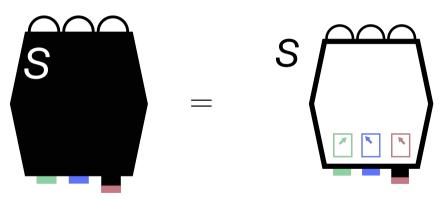
$$\sum_{b} P(\mathbf{x}, \mathbf{y} \mapsto a, b) \qquad \sum_{c} P(\mathbf{x}, \mathbf{z} \mapsto a, c) = P(\mathbf{x} \mapsto a)$$

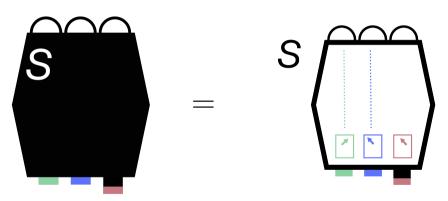


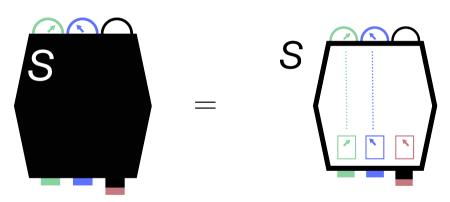
Empirical model e: S is a family $\{e_{\sigma}\}_{\sigma \in \Sigma_{S}}$ where:

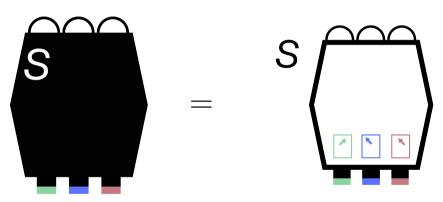
- e_σ is a probability distribution on the set of joint outcomes O_{S,σ} := Π_{x∈σ} O_{S,x}
- These satisfy no-disturbance: if $\tau \subset \sigma$, then $e_{\sigma}|_{\tau} = e_{\tau}$.



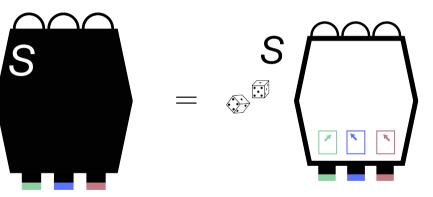




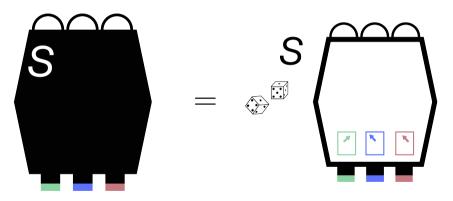




Non-contextual model

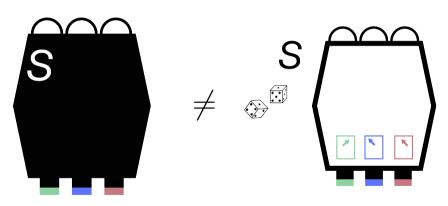


Non-contextual model



 \exists probability distribution d on $\mathbf{O}_{S,X_S} = \prod_{x \in X_S} O_{S,x}$ such that $d|_{\sigma} = e_{\sigma}$ for all $\sigma \in \Sigma_S$.

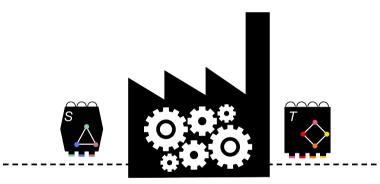
Contextual model



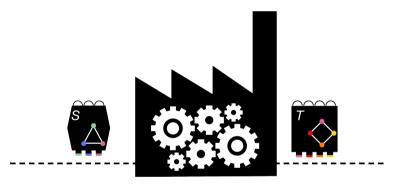
 \nexists probability distribution d on $\mathbf{O}_{S,X_S} = \prod_{x \in X_S} O_{S,x}$ such that $d|_{\sigma} = e_{\sigma}$ for all $\sigma \in \Sigma_S$.

Resource theory of contextuality

Resource theories

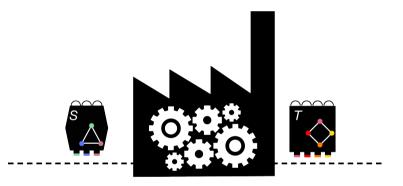


Resource theories



► Consider 'free' (i.e. classical) operations:

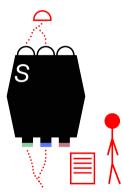
Resource theories



 Consider 'free' (i.e. classical) operations: (classical) procedures that use a box of type S to simulate a box of type T

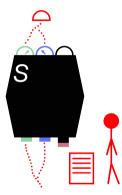
- An S-experiment is a protocol for an interaction with the box S:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome of the intended type.

- An S-experiment is a protocol for an interaction with the box S:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome of the intended type.



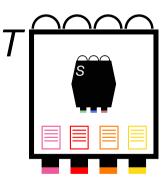
- An S-experiment is a protocol for an interaction with the box S:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome of the intended type.

- An S-experiment is a protocol for an interaction with the box S:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome of the intended type.

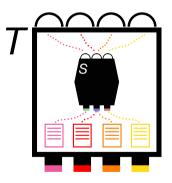


- An S-experiment is a protocol for an interaction with the box S:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome of the intended type.

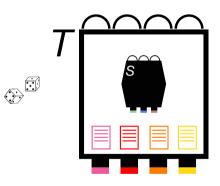
- An S-experiment is a protocol for an interaction with the box S:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome of the intended type.



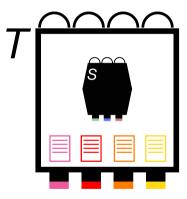
- An S-experiment is a protocol for an interaction with the box S:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome of the intended type.
- ► A deterministic procedure S → T specifies an S-experiment for each measurement of T

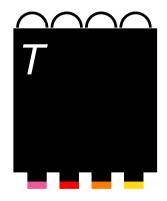


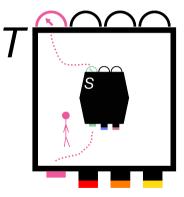
- An S-experiment is a protocol for an interaction with the box S:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome of the intended type.
- ► A deterministic procedure S → T specifies an S-experiment for each measurement of T

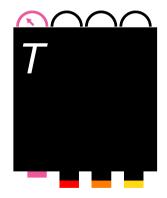


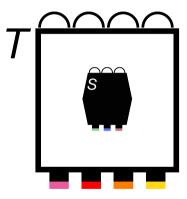
- An S-experiment is a protocol for an interaction with the box S:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome of the intended type.
- ► A deterministic procedure S → T specifies an S-experiment for each measurement of T
- A classical procedure is a probabilistic mixture of deterministic procedures.

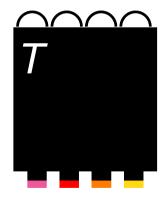


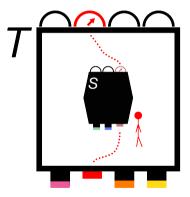


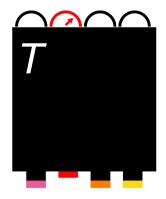


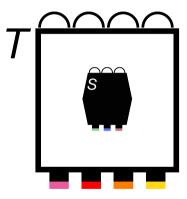


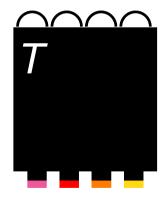


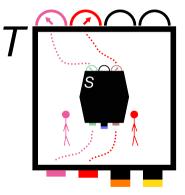


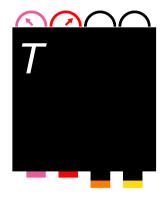


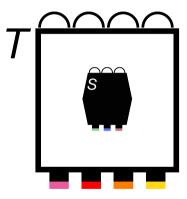


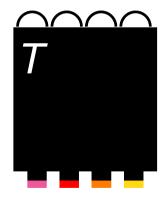


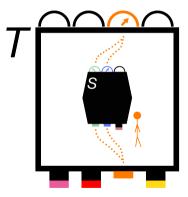


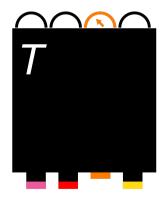


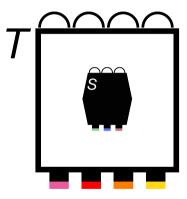


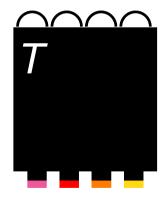


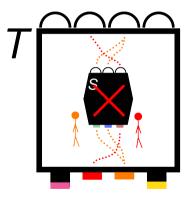


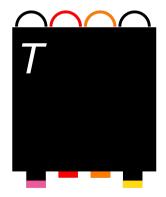


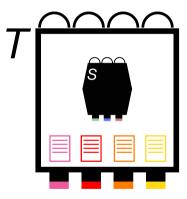


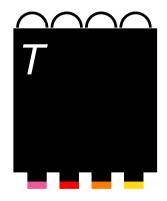






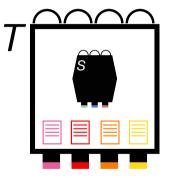






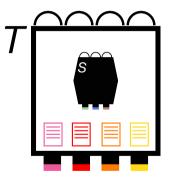
Deterministic procedure $f : S \longrightarrow T$ is $\langle \pi_f, \alpha_f \rangle$:

•
$$\pi_f : \Sigma_T \longrightarrow \Sigma_S$$
 is a simplicial relation:



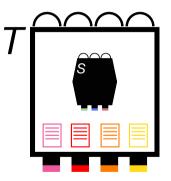
Deterministic procedure $f : S \longrightarrow T$ is $\langle \pi_f, \alpha_f \rangle$:

- $\pi_f : \Sigma_T \longrightarrow \Sigma_S$ is a simplicial relation:
 - for each $x \in X_T$ specifies $\pi_f(x) \subset X_S$



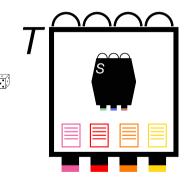
Deterministic procedure $f: S \longrightarrow T$ is $\langle \pi_f, \alpha_f \rangle$:

- $\pi_f: \Sigma_T \longrightarrow \Sigma_S$ is a simplicial relation:
 - for each $x \in X_T$ specifies $\pi_f(x) \subset X_S$
 - If $\sigma \in \Sigma_T$ then $\pi_f(\sigma) \in \Sigma_S$, where $\pi_f(\sigma) = \bigcup_{x \in \sigma} \pi_f(x)$.



Deterministic procedure $f: S \longrightarrow T$ is $\langle \pi_f, \alpha_f \rangle$:

- $\pi_f: \Sigma_T \longrightarrow \Sigma_S$ is a simplicial relation:
 - for each $x \in X_T$ specifies $\pi_f(x) \subset X_S$
 - If $\sigma \in \Sigma_T$ then $\pi_f(\sigma) \in \Sigma_S$, where $\pi_f(\sigma) = \bigcup_{x \in \sigma} \pi_f(x)$.
- $\alpha_f = (\alpha_{f,x})_{x \in X_T}$ where $\alpha_{f,x} : \mathbf{O}_{S,\pi_f(x)} \longrightarrow O_{T,x}$ maps joint outcomes of $\pi_f(x)$ to outcomes of x.



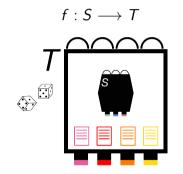
Deterministic procedure $f : S \longrightarrow T$ is $\langle \pi_f, \alpha_f \rangle$:

- $\pi_f: \Sigma_T \longrightarrow \Sigma_S$ is a simplicial relation:
 - for each $x \in X_T$ specifies $\pi_f(x) \subset X_S$
 - If $\sigma \in \Sigma_T$ then $\pi_f(\sigma) \in \Sigma_S$, where $\pi_f(\sigma) = \bigcup_{x \in \sigma} \pi_f(x)$.
- $\alpha_f = (\alpha_{f,x})_{x \in X_T}$ where $\alpha_{f,x} : \mathbf{O}_{S,\pi_f(x)} \longrightarrow O_{T,x}$ maps joint outcomes of $\pi_f(x)$ to outcomes of x.

Probabilistic procedure $f : S \longrightarrow T$ is $f = \sum_{i} r_i f_i$ where $r_i \ge 0$, $\sum_{i} r_i = 1$, and $f_i : S \longrightarrow T$ deterministic procedures.

Classical simulations

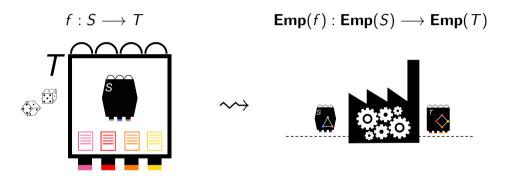
> A classical procedure induces a (convex-preserving) map between empirical models:



 $\operatorname{Emp}(f) : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$

Classical simulations

> A classical procedure induces a (convex-preserving) map between empirical models:

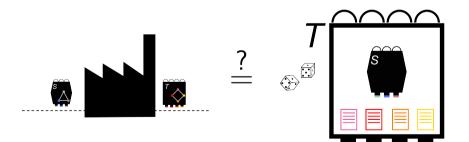


Which black-box transformations arise in this fashion?

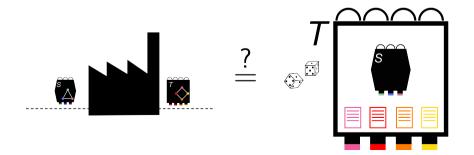
Main question and sketch of the answer

Main question

Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?



Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?



Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?

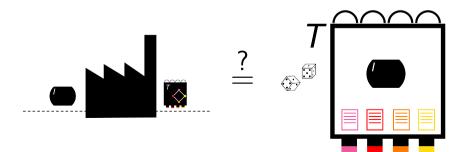
Special case S = I



Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?

Special case S = I

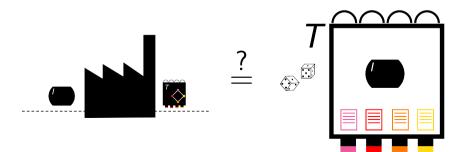
Given $F : \operatorname{Emp}(I) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f : I \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?



Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?

Special case S = I

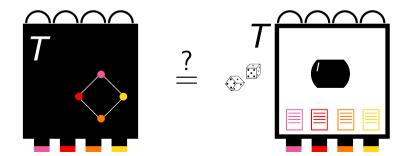
Given $F : \{\star\} \longrightarrow \operatorname{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f : I \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?



Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?

Special case S = I

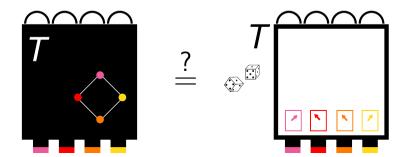
Given an empirical model $e \in \text{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f : I \longrightarrow T$ s.t. F = Emp(f)?



Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?

Special case S = I

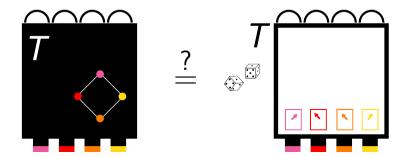
Given an empirical model $e \in \mathbf{Emp}(T)$, is it noncontextual?



Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?

Special case S = I

Given an empirical model $e \in \text{Emp}(T)$, is it noncontextual? (Non-contextual models are those which can be simulated from nothing.)



From objects to morphisms

Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?

is special case of

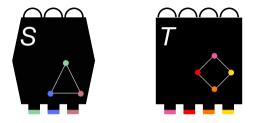
Given an empirical model, is it noncontextual?

From objects to morphisms ... and back!

Given $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \operatorname{Emp}(f)$?

Given an empirical model, is it noncontextual?

Answering the question by internalisation

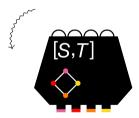


From two scenarios S and T, we build a new scenario [S, T].

Answering the question by internalisation

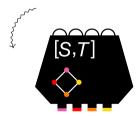
A convex preserving $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$

Answering the question by internalisation

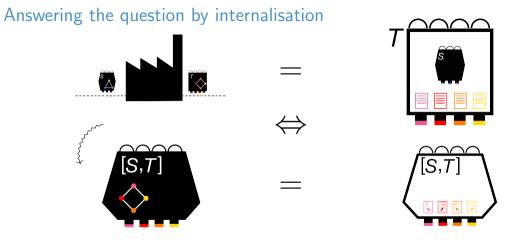


A convex preserving $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical model $e_F : [S, T]$.

Answering the question by internalisation

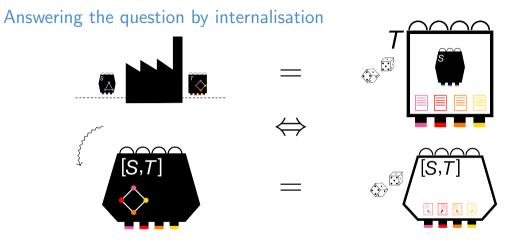


A convex preserving $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical model $e_F : [S, T]$. *F* is realised by a deterministic procedure



A convex preserving $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical model $e_F : [S, T]$.

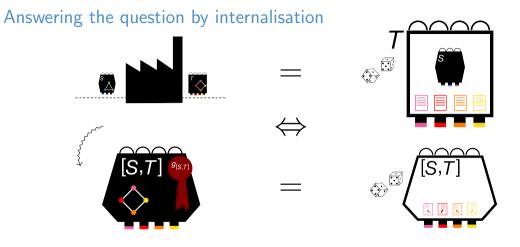
F is realised by a deterministic procedure iff e_F is deterministic.



A convex preserving $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical model $e_F : [S, T]$.

F is realised by a deterministic procedure iff e_F is deterministic.

F is realised by a classical procedure iff e_F is non-contextual.



A convex preserving $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical model $e_F : [S, T]$. F is realised by a deterministic procedure iff e_F is deterministic and satisfies $g_{[S,T]}$. F is realised by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

Further details

• Measurements are those of *T*.

- Measurements are those of *T*.
- Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.

- Measurements are those of T.
- Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable.

- Measurements are those of T.
- Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable. This guarantee is captured by the predicate

 $g_{_{[S,T]}}:[S,T]\longrightarrow \mathbf{2}$.

- Measurements are those of T.
- Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable. This guarantee is captured by the predicate

 $g_{_{[S,T]}}:[S,T]\longrightarrow \mathbf{2}$.

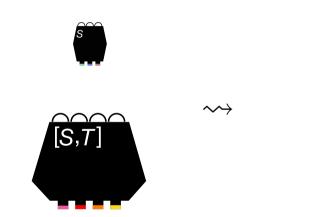
► Noncontextual models have predetermined choice of outcome (S-protocol) for each measurement in T, i.e. are classical procedures S → T.

- Measurements are those of T.
- Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable. This guarantee is captured by the predicate

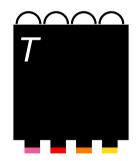
 $g_{_{[S,T]}}:[S,T]\longrightarrow \mathbf{2}$.

► Noncontextual models have predetermined choice of outcome (S-protocol) for each measurement in T, i.e. are classical procedures S → T.

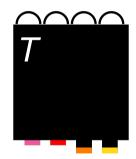
ev :
$$[S, T]$$
 " \otimes " $S \longrightarrow T$



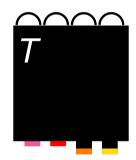
$$\mathsf{ev} : [S, T] \quad ``\otimes'' \quad S \longrightarrow T$$



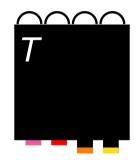
$$\mathsf{ev} : [S, T] \quad ``\otimes'' \quad S \longrightarrow T$$



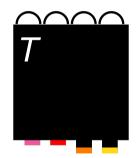
$$\mathsf{ev} : [S, T] \quad \texttt{``} \otimes \texttt{''} \quad S \longrightarrow T$$



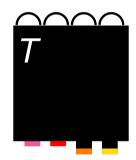
$$\mathsf{ev} : [S, T] \quad \texttt{``} \otimes \texttt{''} \quad S \longrightarrow T$$



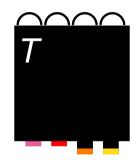
$$\mathsf{ev} : [S, T] \quad "\otimes" \quad S \longrightarrow T$$



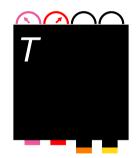
$$\mathsf{ev} : [S, T] \quad "\otimes" \quad S \longrightarrow T$$



$$\mathsf{ev} : [S, T] \quad ``\otimes'' \quad S \longrightarrow T$$



$$\mathsf{ev} : [S, T] \quad ``\otimes" \quad S \longrightarrow T$$



Facts:

- > Every no-signalling empirical model is an affine mixture of deterministic models.
- A function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ that preserves convex mixtures preserves affine mixtures.

Facts:

- > Every no-signalling empirical model is an affine mixture of deterministic models.
- A function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ that preserves convex mixtures preserves affine mixtures.

Therefore, a convex-preserving function $\operatorname{Emp}(S) \longrightarrow D(\{1, \dots, n\})$ is determined by its action on deterministic models, $\operatorname{Det}(S)$.

Facts:

- > Every no-signalling empirical model is an affine mixture of deterministic models.
- A function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ that preserves convex mixtures preserves affine mixtures.

Therefore, a convex-preserving function $\operatorname{Emp}(S) \longrightarrow D(\{1, \dots, n\})$ is determined by its action on deterministic models, $\operatorname{Det}(S)$.

In turn, $\mathbf{Det}(S) \longrightarrow \mathsf{D}(\{1, \dots, n\})$ yields a convex mixture of functions $\mathbf{Det}(S) \longrightarrow \{1, \dots, n\}$.

Facts:

- ▶ Every no-signalling empirical model is an affine mixture of deterministic models.
- A function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ that preserves convex mixtures preserves affine mixtures.

Therefore, a convex-preserving function $\operatorname{Emp}(S) \longrightarrow D(\{1, \dots, n\})$ is determined by its action on deterministic models, $\operatorname{Det}(S)$.

In turn, $\mathbf{Det}(S) \longrightarrow \mathsf{D}(\{1, \dots, n\})$ yields a convex mixture of functions $\mathbf{Det}(S) \longrightarrow \{1, \dots, n\}$.

Fact:

► For any function f out of Det(S), there is a smallest set U_f of measurements needed to implement f.

Facts:

- ▶ Every no-signalling empirical model is an affine mixture of deterministic models.
- A function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ that preserves convex mixtures preserves affine mixtures.

Therefore, a convex-preserving function $\operatorname{Emp}(S) \longrightarrow D(\{1, \dots, n\})$ is determined by its action on deterministic models, $\operatorname{Det}(S)$.

In turn, $\mathbf{Det}(S) \longrightarrow \mathsf{D}(\{1, \dots, n\})$ yields a convex mixture of functions $\mathbf{Det}(S) \longrightarrow \{1, \dots, n\}$.

Fact:

► For any function f out of Det(S), there is a smallest set U_f of measurements needed to implement f.

Thus, f is induced by a deterministic experiment iff U_f is a compatible set of measurements.

Facts:

- ▶ Every no-signalling empirical model is an affine mixture of deterministic models.
- A function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ that preserves convex mixtures preserves affine mixtures.

Therefore, a convex-preserving function $\operatorname{Emp}(S) \longrightarrow D(\{1, \dots, n\})$ is determined by its action on deterministic models, $\operatorname{Det}(S)$.

In turn, $\mathbf{Det}(S) \longrightarrow \mathsf{D}(\{1, \dots, n\})$ yields a convex mixture of functions $\mathbf{Det}(S) \longrightarrow \{1, \dots, n\}$.

Fact:

► For any function f out of Det(S), there is a smallest set U_f of measurements needed to implement f.

Thus, f is induced by a deterministic experiment iff U_f is a compatible set of measurements. Similarly, $\sum r_i f_i$ is induced by an experiment if each U_{f_i} is a compatible set of measurements.

As before, a convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

As before, a convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

Given a compatible set of measurements on T, we then get a mixture of deterministic functions from **Det**(S) to joint outcomes of these measurements.

As before, a convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

Given a compatible set of measurements on T, we then get a mixture of deterministic functions from **Det**(S) to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

As before, a convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

Given a compatible set of measurements on T, we then get a mixture of deterministic functions from **Det**(S) to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

This in turn amounts to giving, for each context, some probabilistic data - an empirical model?

As before, a convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

Given a compatible set of measurements on T, we then get a mixture of deterministic functions from **Det**(S) to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

This in turn amounts to giving, for each context, some probabilistic data - an empirical model?

Lemma

A convex-preserving function $F : \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical no-signalling empirical model $e_F : [S, T]$.

Main results

Theorem

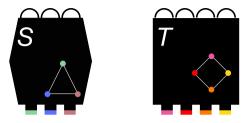
F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

Main results

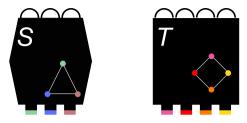
Theorem

F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

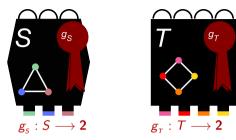
Caveat: adding predicates



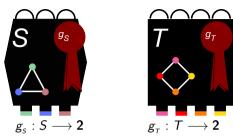
Caveat: adding predicates



Caveat: adding predicates



Caveat: adding predicates



Theorem

F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

Theorem

F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

▶ The theorem suggests working with pairs $(S, g : S \longrightarrow 2)$ as our basic objects.

Theorem

F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

- ▶ The theorem suggests working with pairs $(S, g: S \longrightarrow 2)$ as our basic objects.
- ► A morphism $f : \langle S, g \rangle \longrightarrow \langle T, h \rangle$ is given by a procedure $f : S \longrightarrow T$ such that e : S satisfies $g \implies \operatorname{Emp}(f) e : T$ satisfies h.

Theorem

F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

- ▶ The theorem suggests working with pairs $(S, g: S \longrightarrow 2)$ as our basic objects.
- ► A morphism $f : \langle S, g \rangle \longrightarrow \langle T, h \rangle$ is given by a procedure $f : S \longrightarrow T$ such that e : S satisfies $g \implies \operatorname{Emp}(f) e : T$ satisfies h.

Theorem

[-,-] (appropriately modified) makes this category into a closed category.

Closed structure

[S,T] " \otimes " $S \longrightarrow T$

$$[S, T] ``\otimes'' S \longrightarrow T$$

$$\downarrow S \cong [I, S]$$

$$[S, T] ``\otimes'' [I, S] \longrightarrow [I, T]$$

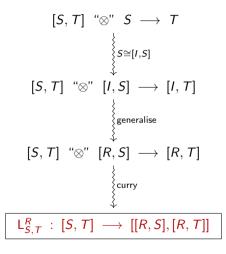
$$[S, T] ``\otimes'' S \longrightarrow T$$

$$\downarrow S \cong [I, S]$$

$$[S, T] ``\otimes'' [I, S] \longrightarrow [I, T]$$

$$\downarrow generalise$$

$$[S, T] ``\otimes'' [R, S] \longrightarrow [R, T]$$



Closed category

$$[-,-]:\mathsf{Scen}^\mathsf{op}\ \times\ \mathsf{Scen}\ \longrightarrow\ \mathsf{Scen}$$

•
$$i_{S}: S \xrightarrow{\cong} [I, S]$$
 natural in S

- ▶ $j_S : I \longrightarrow [S, S]$ extranatural in S (identity transformations)
- ▶ $L_{S,T}^R$: [S,T] \longrightarrow [[R,S],[R,T]] natural in S, T, extranatural in R (curried composition)
- + reasonable coherence axioms

Outlook

External characterisation of adaptive procedures?

Note that [S, T] can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function $\text{Emp}(S) \longrightarrow \text{Emp}(T)$.

► External characterisation of adaptive procedures? Note that [S, T] can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function Emp(S) → Emp(T).

Doing the same possibilistically?

- ► External characterisation of adaptive procedures? Note that [S, T] can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function Emp(S) → Emp(T).
- Doing the same possibilistically?
- ▶ Does the set of all predicates on *S* generalise partial Boolean algebras to arbitrary measurement compatibility structures?

- ► External characterisation of adaptive procedures? Note that [S, T] can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function Emp(S) → Emp(T).
- Doing the same possibilistically?
- Does the set of all predicates on S generalise partial Boolean algebras to arbitrary measurement compatibility structures?
- Examining the closed structure?

Note that it's not monoidal wrt. the usual monoidal structure, but seems closed wrt a 'directed' tensor product.

Questions...

?