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What is circuit knitting?
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Circuit knitting

Circuit cutting[2-8] Entanglement forging[1]

[1] A. Eddins, M. Motta, T. P. Gujarati, S. 
Bravyi, A. Mezzacapo,C. Hadfield, and S. 
Sheldon, “Doubling the size of quantum 
simulators by entanglement forging,” PRX 
Quantum 3, 010309 (2022).

Wire cutting[3,4,7,8]

Gate cutting[2,5,6]
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[2] S. Bravyi, G. Smith, and J. A. Smolin, “Trading classical and quantum 
computational resources,” Physical Review X 6, 021043 (2016).


[3] T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Simulating  large quantum 
circuits on a small quantum computer,” Physical Review Letters 125, 150504 
(2020).


[4] W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi, “ Cutqc: using 
small quantum computers for large quantum circuit evaluations,” in Proceedings 
of the 26th ACM International Conference on Architectural Support for 
ProgrammingLanguages and Operating Systems (2021) pp. 473–486.


[5] K. Mitarai and K. Fujii, “Constructing a virtual two-qubit gate by sampling 
single-qubit operations,” New Journal of Physics 23, 023021 (2021).
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[6] C. Piveteau and D. Sutter, “Circuit knitting with classical communication”, 
arXiv:2205.00016 (April, 2022)


[7] A. Lowe, M. Medvidovíc, A. Hayes, L. J. O’Riordan, “Fast quantum circuit 
cutting with randomized measurements”, arXiv:2207.14734v1 (July, 2022)


[8] C. Ying et al “Experimental Simulation of Larger Quantum Circuits with Fewer 
Superconducting Qubits”, arXiv:2207.14142v1 (July, 2022)
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Quasi-probability simulation of 
non-local gates

The expectation value of the 
measurement outcomes can 

be estimated with the two 
smaller quantum computers.
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The cost of this technique is a 
sampling overhead that scales 
exponentially in the number of 

nonlocal gates involved.

8

Does classical communication 
help?
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3 settings:       (1)  ;          (2)  ;          (3)  .


: non-local unitary gate                           : the corresponding unitary channel


Quasi-probability decomposition:


,    

LO LO ⃗CC LOCC

U 𝒰

𝒰 = ∑
i

aiℱi ℱi ∈ {LO, LO ⃗CC , LOCC} .

9
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Monte Carlo simulation procedure:


𝒰 = ∑
i

aiℱi

10

pi =
ai

∑i ai

 determines the 

sampling overhead.

κ = ∑
i

ai
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[5] K. Mitarai and K. Fujii, “Constructing a virtual two-qubit gate by sampling single-qubit operations”, New Journal of 
Physics 23, 023021 (2021).

κ = 3

∝ S† ∝ S either  or 0⟩ ⟨0 1⟩ ⟨1

either  or I Z

Optimal decomposition in !LO
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Based on the previous 
decomposition, we have:


.𝒮 = κ2 = 32n = 9n
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The smallest achievable value of  for the gate  in a setting 
 is denoted: 


The following is necessarily true: 


κ U
S ∈ {LO, LO ⃗CC , LOCC} γS(U) .

γLOCC(U) ≤ γLO ⃗CC (U) ≤ γLO(U)

13
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For a single copy of the gate  the sampling overhead we incur in is:





For a single copy of the  gate, it can be shown that:





Sampling overhead: , if we cut only a single  gate.

U,

𝒮 = γS(U)2 .

CNOT

γLOCC(CNOT) = γLO ⃗CC (CNOT) = γLO(CNOT) = 3.

𝒮 = 9 CNOT

14
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Suppose we cut  copies of the  gate. Then, the sampling overhead for 
the  scenario is:





However, for the other two settings better decompositions can be found so that:








n CNOT
LO

𝒮LO = 9n .

𝒮LO ⃗CC = O (8n)
𝒮LOCC = O (4n) .

15

Why? How?
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For  copies of the entangling gate  we can write:





But, for the two other settings:





For the :


n U

γLO (U⊗n) = γLO (U)n = 3n .

γS\{LO} (U⊗n) < γS\{LO} (U)n = γLO (U)n .

CNOT

γLOCC (CNOT⊗n) = 2n+1 − 1 ⇒ 𝒮LOCC = O(4n) .

16

For the  gateCNOT

The -factor is strictly 
submultiplicative for 

many unitaries

γ
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“The main ingredient that enables us to use the submultiplicativity of the -factor 
under the tensor product is the ability to realize a gate with a  protocol 

that consumes a preexisting entangled state.”

γ
LOCC
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Tradeoff between the entanglement factory size  and the

effective sampling overhead for the  gate 

k
CNOT
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Open questions: 

1. Identifying useful applications where this framework fits well.


2. Generalizing the presented technique to non-Clifford gates is more 
complicated and not well understood.

21
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• Randomly inserting measure-and-prepare 
channels to express the output state of a 
large circuit as a separable state across 
distinct devices.


• Sample overhead: .Õ (4k /ϵ2)

22
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“(…) our method likely outperforms all other proposed circuit cutting methods for 
simulating quantum computation (…)”
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• Similarly, to what we have seen in the previous work, the authors exploit a 
decomposition:





• The -norm of this decomposition scales with the dimension of the 
subspace upon which the channel acts.


• This “results in our method outperforming the state-of-the-art for a natural 
problem”.

id = ∑
i

aiΦi .

ℓ1

24
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• The scheme considers two different measure-and-prepare channels.


Ψ0(X) = 𝔼U

d

∑
j=1

⟨j U†XU j⟩ U j⟩ ⟨j U† ;

25

Basis:

{ j⟩}d

j=1

Random POVM

{U j⟩ ⟨j U†}d

j=1

Random unitary operator

which forms a unitary 2-design
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             (completely depolarizing channel)


Lemma II.1. Let  be a positive integer and  be the channels defined 
above. Define the Bernoulli random variable  to be equal to 1 with 
probability . It holds that: 

Ψ1(X) = Tr (X)
1
d

.

d Ψ0 , Ψ1
z ∈ {0, 1}

d/(2d + 1)

id = (2d + 1)𝔼z [(−1)zΨz] .

26
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Important nuances and final comments: 

1. This method requires classical communication between circuit fragments to 
coordinate measurement outcomes and state preparation.


2. This paper gives an algorithm based on randomized measure-and-prepare 
channels as well as a way to sample the cut circuit.


3. Difficulties may arise when employing quantum hardware instead of 
simulators. However, these numerical experiments are a testament to the 
practicality of large-scale circuit cutting workflows.

30
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Thank you for your attention!
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γ ( Φ+⟩ ⟨Φ+ ) = 2 ×
1
2

+ 8 ×
1
4

= 1 + 2 = 3.
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