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Complex numbers I

Complex numbers were invented to solve equations like 2% = —1

Early days

—

Greek engineer Heron of Alexandria

- Arab polymath Al-Khwarizmi ——— solutions to quadratic equations

Many Italians mathematicians of Renaissance ——— solutions to cubic equations

—
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Complex numbers 11

Leonhard Euler

Introduced i with the rule i? = —1 w—p 22— _] <

What a ridiculous name!
It should be called lateral.

I will call it imaginary!

Real part

N

N , - Imaginary part
Complex numbers z=a+1-b“
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Complex numbers and Physics

Complex numbers are very useful in physics

Iy o Rotations in the unit circle

/ \R ¢ ™~ Euler’s formumla e’ = cosf +isinb
kJH -

Flectromagnetism = Electromagnetic waves E = EgetkT—«?)

Special relativity == Lorentz transformations generalized rotations in 4D space-time

Convenient mathematical tool but not necessary
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Complex numbers and Quantum mechanics

Complex numbers connected to the heart of quantum mechanics

isolated physical system associated with complex Hilbert space H

15¢ postulate {
state represented by vector ) € H

Schrodinger equation ih—d(l;’m = H|v)
t
. . / .
imaginary unit \

split into real part + imaginary part

Measurement outcome real number
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Complex numbers and Quantum mechanics

Do we actually need complex numbers?



Real versus complex numbers

Amplitudes in QM are complex numbers Why should it be so?

[ constructive and destructive interference

QM over real numbers  e— — unitary tranformations

absolute squares of amplitudes that are probabilites

—

Teleportation Grover’s algorithm

Quantum Information QKD == Real numbers
Superdense coding Bell inequality
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Phenomenon observed by Bill Wooters

d /f (plap%"')pd)
Uniformly random pure state > a;|i)
i=1 probability distribution
(p1,p2, -+ Pa) Uniformly random probability distribution

N

uniformly random point on the simplex p1 +p2+ -+ Pq =

Fineprint: Only if the amplitudes are complex numbers
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Example 11

A <— unknown mixed state p — B

(many identical copies of p)

Can p be fully determined from joint statistics of product measurements?

Example:  Bell experiment certify that A and B share an entangled state
Classical probability distributions YES!
(Quantum mixed states ——  YES but only with complex amplitudes

q : :
__ NOT maximally mixed state

0
0 — indistiguinshable from the maximally mixed state
1 by any local measurement

[
o O

QM over reals p=

O = = O
O - = O
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# of independent real parameters to specify a n-dim mixed state

n-dim mixed state n X n Hermitian matrix

n(n—1)

n real parameters from diagonal
Complex —  n+2=F5— = n {

n(n —1)/2 complex parameters below the diagonal

n(n+1)

Real —> 5

real parameters (”Hermitian matrix” = real symmetric matrix)

% o Complex  (nanp)? = n%n%
composite system AB ——>  dap = dadp —

Real nang(nangtl)  na(natl) np(np+l)

2 2
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Main paper
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Complex numbers, 1.e., numbers with a real and an imaginary part, are essential for mathematical
analysis, while their role in other subjects, such as electromagnetism or special relativity, 18 far
less fundamental. Quantum physics 15 the only physical theory where these numbers seem to
play an indispensible role, as the theory 1z exphatly formulated i terms of operators acting
on complex Hilbert spaces. The occurrence of complex numbers within the gquantum formahsm
has nonetheless puzzled countless physicists, ncluding the fathers of the theory, for whom a
real version of quantum physics, where states and observables are represented by real operators,
seemed much more natural. In fact, previous works showed that such “real quantum physics”
can reproduce the outcomes of any multipartite experiment, as long as the parts share arbatrary
real quantum states. Thus, are complex numbers really needed for a quantum description of
nature? Here, we show this to be case by proving that real and complex quantum physics make
different predictions 1n network scenarios comprising independent quantum state sources. This
allows us to devise a Bell-type quantum experiment whose mput-output correlations cannot be
approximated by any real quantum model. The successful reahzation of such an experiment would
disprove real quantum physics, in the same way as standard Bell experiments disproved local physics.
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Main 1dea

Question: If we use the standard quantum formalism and restrict the Hilbert
spaces to be real, possibly of larger dimensions, could we still explain the same

phenomena”?
“Complex” quantum physicist "Real” quantum physicist
propose experiments using standard QM simulate .the same experiment using QM
based on complex Hilbert spaces but restricted to real measumerent

operators and density matrices

Main goal: Rule out the possibility that the universe is secretely based on real
version of QM in order to simulate complex QM
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Simulation using real Hilbert spaces

P
. memmm)  "Real” quantum physics can simulate any experiment
Observation
P(r) real i} R the same experiment explained
P(r) = tr(pll;) P(r) = P(r)* = tr(p*TL}) I by complex conjugates as well

1 .
—(10) £ 2|1
adding an extra qubit V2 (10) 1))

enlarge Hilbert space by T [+i) =
- @

separable mixed state

e

simulation density matrix —— p = %(p®| + i) (+i|+p*®| — i) (—i])

(doubling the dimension)

real meaurement operator ——-s I, = (IT, ®| + ) (+i|+ITE® | — i) (—i|)
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Simulation using real Hilbert spaces

Single quantum system

“Complex” quantum physicist "Real” quantum physicist

P P ®
o~ i—
l T

r

In single lab we can describe quantum experiments without complex numbers
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Simulation involving several parties

quantum entanglement

Experiments involving several distant labs
b ; " Bell non-locality

—> Bell experiment

Alice Bob

e state pap acting on joint space

<_.._>

o A .. B, are local measurements
alzs by (two photons)

e correlations given by P(a,b|z,y) = tr(papAa|s ® Byjy)

violation the Bell inequality —— disproves local classical physics

Question: Can "real” quantum physics be falsified by (complex) quantum Bell
experiment?
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Some important remarks

When there is NO violation of any Bell inequality

N

measured correlations can be reproduced

by local deterministic models =) real numbers suffice

Bell violation —— necessary condition for complex-real gap

/

NOT sufficient wmsp | CHSH inequality: CHSH(1,2;1,2) = (A1B1) + (A1 Bo) + (A9B1) — (A3 By) <2

—

6CHSH — 2\/5 ‘
maximal violation

real measurements + real two-qubit state
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Looking for complex maximal violation

Bell inequalities whose maximum quantum violation

Next step —— _
requires complex numbers

Combination of 3 CHSH inequalities: CHSH3 = CHSH(1,2;1,2) + CHSH(1, 3;3,4) + CHSH(2,3:5,6) < 6

/

38cusu = 6v/2

maximal violation

Alice: 3 measurements
Bob: 6 measurements

real quantum Bell experiments reproduce
the statistics of any Bell experiment[g]

NOPE!

2] M. McKague, M. Mosca, and N. Gisin, Simulating quantum systems using

real hilbert spaces, Phys. Rev. Lett. 102, 020505(2009). 18



Extra qubit again

Adapt the construction of extra qubit in the multipartite case

“Complex” quantum physicist "Real” quantum physicist

T Yy
Alice PAB Bob Alice
a b

i} 1 o . o
PAA' BB = 5(PAB®‘ + 4, +0) (+1, +i| a4 pr 05 g®| — 1, —1)(—1, —i| a7

X

ﬁAB Bob

— %6 —

P(ablzy) = tr(papAas @ Byy)
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More than one source

Scenarios with more than one source of entangled states Quantum internet

entanglement swapping scenario

r=1,2,3
Alice

5'AB1 Bob

0B,C
- 90 — @ - 90 —
b=1,....4
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a =+l

c==+1




Entanglement swapping scenario

r=1,2,3 6
b=1,....4 Alice Charlie
N -
pac(b)  (2-qubit entangled state)
o=xl - p=1.. c==1
Alice + Charlie |
- Bob /f
mazimal violation of CHSH3 inequality r=123
Alice Charlie
NO real simulation is possible!
a==1 c==l1
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SWAP scenario

"Real” quantum physicist

r=1,23
Alice Charlie
a= =+l c=+1
Observed statistics must admit:  P(a, b, clx,2) =Y P(A) tr{(dap, ® 5820)(/ia|;c ® By ® éc|z)}

)\ L Y )

/

projective measurements
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Particular SWAP scenario

"Complex” quantum physicist

GAB, = 0B,c =0T =1[¢0T) (o7 pT) = %(\O(D +[11))

N

Alice’s observables: (Al\w — }i_”x r=1,2,3) —> 0z,0x,0y

D;; = 7it9;
Charlie’s observables:  (Cy, —C_y, ;2 =1,...,6) { U'\i' (ij = 22,2y, wy)
EZ] — —7’\/53'

6%) = 5(100) £ [11))

2
)

Bob’s measurements: {

S s

(/01) = [10))

2

Observed statistics are  P(a,b, c|z,z) = tr {(5ap, ® 5B,c)(Age ® By @ Cef2)}
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Particular SWAP scenario

three CHSH inequality ——— Bell-type parameter

E,= ). Plabclz,z)ac linear functional Ty[(E2,(P)]
a,c==x1

it can be verified that To(P) = 6+/2P(b) for all b with P(b) — 1

W

Alice and Charlie’s state, conditioned on Bob’s outcome b, mazximally violate
the three CHSH inequality

CHSH; = CHSH(1,2; 1,2) + CHSH(1, 3; 3,4) + CHSH(2, 3;5,6) < 6
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Proposition 1. P does not admit the following decomposition if we demand
the states and the measurements to be real.

P(a,b,clz,z) =Y P\ tr{(6ap, ® 5320)(21@@ ® By ® C‘c‘z)}
X\

Theorem 3. For any distribution P admitting the decomposition above with
real states and measurements,

T(P) < 7.6605
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Outlook

Complex numbers —  convenient mathematical tool

(Question: If we use the standard quantum formalism and restrict the Hilbert
spaces to be real, possibly of larger dimensions, could we still explain the same
phenomena?

Single system

+ simulate with real
entangle state shared by 2 parties

SWAP scenario ——  "real” and "complex” quantum physics give different predictions

Results rely on the assumption of the formalism of tensor product

™~

Real frameworks with the same predictive power
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Experimental realization

[Submitted on 13 Mar 2021]
Ruling out real-number description of quantum mechanics

Ming-Cheng Chen, Can Wang, Feng-Ming Liu, Jian-Wen Wang, Chong Ying, Zhong-Xia Shang, Yulin Wu, Ming Gong, Hui Deng, Futian Liang, Qiang
Zhang, Cheng-Zhi Peng, Xiacbo Zhu, Adan Cabello, Chao-Yang Lu, Jian-Wei Pan

Standard quantum mechanics has been formulated with complex-valued Schrodinger equations, wave functions, operators, and Hilbert spaces. However, previous work has
shown possible to simulate quantum systems using only real numbers by adding extra qubits and exploiting an enlarged Hilbert space. A fundamental question arises: are
the complex numbers really necessary for the quantum mechanical description of nature? To answer this question. a non-local game has been developed to reveal a
contradiction between a multiqubit guantum experiment and a player using only real numbers. Here, based on deterministic and high-fidelity entanglement swapping with
superconducting qubits, we experimentally implement the Bell-like game and observe a quantum score of 8.09(1), which beats the real number bound of 7.66 by 43
standard deviations. Our results disprove the real-number description of nature and establish the indispensable role of complex numbers in quantum mechanics.

Comments: 13 pages, 4 figures, submitted
Subjects: Quantum Physics (quant-ph); Mesoscale and Manoscale Physics (cond-mat. mes-hall); Mathematical Physics (math-ph)
Cite as: ar¥iv:2103.08123 [quant-ph]

(or arXiv-2103.08123v1 [quant-ph] for this version)
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Proposition 1

Proof by contradiction

Claim: Suppose that P()X), A, By, By, C, real states a;\lB, a])g o, real measurements
Aa|$,Bb,C’c‘ such that ZP( Jtr{(daB, ® 7B,0 )(Aa|$®Bb®C’c‘ )} = P(a,b,c|z, )

i i Bob /f? o purification
P = Z)\: P(M\)(GaB, ® 0B,c) AC system ——>  trg (ByyBy)/P(b) = [9°) (1"
local isometry U @ V (laim

A — ] if the real [¢°) saturates (¥°|T|1®) < 6v/2
A" —H]

N UaV
¢ Eaily
" —]H] |

’ (7] + -
o~ P = trac (U0 VI = )bl © | 2527

Step 1 Step 2 Step 3  Step 4 A O

self-testing protocols
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Proposition 1

b._ b\ /b — o+~
p = trac (U@ VIY°)(W7]) = [0){blacr @ | ==
AIICN
K AT S )X ] e e ]
2 o 2
_ N R2 @2
p=Y P(b)ph = Mg | A ] p= X PN tra(Uaan, U © trp (Vi)
b AN A
NOT real separable state real separable state

N /

CONTRADICTION
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Thank you for your attention!
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