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Contextuality in the early days

q



von Neumann’s theorem 5

As we could learn from Michael’s presentation [9] 1: the early
days of quantum theory were confusing.

1. “Spooky action at a distance”.

2. Two seemingly different formalisms for quantum theory:
Heisenberg’s and Schrödinger’s.

3. No good ideas for what the quantum states represented.

4. What are the possible interpretations that can be draw
from particle-wave duality.

5. Can hidden variables “complete” quantum theory?

1On EPR and Bell-local polytopes.



Let’s attempt to complete it.... 6

We suppose that we can complete the set of observables A with
a set of hidden-variables Λ.

A→ A× Λ



The hidden-variables λ ∈ Λ are such that they “present” the
value of the observables. Calling the value of observable a ∈ A
by λ(a) we have that we can define a valuation function by
v(a, λ) := λ(a).



von Neumann’s Theorem: Firt HVM notion 8

Let A := Mat(C, n)R. A noncontextual hidden-variable is a map
v : A× Λ→ R, such that v(a, λ) ∈ σ(a),2

1. v(a2, λ) = v(a, λ)2,∀a∀λ.

2. v(1n, λ) = 1, ∀λ
Recall from [5, 6] that a quantum context is a set of compatible
(comutative) quantum operators.

2Spectrum of the (self-adjoint) operator a.



Recover quantum theory with expectations 9

Letting (Λ,Σ, µ) be a probability space, we recover the
statistics of quantum theory with

E[a] =

∫
Λ
v(a, λ)dµ(λ) (1)



von Neumann’s Theorem 10

Theorem
For n ≥ 2 there exists no linear noncontextual hidden variable
model for quantum theory. 3

3Originally in [44], great discussion in [15].



Linearity is too strong 11

a = αa1 + βa2 =⇒ v(a, λ) = αv(a1, λ) + βv(a2, λ)

σr :=

√
2

2
(σz + σy)

v(σz, λ), v(σy, λ), v(σr, λ) ∈ {−1, 1} =⇒ ±1 =

√
2

2
(±1± 1)



Kochen-Specker theorem 12

Theorem
For n = 2 there exists a quasi-linear noncontextual hidden
variable model for quantum theory. For n ≥ 3 there exists no
quasi-linear noncontextual hidden variable model for quantum
theory.4

4See [18, 2].



Assumptions of the KS theorem 13

(a) If every observable A is associated with a self-adjoint operator
a, then for every function f the observable f(A ) is associated
with the operator f(a).

(b) v(f(a), λ) = f(v(a, λ)).

(c) The conditions above imply quasi-linearity, i.e., linearity for
compatible observables. If [a1, a2] = 0, a = αa1 + βa2 imply
v(a, λ) = αv(a1, λ) + βv(a2, λ). 5

I Measurements review the properties of states λ.

I The valuations v do not depend in the contexts that they are
being considered. In other words, this can be described as
outcome noncontextual.

5[a1, a2] = 0 ⇒ ∃h, g, c : a1 = g(c), a2 = h(c). [17]



Coloring graphs vs projective measurements 14

Since we are assuming QT we can supose the existence of
observables that are described by projective operators.
For any valuation v, or equivalently any hidden-variable λ we
have that the value assignments onto projections must satisfy6

v(P1 + · · ·+ Pn, λ) = v(P1, λ) + · · ·+ v(Pn, λ) (2)

6Proof in [15].



Coloring graphs vs projective measurements 15

Since valuations return values in the spectrum, these can be
understood as yes/no questions. Each valuation result can be
described by two colors (we will later construct graphs with
respect to compatible measurements)



18 vectors 4 dimensional proof 16

Every columns is a basis for C4. Each of these vectors define a
1-dimensional projection, so that to each columns we can assign
a value one for only one vector: v(P1 + P2 + P3 + P4, λ) =
v(P1, λ) + v(P2, λ) + v(P3, λ) + v(P4, λ) = v(1, λ) = 1.7

(0, 0, 0, 1) (0, 0, 0, 1) (1,−1, 1,−1) (1,−1, 1,−1) (0, 0, 1, 0) (1,−1,−1, 1) (1, 1,−1, 1) (1, 1,−1, 1) (1, 1, 1,−1)

(0, 0, 1, 0) (0, 1, 0, 0) (1,−1,−1, 1) (1, 1, 1, 1) (0, 1, 0, 0) (1, 1, 1, 1) (1, 1, 1,−1) (−1, 1, 1, 1) (−1, 1, 1, 1)

(1, 1, 0, 0) (1, 0, 1, 0) (1, 1, 0, 0) (1, 0,−1, 0) (1, 0, 0, 1) (1, 0, 0,−1) (1,−1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)

(1,−1, 0, 0) (1, 0,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (1, 0, 0,−1) (0, 1,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (0, 1,−1, 0)

7Original article [8].



Red is one and blue is zero 17

(0, 0, 0, 1) (0, 0, 0, 1) (1,−1, 1,−1) (1,−1, 1,−1) (0, 0, 1, 0) (1,−1,−1, 1) (1, 1,−1, 1) (1, 1,−1, 1) (1, 1, 1,−1)

(0, 0, 1, 0) (0, 1, 0, 0) (1,−1,−1, 1) (1, 1, 1, 1) (0, 1, 0, 0) (1, 1, 1, 1) (1, 1, 1,−1) (−1, 1, 1, 1) (−1, 1, 1, 1)

(1, 1, 0, 0) (1, 0, 1, 0) (1, 1, 0, 0) (1, 0,−1, 0) (1, 0, 0, 1) (1, 0, 0,−1) (1,−1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)

(1,−1, 0, 0) (1, 0,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (1, 0, 0,−1) (0, 1,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (0, 1,−1, 0)



Red is one and blue is zero 18

(0, 0, 0, 1) (0, 0, 0, 1) (1,−1, 1,−1) (1,−1, 1,−1) (0, 0, 1, 0) (1,−1,−1, 1) (1, 1,−1, 1) (1, 1,−1, 1) (1, 1, 1,−1)

(0, 0, 1, 0) (0, 1, 0, 0) (1,−1,−1, 1) (1, 1, 1, 1) (0, 1, 0, 0) (1, 1, 1, 1) (1, 1, 1,−1) (−1, 1, 1, 1) (−1, 1, 1, 1)

(1, 1, 0, 0) (1, 0, 1, 0) (1, 1, 0, 0) (1, 0,−1, 0) (1, 0, 0, 1) (1, 0, 0,−1) (1,−1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)

(1,−1, 0, 0) (1, 0,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (1, 0, 0,−1) (0, 1,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (0, 1,−1, 0)



Red is one and blue is zero 19

(0, 0, 0, 1) (0, 0, 0, 1) (1,−1, 1,−1) (1,−1, 1,−1) (0, 0, 1, 0) (1,−1,−1, 1) (1, 1,−1, 1) (1, 1,−1, 1) (1, 1, 1,−1)

(0, 0, 1, 0) (0, 1, 0, 0) (1,−1,−1, 1) (1, 1, 1, 1) (0, 1, 0, 0) (1, 1, 1, 1) (1, 1, 1,−1) (−1, 1, 1, 1) (−1, 1, 1, 1)

(1, 1, 0, 0) (1, 0, 1, 0) (1, 1, 0, 0) (1, 0,−1, 0) (1, 0, 0, 1) (1, 0, 0,−1) (1,−1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)

(1,−1, 0, 0) (1, 0,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (1, 0, 0,−1) (0, 1,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (0, 1,−1, 0)



Contradiction 20

Since every vector appear in pair and we have 18 there must be
an even number of 1 assignments, but since we have 9 columns
this is a contradiction. 8

(0, 0, 0, 1) (0, 0, 0, 1) (1,−1, 1,−1) (1,−1, 1,−1) (0, 0, 1, 0) (1,−1,−1, 1) (1, 1,−1, 1) (1, 1,−1, 1) (1, 1, 1,−1)

(0, 0, 1, 0) (0, 1, 0, 0) (1,−1,−1, 1) (1, 1, 1, 1) (0, 1, 0, 0) (1, 1, 1, 1) (1, 1, 1,−1) (−1, 1, 1, 1) (−1, 1, 1, 1)

(1, 1, 0, 0) (1, 0, 1, 0) (1, 1, 0, 0) (1, 0,−1, 0) (1, 0, 0, 1) (1, 0, 0,−1) (1,−1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)

(1,−1, 0, 0) (1, 0,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (1, 0, 0,−1) (0, 1,−1, 0) (0, 0, 1, 1) (0, 1, 0,−1) (0, 1,−1, 0)

8See for instance [2] for other proofs of KS-theorem.



KS proof with 117 vectors 21



Limitations of the KS theorem 22

I It assumes Quantum Theory.

I It considers projective measurements and not generalized
(noisy) ones.

I It assumes that we can describe and measure a set of perfectly
compatible measurements.

I It does not treat different procedures of the quantum formalism
(preparations and transformations).



Improving the formalism 23

I It assumes Quantum Theory. CA, Sheaf, GPT, CbD

I It considers projective measurements and not generalized
(noisy) ones. Criticising MKC models, GC

I It assumes that we can describe and measure a set of perfectly
compatible measurements. CbD

I It does not treat different procedures of the quantum formalism
(preparations and transformations). GC



Noncontextualities: 24

Kochen-Specker
Sheaf
Logic

Hypergraph
Exclusivity

CbD
Extended
Maximal

CbD multimax
M-noncontextual

Generalized,
Simplex Embeddable

Broad
Leibnizianity
PM scenarios

GPT+Processes



Important lesson from contextuality 25

Local consistency may imply global inconsistency



Important (new) lesson from contextuality 26

Contextuality is not a quantum property. 9

9PR boxes.



Measurement scenarios 27

Recall Rui’s presentations [5, 6].

(X,C , O) (3)

The formalism of the compatibility hypergraph-approach and
the sheaf theoretic approach10 make no reference to quantum
theory in their definitions.

10And all other recent notions.



Important Lesson: from Michael’s presentation 28

We can build robust noncontextuality inequalities that don’t
assume quantum theory.



Important lesson: experimental loopholes 29

Solving the problem of ruling out experimental loopholes is still
an important problem [41]. I will discuss two attempts:
Contextuality-by-Default and Generalized contextuality.



A quick view on CbD 30

Idea: We keep using ideal measurement procedures but relax
the use of perfect correlations.



Motivation: Let’s see experiments 31

KCBS:
E(A1A2) + E(A2A3) + E(A3A4) + E(A4A5) + E(A5A1) ≥ −3 11

11Taken from [25].



Motivation for CbD: A1 6= A′1 32

Note that since there is the need for a large statistical analysis
to show that A1 = A′1, a possibility is to consider these errors
non-essential. Using CbD it is possible to relax these bounds.



CbD in a nutshell 33

Every measurement in a different context corresponds
essentially to a different property: random variables M c

q .

We then impose noncontextuality by existing a global
distribution that maximize the probability that random
variables in the same connection are equal. 12

12See [42, 3, 19].



Important lesson: careful with names. 34

Many approaches differ only by name and objects of study, and
do not change essentially. (e.g., CbD and extended
noncontextuality). One focus in random variables (CbD) and
the other on behaviors (Extended).

Sometimes different descriptions go by the same name (e.g.,
transformation contextuality). These 3 papers [30, 27, 38] have
different descriptions of the what should be transformation
noncontextuality.



Let’s now maintain perfect correlations but allow for imperfect
procedures.



Generalized Contextuality

q



Operational Theory 37

An operational theory is described by set of possible laboratory
instructions (processes/primitives), and a rule for assigning
probabilities. 13

13See [45] and references therein.



Prepare-and-measure experiment 38

Preparation Transformation Measurement



Behavior 39

B := {p(k|M,T, P )}



Quantum Theory as an Operational Theory 40

P → ρ

M → POVM’s

T → CPTP



Experimenter notices something 41

Given P := {P1, P2, P3, P4}, for any [k|M ] possible, we have,

p(k|M,P1) + p(k|M,P2) = p(k|M,P3) + p(k|M,P4)



Operational Equivalences 42

P ' P ′ (4)

∀[k|M ],∀T, p(k|M,T, P ) = p(k|M,T, P ′) (5)



Prepare-and-measure scenario 43

B = (P,M,OM ,EP ,EM) (6)



Bsi



P = {P1, P2, P3, P4} (7)

M = {M1,M2} (8)

OM = {0, 1} (9)

EM = ∅ (10)

EP :⇐⇒ 1

2
P1 +

1

2
P2 '

1

2
P3 +

1

2
P4 (11)



Prepare-and-measure polytope 46

B →

p(1|M1, P1)
...

p(k|MI , PJ)

 ∈ R|K|×|I|×|J |



Prepare-and-measure polytope 47

p(k|Mi, Pj) ≥ 0

∑
k

p(k|Mi, Pj) = 1

p(k|Mi, P1) + p(k|Mi, P2) = p(k|Mi, P3) + p(k|MI , P4)



The operational theory does not explain ”why” the probabilities
arising are the way they are.



Ontic space 49

λ ∈ Λ



Ontological model for a behavior: epistemic states 50

Each preparation Pj is actually preparing an ontic state λ.
For each preparation Pj we associate a probability distribution
µPj over Λ. 14

14We can generalize this to measures.



Ontological model for behavior: effects 51

Each measurement M is associated to a probability distribution
ξ[·|M ](λ)15 over K, the set of outcomes, given a prepared λ ∈ Λ.

15We can generalize this to Markov kernels.



Ontological model for behaviors 52

Any behavior B := {p(k|Mi, Pj)} is explained at the ontological
model as,

p(k|Mi, Pj) =
∑
λ∈Λ

ξ[k|Mi](λ)µPj (λ)



Ontological Models vs Hidden Variables 53

The name is different because of the philosophical purposes.
But many times, they refer to the same thing (and other times
they don’t!).



Noncontextuality hypothesis 54

∑
j

αjPj '
∑
j

βjPj =⇒
∑
j

αjµPj =
∑
j

βjµPj

∑
k,i

α[k|Mi][k|Mi] '
∑
k,i

β[k|Mi][k|Mi] =⇒

∑
k,i

α[k|Mi]ξ[k|Mi] =
∑
k,i

β[k|Mi]ξ[k|Mi]



Quantum Theory is contextual 55

Theorem
Quantum theory is contextual for preparations, transformations
and unsharp measurements, for any dimension of Hilbert space
larger then, or equal to 2.



Assumptions 56

1. Outcome determinism for sharp measurements. This means
that any time we have a measurement procedure that is
sharp the functions ξ[·|M ](λ) answer yes/no questions.

2. Two preparation procedures that are distinguishable with a
one-shot measurement must have a non-overlapping
epistemic description in the ontological model.

3. Convex combinations of procedures are again valid
procedures in the operational theory and they are mapped
to the same ontological quantities.



Proof 57

1
2

|ψc〉

|ψa〉

|ψb〉
|ψ⊥a 〉

|ψ⊥c 〉
|ψ⊥b 〉

|φn〉

|φ⊥n 〉

ρn·



Why not talk about phase space? 1932 [47] 58

W (p, q)



Negativity = contextuality 59

Recall that our descriptions captures phase space
representations in terms of the space Λ. In quantum terms, 16

Tr(ρEk) = p(k|M,P ) =

∫
Λ
ξ[k|M ](λ)µP (λ)dλ (12)

A generalized noncontextual model exists iff any attempt of
describing quantum physics in phase space imply in a
quasi-probabilistic necessity.

16See [39]



Ferrie’s theorem 60

Theorem
A quasi-probability representation of quantum theory must have
negativity in either its representation of states or measurements
(or both). 17

17See [10].



Applying contextuality

q



Vast number of advantages/literature. 62

(a) Weak values. (Introduced in [1], Critics [11], Noncontextuality
[32, 22])

(b) Quantum Thermodynamic Machines. [28]

(c) Two state discrimination. [37]

(d) Quantum cloning. [29]

(e) MBQC. [12, 34, 7]



vast number of advantages 63

(f) Quantum Metrology. [28, 4]

(g) Magic States18

Theorem
Quantum computation with magic states can have a quantum
speedup only if the Wigner function of the initial magic state is
negative. [43].

18The important Nature [16].



vast number of advantages 64

(h) Communication protocols [31, 35, 36, 48, 14]...

(i) Quantum thermodynamic measurements of Heat/Work
substituting TPM (negativity again). [26]

(j) HVM for computation???, [49]19. . .

19This is a very recent work, interesting!



For reasons of being in the group of Galvão, who first proposed
the use of quantum contextuality for communication advantages
[13, 40] I will discuss the Parity-Oblivious Multiplexing (POM)
game:



POM task: Alice 66

Alice generates a random string of bits,

x = (1, 0, 0, 1, 1, 1, 1, 0)



POM task: Bob 67

Bob generates a random number associated with the bit

position of Alice’s string.

y ∈ {0, 1, 2, . . . , n− 1}



POM task: goal 68

The goal of Bob is to guess correctly the y-th bit in the string x

generated by Alice.

xy



POM task: restriction 69

Alice does not send any information about any parity of the
string x.



Par :=

{
r
∣∣∣r ∈ {0, 1}n,∑

i

ri ≥ 2

}
(13)



We call the procedures that Alice sends to Bob as,

Px



POM task: restriction 72

The generalized restriction of the POM game is,

∀r ∈ Par,∀[k|M ] :
∑

x|x·r=0

p(k|M,Px) =
∑

x|x·r=1

p(k|M,Px)

where x · r means sum module 2 of the bit scalar products.
x · r =

⊕
i xiri.



POM task: example 73

x = (x0, x1) ∈ {0, 1}2



POM task: example 74

Par = {(1, 1)}



POM task: example 75

(1, 1) · (0, 0) = 0⊕ 0 = 0

(1, 1) · (1, 0) = 1⊕ 0 = 1

(1, 1) · (0, 1) = 0⊕ 1 = 1

(1, 1) · (1, 1) = 1⊕ 1 = 0



∀[k|M ] 76

p(k|M,P(0,0)) + p(k|M,P(1,1)) = p(k|M,P(0,1)) + p(k|M,P(1,0)).



Probability of winning 77

p(g = xy) =
1

2 · 22

∑
y∈{0,1}

∑
x∈{0,1}2

p(g = xy|My, Px) (14)

1/2 = p(y), 1/22 = 1/4 = p(x)



POM task: simplest scenario 78

2-bit POM ≡ Bsi



n-POM task 79

n-bit POM ≡ B



n-POM: noncontextual models 80

Theorem
The optimal bound for the probability of Bob finding the correct
value of xy, in any noncontextual ontological model, is

p(g = xy) ≤
1

2

(
1 +

1

n

)
(15)

From [40]



Probability of winning:classical vs quantum theory20
81

pQ(g = xy) = 0.85

pNC(g = xy) = 0.75

20See [46] and references for simplest scenario.



n-POM: classical vs quantum theory 82

3 4 5 6 7 8 9

0.55

0.65

0.75

0.85

0.95

1

n

p



Connection to Bell scenarios 83

The simplest scenario we have presented is isomorphic to a Bell
scenario with two parties, each with two binary outcome
measurements. [37]



The simplest scenario again [33] 84

P = {P1, P2, P3, P4} (16)

M = {M1,M2} (17)

OM = {0, 1} (18)

EM = ∅ (19)

EP :⇐⇒ 1

2
P1 +

1

2
P2 '

1

2
P3 +

1

2
P4 (20)



Sources 85

Instead of preparations P1, P2, P3, P4 we let two sources S0, S1

be such that, each source Si chooses between two settings
si ∈ {0, 1} with equal probability. 21

We then associate these events of a source choosing a setting
[0|S0] as a preparation procedure P1 ≡ P[0|S0] etc,
∀s : p(s|S) = 1/2.

1

2
[0|S0] +

1

2
[1|S0] ' 1

2
[0|S1] +

1

2
[1|S1]

21For sources framework see [23, 24, 20, 21].



Joint probability of events 86

p(k, s|M,S) = p(k|M,P[s|S])p(s|S)



Normalized 87

∑
k,s

p(k, s|M,S) =
∑
k,s

p(k|M,P[s|S])p(s|S) =
∑
s

p(s|S) = 1



Non-signaling 88

C := {{M0, S0}, {M0, S1}, {M1, S0}, {M1, S1}}∑
s

p(k, s|M0, S0) =
1

2

∑
s

p(k|M0, P[s|S0])

=
1

2

(
p(k|M0, P[0|S0]) + p(k|M0, P[1|S0])

)
=

1

2

(
p(k|M0, P[0|S1]) + p(k|M0, P[1|S1])

)
=

1

2

∑
s

p(k|M0, P[s|S1])

=
∑
s

p(k, s|M0, S1)



Preparation noncontextuality will imply the existence of an
ontological model such that

p(k, s|M,S) =

∫
λ
ξ(k|λ,M)p(s|S)µ(λ|s, S)dλ (21)

But noticing that µ(λ|s, S)p(s|S) = µ(λ, s|S) = µ(s|λ, S)µ(λ)
we get a locally causal model for the behaviour, by letting
“Alice” and “Bob” correspond to the devices M and S. 22

p(k, s|M,S) =

∫
λ
ξA(k|λ,M)p(s|S)µB(s|λ, S)µ(λ)dλ (22)

22See [33] for the other direction of the proof.



This is more general 90

Every scenario that has a no measurement equivalences, and
that has preparation equivalences that generate one procedure
is isomorphic to a Bell scenario.



Lesson: relevance of mixed states 91

There are behaviours that are maximally contextual without
being described by pure states and sharp measurements.





Quantum advantages 93

I Describe you experimental scenario, that represents an
important problem.

I Try to obtain a bound, or a no-go result that represents a
constraint into noncontextual models.

I Show that quantum theory overcomes these constraints.
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