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MB-VQECM-VQE

• Variational state is prepared by applying gates on
the all-zero state

• Reference state preparation and application of

𝑈 ϴ correspond to portions of the circuit

• ϴ are gate parameters

• Variational state is prepared by creating an entangled
resource state and measuring the ancillae

• Reference state preparation and application of 𝑈 ϴ

correspond to portions of the graph state

• ϴ are angles of measurement bases for ancilla qubits



Option I: Edge Decoration of a Problem-Specific Ansatz

• Ancilla qubits are added to a problem-specific graph state with the intent of producing parameterized modifications
• No direct circuit-model analogue to the transformations caused by measuring the ancillae
• Example use case: a perturbation is added to a Hamiltonian whose (known) ground state is a stabilizer state

(Ferguson et al., 2021)



Option II: Direct Translation from Circuit Model VQE

• Translate a variational circuit to a measurement protocol on a graph state
• Same achievable states: search space is left unchanged
• Example use case: platform favours preparation of entangled states over application of entangling gates

(Ferguson et al., 2021)



𝑅𝑧(ϴ)

𝑅𝑥(ϴ)

𝐻

From Circuits to ZX-Diagrams

(van de Wetering, 2020)
(Kissinger, 2020)



Using (id), (f), (h), (hh), (52), (83), (92), (94), we can transform any ZX diagram into a graph-like ZX 
diagram. These diagrams represent graph states.

From ZX-Diagrams to Graph-Like ZX-Diagrams



From ZX-Diagrams to Graph-Like ZX-Diagrams

(f)
(h)



From ZX-Diagrams to Graph-Like ZX-Diagrams

(f)
(h)



...translation to MB-VQE is advantageous for circuits containing a large fraction of so-called Clifford
gates (e.g. CX gates), as these are absorbed into the custom state.

An advantage of MBQC is the possibility to simultaneously perform all non-adaptive measurements
at the beginning of the calculation (...). This corresponds to the Clifford part of a circuit and includes
single- and many-qubit gates. This is independent of the position of the gates in the circuit, and
reduces the required overhead and coherence time. Remarkably, this can be done (...) on a classical
computer before the experiment. (...) [The simplified] state can be directly prepared and used for the
MBQC, which may have dramatically fewer auxiliary qubits compared to the initial graph state.

When is MB-VQE advantageous?

(Ferguson et al., 2021)



Simplifying the Clifford Part of Graph-Like ZX-Diagrams

Using (102), (103), we can remove internal Clifford spiders (spiders with a phase of 𝑘
𝜋

2
, 𝑘 𝜖 ℤ ) from the 

ZX diagram. That leaves only non-Clifford spiders, and border spiders.



Removing Clifford Spiders from Graph-Like ZX-Diagrams

(103)



Graph States and ZX-Diagrams



From Graph-Like ZX-Diagrams to Measurement Protocols

a

a

post-selection of
outcome
for qubit 1 Graph State

q1 q2 q1 q2



From Graph-Like ZX-Diagrams to Measurement Protocols

a

a

𝑠1𝜋

With post-selection Without post-selection

Probabilistic 𝜋-phase Z-spider

q1 q2

q1 q2

Upon measurement, we get one of these states; the probability of getting the desired one depends on the
state of the qubit being measured.

We measure qubit 1 in the basis spanned by ,



ba| 0 >

Circuit Graph-like ZX-diagram

From Graph-Like ZX-Diagrams to Measurement Protocols



From Graph-Like ZX-Diagrams to Measurement Protocols

a b a (−1)𝑠1b

𝑠1𝜋 𝑠2𝜋

Without post-selectionWith post-selection



a (−1)𝑠1b

𝑠1𝜋 𝑠2𝜋

Pauli corrections

Adaptive measurement

Pauli Z Pauli X

We can disregard this if measuring
on the computational basis
(but careful with non-diagonal
measurements!)

We can reinterpret measurement
outcomes depending on 𝑠2
• 𝑠2 = 0: do nothing
• 𝑠2 = 1: 0↔1

From Graph-Like ZX-Diagrams to Measurement Protocols



Graph State Preparation

Vizing’s Theorem

A graph state on N qubits can be prepared with O(Δ) circuit depth, where Δ is the
maximum degree of the graph

Peter Høyer, Mehdi Mhalla, Simon Perdrix. Resources Required for Preparing Graph States. 17th International Symposium on Algorithms and Computation (ISAAC 2006), 
Dec 2006, Kolkata, India. pp.638 - 649, ff10.1007/11940128_64ff. ffhal-01378771f

Class I 
Depth Δ

Class I 
Depth Δ+1



Sources of the Entangling Operations Overhead
Clifford Removal

𝓍+4 edges 𝓍+8 edges

𝓍+9 edges 𝓍+14 edges
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Circuit Graph-like ZX-diagram

𝑅𝑥(𝑑)𝑅𝑧(𝑐) dc

0 entangling operations

Sources of the Entangling Operations Overhead
Knobs

4 entangling operations

| 0 >



...translation to MB-VQE is advantageous for circuits containing a large fraction of so-called Clifford
gates (e.g. CX gates), as these are absorbed into the custom state.

An advantage of MBQC is the possibility to simultaneously perform all non-adaptive measurements
at the beginning of the calculation (...). This corresponds to the Clifford part of a circuit and
includes single- and many-qubit gates. This is independent of the position of the gates in the circuit,
and reduces the required overhead and coherence time. Remarkably, this can be done (...) on a
classical computer before the experiment. (...) [The simplified] state can be directly prepared and
used for the MBQC, which may have dramatically fewer auxiliary qubits compared to the initial
graph state.

Are Cliffords really ‘free’?

Increase in graph state edge count will lead to more entangling
operations and computational layers in the graph state preparation

Entangling operation overhead can even increase Coherence time requirements are not necessarily reduced, just shifted
in part to the preparation of the resource state

!

!

!

(Ferguson et al., 2021)

!

... But shifting all the entangling operations into the graph state preparation allows for repeating the
(probabilistic) state preparation until we know that we have the correct initial state. Cliffords are ‘free’
not in the sense of computational cost, but in the sense that they can in principle be exempt from errors.



Example Global Clifford Unitary 
Circuit



Example Global Clifford Unitary 
Graph-like ZX-diagram



Example State Preparation I: Hardware-Efficient Ansatz
Circuit vs Graph-like ZX-diagram



Entangling Operation Count, case I (HE ansatz)
CM-VQE vs MB-VQE

• Both grow like 𝒪
𝑁2

log(𝑁)

• Better prefactor for CM-VQE

• Best choice will be platform-
dependent



Number of Layers in the Computation, case I (HE ansatz)
CM-VQE vs MB-VQE

• Unoptimized CM-VQE has an

associated 𝒪
𝑁2

log(𝑁)
depth

• MB-VQE has an associated 𝒪 𝑁
depth from the moment the graph 
state is created

• Graph state creation is also 𝒪 𝑁

Optimized CM-VQE (LNN)*: ~ 9𝑛
Full MB-VQE: ~ 5𝑛

*Bravyi et al., 2021



Example State Preparation II: 𝑁 Pauli Exponentials
Circuit vs Graph-like ZX-diagram



Entangling Operation Count, case II (N PE Ansatz)
CM-VQE vs MB-VQE

• Both grow like 𝒪
𝑁2

log(𝑁)

• Better prefactor for MB-VQE

• Best choice will be platform-
dependent



Number of Layers in the Computation, case II (N PE Ansatz)
CM-VQE vs MB-VQE

• Unoptimized CM-VQE has an

associated 𝒪
𝑁2

log(𝑁)
depth

• MB-VQE has an associated 𝒪 𝑁
depth from the moment the graph 
state is created

• Graph state creation is also 𝒪 𝑁

Optimized CM-VQE (LNN): ~ 9𝑛
Full MB-VQE: ~ 4𝑛



Classical Shadows

Scenario: observables with a bounded Hilbert-Schmidt norm 𝑇𝑟(𝑂2)

• Applying global random Cliffords at the end of the circuit (along with some classical processing steps)
allows for an exponential decrease in the number of samples required for estimating the expectation
values of M observables

• With 𝒪 log(𝑀) shots we can estimate the value of M observables; with 𝒪 𝑀 of 𝑒𝑀

• Number of shots is independent of the size of the system

(Huang et al., 2020)



Classical Shadows
(global Cliffords)

Extra cost (MBQC)

𝒪
𝑁2

log(𝑁)
entangling operations

𝒪 𝑁 depth

Extra cost (circuit model)

𝒪
𝑁2

log(𝑁)
entangling operations

𝒪 𝑁 depth

Applications

• Quantum fidelity estimation (QFE)

• Entanglement verification (via entanglement witnesses)



Classical Shadows
(global Cliffords)

Classical shadows and MB-VQE

• Shot requirements are currently a major limitation of VQAs

• MB-VQE could offer a better prefactor for the depth (especially if the ansatz also has a large Clifford part)

• Channeling the difficulty towards the preparation of an entangled resource state can benefit certain platforms

Issue: it’s rare for variational algorithms to target observables with a bounded Hilbert-Schmidt norm



Fermionic Classical Shadows

• The fermionic version of classical shadows allows for
an improvement in the number of samples required to
evaluate the k-RDM of a quantum state

• Calculating the k-RDM allows us to determine the
expectation value of any k-body observable

• The strategy is tailored to local fermionic observables,
which do not correspond to local qubit observables

(Zhao et al., 2021)



Hamiltonian averaging

Variance of estimator (Ha)

(Zhao et al., 
2021)

(Huang et al., 
2020)

Fermionic classical shadows allow for an improvement over the random Pauli classical shadows... 



Hamiltonian averaging

Variance of estimator (Ha)

(Zhao et al., 
2021)

(Huang et al., 
2020)

(Hadfield et al.,
2020)

... but don’t beat the state-of-the-art for Hamiltonian averaging.

Fermionic classical shadows allow for an improvement over the random Pauli classical shadows... 

Can fermionic classical shadows be tailored to the specific problem of Hamiltonian averaging to improve this result?  

Can MB-VQE offer an advantadge in the search for a minimum of another fermionic k-body observable?



Conclusions

• MB-VQE shifts the main workload of VQE into the preparation of an entangled resource state,
after which the computation amounts to nothing but measurements

• This new algorithm may be more suitable for e.g. photonic quantum computers

• Important costs (e.g. entangling operations) are ‘hidden’ in the resource state

• The best choice between CM- and MB-VQE is platform-dependent and trade-offs must be
carefully analysed
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