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• Bayesian parameter estimation

• Application to quantum systems

• Bayesian experimental design

• Offline vs. adaptive parameter estimation

• Implementation for a simple example and numerical results

• Characterizing open quantum systems



Bayesian Parameter Estimation 

𝑃 Θ 𝐷 =
𝑃 𝐷 Θ 𝑃(Θ)

𝑃(𝐷)

𝛩: parameters
𝐷: data

prior distribution

“evidence”

likelihood

posterior 
distribution

Update our previous beliefs according to the likelihood
that they would have predicted the experimental data

Bayes’ rule

𝑃 𝐷 = න𝑃 𝐷 Θ 𝑃(Θ)𝑑Θ
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Example: Estimating the Fairness of a Coin

For a single coin flip:

𝑃 𝐻𝑒𝑎𝑑𝑠 =⊝

𝑃 𝑇𝑎𝑖𝑙𝑠 = 1 −⊝

⊝=?

The probability of heads is either ¼ or ¾.

We have to take a guess with 3 coin flips.

Which do we pick?



𝑃 𝐻𝑒𝑎𝑑𝑠 =⊝

𝑃 𝑇𝑎𝑖𝑙𝑠 = 1 −⊝

⊝=
1

4
∨
3

4

Results: Head, Tail, Tail

𝑃 𝛩 𝐷, 𝐸 𝛼 𝑃 𝐷 Θ, 𝐸 𝑃(Θ)

E: experiment (flipping the 
coin N=3 times)
D: experimental data (the 
outcomes: heads or tails)

(with 𝑃 𝐷 𝐸 the proportionality constant, 
independent of 𝛩)

• Our prior is 𝑷 ⊝ =
𝟏

𝟐
𝜹

𝟏

𝟒
+

𝟏

𝟐
𝜹

𝟑

𝟒
.

• For this experiment and outcomes, the likelihoods for each ⊝ are 𝑷 𝑫 𝜣,𝑬 =

=⊝∙ 𝟏 −⊝ ∙ 𝟏 −⊝ .

• All that is left is the divisor, which can be thought as a normalization factor. We

have 𝑷 𝑫 𝑬 = σ𝜣𝑷 𝑫 𝜣,𝑬 𝑷(𝜣), where the sum is taken over our two thetas:
1

4

and
3

4
.



𝑃 𝐻𝑒𝑎𝑑𝑠 =⊝

𝑃 𝑇𝑎𝑖𝑙𝑠 = 1 −⊝

P ⊝ =
𝟏

𝟐
𝜹

𝟏

𝟒
+

𝟏

𝟐
𝜹

𝟑

𝟒

Results: Head, Tail, Tail

𝑃 𝛩 𝐷, 𝐸 𝛼 𝑃 𝐷 𝛩, 𝐸 𝑃(𝛩)

E: experiment (flipping the 
coin N=3 times)
D: experimental data (the 
outcomes: heads or tails)

𝑃 ⊝=
1
4 𝐻𝑒𝑎𝑑, 𝑇𝑎𝑖𝑙, 𝑇𝑎𝑖𝑙 , 3 𝑓𝑙𝑖𝑝𝑠 𝛼 𝑃 𝐻𝑒𝑎𝑑, 𝑇𝑎𝑖𝑙, 𝑇𝑎𝑖𝑙 |3 𝑓𝑙𝑖𝑝𝑠 ∙

1

2
=

1

4
∙
3

4
∙
3

4
∙
1

2
=

9

128

𝑃 ⊝=
3
4 𝐻𝑒𝑎𝑑, 𝑇𝑎𝑖𝑙, 𝑇𝑎𝑖𝑙 , 3 𝑓𝑙𝑖𝑝𝑠 𝛼 𝑃 𝐻𝑒𝑎𝑑, 𝑇𝑎𝑖𝑙, 𝑇𝑎𝑖𝑙 |3 𝑓𝑙𝑖𝑝𝑠 ∙

1

2
=

3

4
∙
1

4
∙
1

4
∙
1

4
=

3

128

(with 𝑃 𝐷 𝐸 the proportionality constant, 
independent of 𝛩)

We then have:

And get, upon normalizing:

𝑷 ⊝=
𝟏

𝟒
≡ 𝑃 ⊝=

1
4 𝐻𝑒𝑎𝑑𝑠, 𝑇𝑎𝑖𝑙𝑠, 𝑇𝑎𝑖𝑙𝑠 , 3 𝑓𝑙𝑖𝑝𝑠 =

𝟑

𝟒
𝑷 ⊝=

𝟑

𝟒
≡ 𝑃 ⊝=

1
4 𝐻𝑒𝑎𝑑𝑠, 𝑇𝑎𝑖𝑙𝑠, 𝑇𝑎𝑖𝑙𝑠 , 3 𝑓𝑙𝑖𝑝𝑠 =

𝟏

𝟒
;



𝑃 𝐻𝑒𝑎𝑑 =⊝

𝑃 𝑇𝑎𝑖𝑙 = 1 −⊝

𝑃0 ⊝=
1

4
= 𝑃0 ⊝=

3

4
= 50%

Results: Head, Tail, Tail

𝑃 𝛩 𝐷, 𝐸 𝛼 𝑃 𝐷 Θ, 𝐸 𝑃(Θ)

E: experiment (flipping the 
coin 3times)
D: experimental data (the 
outcomes: heads or tails)

(with 𝑃 𝐷 𝐸 the proportionality constant, 
independent of 𝛩)

𝑷 ⊝=
𝟏

𝟒
≡ 𝑃 ⊝=

1
4 𝐻𝑒𝑎𝑑, 𝑇𝑎𝑖𝑙, 𝑇𝑎𝑖𝑙 , 3 𝑓𝑙𝑖𝑝𝑠 =

𝟑

𝟒

𝑷 ⊝=
𝟑

𝟒
≡ 𝑃 ⊝=

1
4 𝐻𝑒𝑎𝑑, 𝑇𝑎𝑖𝑙, 𝑇𝑎𝑖𝑙 , 3 𝑓𝑙𝑖𝑝𝑠 =

𝟏

𝟒

The Bayesian update has changed our beliefs to 
better match the experimental evidence:

Whereas the frequentist approach would have been 
to compute

𝑷 𝑯𝒆𝒂𝒅 ≈
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑎𝑑𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠
=
𝟏

𝟑

𝑷 𝑻𝒂𝒊𝒍 ≈ 1 − 𝑃 𝐻𝑒𝑎𝑑 =
𝟐

𝟑

We would based on this say that ⊝=
𝟏

𝟒
is the most 

likely value for ⊝.

, without directly estimating the underlying 

parameter ⊝ that explains the system’s 

behaviour, or incorporating our prior knowledge 

into the calculations.



Application to Quantum Systems
Likelihood Born rule

𝑷 𝟎 = 𝒂

𝑷 𝟏 = 𝒃 = 𝟏 − 𝒂

ۧ|𝜓 = 𝛼| ۧ0 + 𝛽 ۧ|1

ۧ𝑷(|𝟎 ) = |𝜶|𝟐

ۧ𝑷(|𝟏 ) = |𝜷|𝟐 = 𝟏 − |𝜶|𝟐

𝑃 𝐷 Θ given by, for 𝐷 ∈ 0,1 :

𝑃 𝐻𝑒𝑎𝑑𝑠 =⊝

𝑃 𝑇𝑎𝑖𝑙𝑠 = 1 −⊝

Head ↔ 0 ; a ↔⊝ ; Tail ↔ 1 ; b ↔ (1 −⊝)

or condensing this into a single expression, 
𝑃 𝐷 Θ = 𝑎1−𝐷(1 − 𝑎)𝐷

or again, 

ۧ𝑃(|𝐷 |Θ) = |𝛼|2 1−𝐷(1 − |𝛼|2)𝐷

In the coin example:

Given the probabilistic nature of quantum 
mechanics, we can use Bayesian learning to 

infer the parameters of quantum systems



Bayesian Hamiltonian Learning

• A lack of knowledge can be expressed by a flat prior over 

the plausible region in the parameter space

• We can then apply Bayes’ rule repeatedly as we perform 

several experiments 

• In the end we will have a probability distribution, rather 

than a single point estimate

Granade, Christopher & Ferrie, Chris & Wiebe, Nathan & Cory, D. (2012). Robust Online Hamiltonian Learning. New Journal of Physics. 14. 10.1088/1367-2630/14/10/103013. 

Wang, J., Paesani, S., Santagati, R. et al. (2017). Experimental quantum 
Hamiltonian learning. Nature Phys 13, 551–555.



D ∼ 𝑃 𝐷 Θ𝑟𝑒𝑎𝑙 , 𝐸

𝑃 Θ 𝐷, 𝐸 =
𝑃 𝐷 Θ, 𝐸 𝑃(Θ)

𝑃 𝐷 𝐸

𝑷𝒊+𝟏(𝜣) ∝ 𝑷 𝑫 𝜣,𝑬 𝑷𝒊 (𝜣)

E: experiment
D: experimental data 
𝐷 ∈ {𝐷1, … , 𝐷𝑁} (outcomes of E)

D

Bayesian Hamiltonian Learning

(𝑎𝑝𝑝𝑙𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦)

Ferrie, Chris & Granade, Christopher & Cory, D. (2011). Adaptive Hamiltonian Estimation Using Bayesian Experimental Design. AIP Conference Proceedings. 1443. 10.1063/1.3703632. 

Granade, Christopher & Ferrie, Chris & Wiebe, Nathan & Cory, D. (2012). Robust Online Hamiltonian Learning. New Journal of Physics. 14. 10.1088/1367-2630/14/10/103013. 



E: experiment
D: experimental data 
𝐷 ∈ {𝐷1, … , 𝐷𝑁} (outcomes of E)

D

Bayesian Hamiltonian Learning

Wiebe, Nathan & Granade, Christopher & Ferrie, Chris & Cory, D. (2013). Hamiltonian Learning and Certification Using Quantum Resources. Physical review letters. 112. 10.1103/PhysRevLett.112.190501. 

Granade, Christopher & Ferrie, Chris & Wiebe, Nathan & Cory, D. (2012). Robust Online Hamiltonian Learning. New Journal of Physics. 14. 10.1088/1367-2630/14/10/103013. 

The likelihoods 𝑷 𝑫 𝜣,𝑬 are 

obtained from a simulator; for 

complex enough systems, the 

simulation becomes intractable for 

classical computers, requiring the use 

of a quantum simulator



E: experiment
D: experimental data 
𝐷 ∈ {𝐷1, … , 𝐷𝑁} (outcomes of E)

D

Bayes estimator ෢⊝
(chosen from the posterior

with respect to some loss function, 
so as to minimize the predicted loss)

Bayesian Hamiltonian Learning



Example: estimating a precession frequency 
We have a single qubit evolving under an internal Hamiltonian

for which we assume a fixed form:

𝐻 =
𝝎

2
Ω𝑍

, where 𝝎 is the parameter we mean to estimate (“Θ”).

To get information about the system, we can measure the x (or y) component of the spin at a

controllable time t (after initialization).

We can then characterize the system (parametrized by 𝝎) using these experimental data

along with simulations of the system (which provide the likelihoods for the Bayesian updates).

Ferrie, Chris & Granade, Christopher & Cory, D. (2011). Adaptive Hamiltonian Estimation Using Bayesian Experimental Design. AIP Conference Proceedings. 1443. 10.1063/1.3703632. 
Granade, Christopher & Ferrie, Chris & Wiebe, Nathan & Cory, D. (2012). Robust Online Hamiltonian Learning. New Journal of Physics. 14. 10.1088/1367-2630/14/10/103013. 

Wang, J., Paesani, S., Santagati, R. et al. (2017). Experimental quantum Hamiltonian learning. Nature Phys 13, 551–555.



Example: estimating a precession frequency 

→ ෡𝑈 = 𝑒𝑖 ෡𝐻𝑡 = cos(
𝜔𝑡

2
) ∙ መ𝐼 + 𝑖 sin(

𝜔𝑡

2
)෡Ω𝑧

With Ψ0 = | ۧ+ , we have the time evolution given by: 

𝛹 𝑡 = 𝑒𝑖 ෡𝐻𝑡| ۧ+ = cos
𝜔𝑡

2
∙ | ۧ+ − 𝑖 sin(

𝜔𝑡

2
)| ۧ−

So if we measure the qubit at a time t in the x-eigenbasis, we get the eigenstates | ۧ+ or | ۧ− with likelihood:

ۧ𝑷(|+ ) = cos2
𝜔𝑡

2
ۧ𝑷(|− ) = sin2

𝜔𝑡

2

𝐻 =
𝝎

2
Ω𝑧

, given 𝝎.



Example: estimating a precession frequency 

E: experiment (measuring after a controlled 

evolution time t after initialization)

D: experimental data (results of the 

measurements) 

𝐷 ∈ {+,−} (outcomes of E)

We determine a prior, and iteratively Bayes-update it according to the experimental data, replacing it at 

each step with the freshly updated distribution. 

When we are satisfied with the sharpness of the distribution, we can choose an estimator from the final 

posterior and quantify our belief in it (e.g. through the variance)



D ∼ 𝑃 𝐷 𝜔𝑟𝑒𝑎𝑙, 𝑡

𝑷𝒊+𝟏(𝝎) ∝ 𝑷 𝑫 𝝎, 𝒕 𝑷𝒊 (𝝎)

E: experiment (characterized by t)
D: experimental data (results of the 
measurements) 
𝐷 ∈ {+,−} (outcomes of E)

𝑷 𝑫 𝝎, 𝒕

𝑫

e.g. 𝑃 + 𝜔, 𝑡 = cos2
𝜔

2
𝑡

The Parameter Estimation Algorithm



Bayesian Experimental Design
We can adaptively design each experiment 

(e.g. choose the time of the measurement) 

based on the results gotten so far (i.e. the 

current distribution).

This can be done for instance to maximize the 

expectation value of a utility function (e.g. 

the negative variance, or the information 

gain), which we can compute given the prior 

(and again access to a simulator)

Ferrie, Chris & Granade, Christopher & Cory, D. (2011). Adaptive Hamiltonian Estimation Using Bayesian Experimental Design. AIP Conference Proceedings. 1443. 10.1063/1.3703632.
Granade, Christopher & Ferrie, Chris & Wiebe, Nathan & Cory, D. (2012). Robust Online Hamiltonian Learning. New Journal of Physics. 14. 10.1088/1367-2630/14/10/103013. 

Wang, J., Paesani, S., Santagati, R. et al. (2017). Experimental quantum Hamiltonian learning. Nature Phys 13, 551–555.



Offline vs. Adaptive Strategies for 
Experimental Design

• Choose the experiments in advance

• Process the data only after performing all the

experiments (offline)

Adaptive

• Choose the experiments at each step, based

on the results from the previous ones

• Process the data online, as the experiments

are performed

• Locally optimize the next experiments’

controls

Offline



Adaptive Hamiltonian Learning

𝑡𝑖+1 ∝
1

𝜎𝑖

𝑡𝑖+1 ∝
1

𝜃2 − 𝜃1

, with 𝜎𝑖 the standard deviation of the distribution P(𝜃) at step i

, with 𝜃1 , 𝜃2 sampled from the distribution P(𝜃) at step i

An alternative to utility optimization is the use of heuristics, such as the following particle guess heuristic:  

Intuitively, we want to choose short evolution times when we know little about the system, and longer

ones when our distribution is already more sharply peaked, so that the guesses continue to be informative 

as we learn more about the system

or

Wiebe, Nathan & Granade, Christopher & Ferrie, Chris & Cory, D. (2013). Hamiltonian Learning and Certification Using Quantum Resources. Physical review letters. 112. 10.1103/PhysRevLett.112.190501. 



Hamiltonian Parameter Estimation
Numerical Results for the Precession Example



Adaptive strategy:
- Standard deviation: 0.08
- Error: 0.06
- Final precision: 0.27

Offline strategy :
- Standard deviation: 0.14
- Error: 0.09
- Final precision: 0.46

n=50; N=30; 𝜔𝑚𝑎𝑥 = 10; 𝑇𝑐 = ∞

Hamiltonian Parameter Estimation
Numerical Results for the Precession Example



Learning the Dynamics of Open Quantum 
Systems

Open quantum systems require that we account for 

the interaction with an external environment, by 

adapting the protocol for a finite coherence time



Learning the Dynamics of Open Quantum 
Systems

Granade, Christopher & Ferrie, Chris & Wiebe, Nathan & Cory, D. (2012). Robust Online Hamiltonian Learning. New Journal of Physics. 14. 10.1088/1367-2630/14/10/103013. 

ۧ𝑷(|+ ) = 𝑒
−
𝑡
𝑇𝑐cos2

𝜔𝑡

2
+
1 − 𝑒

−
𝑡
𝑇𝑐

2

= 𝑒
−
𝑡
𝑇𝑐sin2

𝜔𝑡

2
+
1 − 𝑒

−
𝑡
𝑇𝑐

2

ۧ𝑷(|− ) = 𝟏 − ۧ𝑷(|+ )

In the precession example:

We now have a 2 dymensional parameter space, Ԧ𝜃 = 𝜃1, 𝜃2 ≡ (𝜔, 𝑇𝐶) . 

We can estimate these parameters simultaneously
(or 𝜔, 𝛼 , where 𝛼 ≡

1

𝑇𝐶
)



Adaptive strategy:
- Standard deviation: 0.03; 0.0267
- Error: 0.04; 0.0275

Offline strategy:
- Standard deviation: 0.04; 0.0271
- Error: 0.04; 0.0386

(Results for 𝜔; 𝛼 ≡
1

𝑇𝐶
)

n=50; N=900 (30 each); 𝜔𝑚𝑎𝑥 = 10; 𝑇𝑐𝑚𝑖𝑛 = 10

Hamiltonian Parameter Estimation
Numerical Results for the Precession Example in the Presence of Decoherence



Thank you for your attention!


