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matchgate circuits
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The Clifford hierarchy, introduced by Gottesman and Chuang in 1999, is an increasing sequence of sets of quantum gates crucial to the gate teleportation
model for fault-tolerant quantum computation. Gates in the hierarchy can be deterministically implemented, with increasing complexity, via gate
teleportation using (adaptive) Clifford circuits with access to magic states.

We propose an analogous gate teleportation protocol and a related hierarchy in the context of matchgate circuits, another restricted class of quantum
circuits that can be efficiently classically simulated but are promoted to quantum universality via access to "'matchgate-magic' states. The protocol
deterministically implements any n-qubit gate in the hierarchy using adaptive matchgate circuits with magic states, with the level in the hierarchy
indicating the required depth of adaptivity and thus number of magic states consumed. It also provides a whole family of novel deterministic matchgate-
magic states.

We completely characterise the gates in the matchgate hierarchy for two qubits, with the consequence that, in this case, the required number of resource
states grows linearly with the target gate's level in the hierarchy. For an arbitrary number of qubits, we propose a characterisation of the matchgate
hierarchy by leveraging the fermionic Stone—von Neumann theorem. It places a polynomial upper bound on the space requirements for representing
gates at each level.



Presentation outline

* Motivation
« Matchgate circuits and FLO
« Clifford hierarchy

« Matchgate hierarchy

* Hierarchy gate teleportation with magic states
e 2-qubit characterization

e Fermionic Stone-von Neumann theorem



A way to understand the power of quantum computers is to study restricted classes of
guantum circuits that can be classically simulated but become universal by the addition of
extra resources.

Stabiliser sub-theory: Matchgate sub-theory:
» Clifford circuits « Matchgate circuits
* Gottesman-Knill theorem « Valiant’'s theorem
« Cliffords + T gate « Matchgates + SWAP gate
« Non-stabiliser magic states « Connected to fermionic linear optics (FLO)

* Fermionic non-Gaussian magic states

Promotion of restricted classes of circuits to quantum universality can be done through
quantum gate teleportation protocol introduced by Shor and in more generality by
Gottesman and Chuang.

!

Clifford hierarchy gates can be deterministically implemented using gate teleportation
protocol on stabiliser circuits. They can be performed fault-tolerantly.




Matchgate quantum computation

Valiant '02: Matchgates arose from the theory of perfect matchings in the context of
counting constraint satisfaction problems.

Ay 0O 0 A
0O By B 0

Matchgate is a 2-qubit unitary gate of the form: G(A, &) := 0 By By 0 |€ U4)
Asy 0 0 Ay
g N [4=1581]
Matchgate Circuits s —) Mg”“) C U2")
- /

Act __~ Aacts on the even-parity subspace spanned by {|00), [11)}
ction of G(A, B) |
% T B acts on the odd-parity subspace spanned by {|01),|10)}

parity-preserving operator 5



Matchgate quantum computation

((Cz)®n= even-parity subspace @ odd-parity subspace
'd ~
eigenspace of Z®™ with +7 eigenvalue  eigenspace of Z®" with -7 eigenvalue

__» parity-preserving or even if [M, Z¥"] = 0

n-qubit operator M
; P T parity-reversing or odd if {M,Z®"} =0

Matchgate circuits === parity-preserving (even)

{Mg‘”’) + X k} — gg”') generalized matchgate circuits (even + odd operators)




Matchgate quantum computation

/- -\

[computational] +

+ {Z k measurement} = classically efficiently simulable
basis states

\_ /

n.n. matchgate circuits
SWAP = G(1, X)(|1] = —| X]

) } =) qUantum universality
non-matchgate

n.n. matchgate circuits + {

z . _ O\
Clifford setting and quantum universality: fermionic SWAP. é 8 (1] 8
 (Clifford circuits + non-Clifford gate BWAP=G(Z.X) =1, 1 o o

« Clifford gates + non-stabilizer states (‘'magic’ states) \ 000 - )

Hebenstreit et al. "19:

Quantum universality with ‘magic” states using gate teleportation protocol

— .

pure fermionic non-Gaussian states probabilistic, may require multiple rounds 7



Majorana fermions and fermionic linear optics

Jordan-Wigner transform
Physical significance of matchgate circuits =———— quantum evolution of non-interacting fermions
Fermionic physics:

n fermionic modes with creation and annihilation operators a,JE and ay

2n Hermitian unitary operators {cu}iil known as Majorana operators:
Cok—1 ‘= QA + CLL and cof = —i(ar — aL) satisfy CAR: {cu.co} =20,,1
\\» {cu,cn} i=cuc, +cuey,

CAR == presentation of the Majorana group == =+c, ---c,.. (u; <- <y

. 2n
CAR == presentation of an algebra over C == elements: > ..o 2, <. <p.. @rreoospin Cpin * " Cpig
/ 8
Clifford algebra



Jordan-Wigner transformation

Jordan-Wigner transformation:
e n fermionic mode systems e n qubits (one dimensional chains of spin-1/2 particles)
« n fermionic operators «== n-qubit Pauli operators ~

n-mode fermionic state being represented by n-qubit state:

computational basis state: |z) = |z1,...,2,) (Z € Z)) === Fock state: |¥,) = (al)?*---(al)* |0)

Majorana operators {cu}izl represented by n-qubit Hermitian unitaries (i.e. in /(2")) as:
Cop1 = (Hf;f Z@-) Xy, Cop = (Hf;f Z,,;) Yo (k=1,....n)

The monomials €, *** €y, with 1 < -+ < i, form a basis of Msn (C) of n-qubits



Even and odd operators in fermionic language

n-qubit operator M is even if [M,Z%"] =0 orodd if {M,Z®"} =0

Fermionic language:
* An operator is even (resp. odd) if itis a l.c. of even (resp. odd) degree monomials of Majorana operators

* The parity subspace gn) (resp. o) ) is spanned by the monomials ¢, - - - ¢,,, with m even (resp. odd)

Physical states are constrained by the parity superselection rule ‘:e:;\}:e\ﬁ—‘-‘*iéd‘g‘j:humber parity states
e Example: ) = E(|OO> + |01))

[Physical states are constrained to be eigenstates of Z®" : fermionic states}

Parity is conserved quantity: W) c EMor OM) ﬂ. W,) c £M) o o)

Adjoining ancillary modes enlarges the physically implementable evolutions to include odd unitaries

{Even or odd unitaries === fermionic J

10



Non-interacting ('free’) fermions

Non-interacting (‘free’ ) fermionic systems are governed by quadratic Hamiltonians:

2
H =1 Zﬁyzl huvCuCy where h = (huy) isa2nx 2n real antisymmetric matrix

l

U = eiH = Gaussian unitary (or fermionic linear optical) === implemented by matchgate circuits

Action of Gaussians on Majorana operators:

2n
UCMUT — ZR;/,VCV for R € SO(QTL)

v=1 | conversely

there exists anti-symmetric matrix h s.t. R = e”

[Gaussian operations «=— R € SO(Zn)J

e Classical simulability of Gaussians (or matchgate circuits)

Generalized matchgate circuits «=— R & O(2n) (reflections)
(adding ¢, to the gate set) 11



Non-interacting ('free’) fermions

Gaussian states:

An n-qubit state is called Gaussian if it arises as the action of a Gaussian operator on the Fock state
or equivalently of a matchgate circuit on a computational basis state

Alternative definitions of Gaussianity is given in terms of the operator A,, = Z Cr. X Cp:
+ A fermionic operator U is Gaussian iff [An, U®?] =0

. A fermionic state |¢) is Gaussian iff A, [¢))®? = 0

The above definitions suggest a general definition of Gaussianity:

A 2™ x 2™ matrix M is called Gaussian iff A, M®? = M®?A,,

12



Clifford hierarchy

Gates in the Clifford hierarchy were introduced by Gottesman and Chuang to analyse
resources in the gate teleportation protocol. They can be implemented fault-tolerantly to
achieve universality.

Increasing sequence of sets of n-qubit gates {C ,gn) Feen

The first level of the hierarchy is the n-qubit Pauli group C%n) which is generated by the
X; and Z; Pauli operators.

The second level is the Clifford group: Cén) = {U cU(2") | Ucfn)UT < an)}

The Clifford hierarchy is defined recursively: C’,S:’L)l = {U cU(2") | UCY")UT = C,in)} (E>1)

Examples of 3-level gates: Toffoli gate, the T gate and the controlled-phase gate CP
13



(Generalized) matchgate hierarchy

Definition. Fix any n > 1, the number of qubits (or fermlonlc modes). The n-qubit generalized
matchgate hierarchy is the sequence of n-qubit gates {Qk }kelN defined as follows:

« The first level of the hierarchy is the set of unit-norm, I.c. of Majorana operators,
gn) = {Zinzl auc, | a€ R, |lall = 1}3

« Higher levels are defined recursively, for any k > 1: \—/

QkH = {U cUR™) | Vue{l,... ,Qn}[UcMUJr c Q,in) N O(”)}

/ restricts the gates to be fermionic
G = {ueeMuom |y U Ut € g

ensures unitarity

Motivation:
» Foundational reason: Physical operations are parity constrained === fermionic operators

» Practical reason: In the gate teleportation protocol magic states must be * freely” swapped
(without the use of SWAP gate), which was shown (Hebenstreit "19) to be done iff the state

is fermionic. 14



Fermionic unitaries

The following lemma characterises fermionic gates as the ones that preserve matrix parity under
conjugation:

Lemma. Let U € U(2™) be an n-qubit unitary. If conjugation by U preserves the parity of
operators, in that it maps even operators to operators and odd operators to odd operators, i.e.

Met"™ — UMU' € €™ and Mec O™ — UMUT ¢ O™

then U is fermionic (i.e. either even or odd).

{Corollary. Foralln,k = 1, Q,(ﬂn) cEMuyon . J = Gates in the hierarchy are fermionic!

We denote k-level even gates as Mg”’) = gl(c'”’) N &)

Mén) =) UnNitaries realised by matchgate circuits

én) =) LINitaries realised by generalised matchgate circuits 15



Examples

The SWAP = G (I, X) is an example of an even two-qubit third-level gate since:

SWAP C1 SWAP = —i616203 SWAP C3 SWAP = —i6163€4
SWAP Co SWAP — —i616204 SWAP Cq SWAP = —i626304

Another example is the CZ = G(Z,1) = diag(1,1,1, —1) and more generally the controlled-phase

27T

gate C,, ,k—2 = diag(1,1,1, e2*-2) which is a k-level gate.

Examples of three-qubit gates in the third level:

0
0
0
0
0
-1
0
0

o~

\ /1 0 0 0
0000
0010
0000
01 00
0000
000 1
~1) \0 0 0 0

fSWAP; 5
z,y, 2) = (—=1)% |2, 9, 2)

l cccc e

—

|:c,y,z) = (_1):% |Z7yv$>

coo=RoCoc oo
[em i e R e B an i e i e Y e
oSS oo oo o
S oo o oo o

coococo o=
ScSoc oo,

coococococo -
coococo o -=o
c oo oco = o
cooco-CoCoCCo

o

_1)

—_

An interesting family of examples is the n-qubit C"~1Z gate which is in the (n + 1)-th level of the

matchgate hierarchy.
16



Basic properties of the hierarchy

Closed under scaling by a phase:
Proposition. Forn>1and k > 2, U € ngn) implies e*?U € Q,(:’) for all ¢ € [0,27).

Closed under right multiplication by Majorana operators:

Proposition. Forn >1and k =2, U € g,g"’) implies [U c, € Q,S"’)] for all .

bijection betweer M\ := G\ n £ and gg”) N O el

Closed under right multiplication by Majorana operators:

Proposition. For n,k > 1, U € Q,gn) implies ¢, Uc,, € Q,gn’) for all .

Nested levels:
Proposition. For n,k = 1,G\" c G\, .

Closed under tensor product:

Proposition. Forn,m > 1and k = 2, U € gfj) and V & glgm) implies U @ V € glg’”rm)

17



Magic states and quantum universality

Quantum universality:
1. Clifford gate set (free operations) + non-Clifford gate (resourceful gate)
2. Clifford gate set + ‘'magic states (and adaptive measurements)

Paradigmatic example: 0) + el T/4 1)
(resourceful) T gate which can be implemented using the magic states |T) :=
using the so called T-gadget V2
4 N\
1 — I
) SX ) Gadget that consumes single copy of |T) state
to deterministically implement a T gate
L ) lné )

Quantum teleportation protocol
g [4) I H ﬁR = A
N I

XM2 ] ZMl |w> 18
- /

L/

Bell state {




Quantum universality of matchgates

SWAP = G(1, X)(|1| = —| X]

) } = quantum universality
non-matchgate

n.n. matchgate circuits + {

Hebenstreit et al. "19:
(resourceful) SWAP gate can be implemented via a ‘SWAP-gadget’ (teleportation protocol)

using the magic state |M) = £ (|0000) + |0101) + [1010) + |1111))

. - >1 )
v Bell| = |G(H,H) A

. . ) —— ) |- ~ :
Characterization of magic states for matchgates: | mgl !
Theorem. Every pure fermionic (eigenstate of RN e (6 e o1 i it %)
Z®") state which is non-Gaussian (cannot be M) 3 7zl - )
generated by a matchgate circuit from a QRS S o Rl e N
computational basis state) is a ‘'matchgate- o) ) 0 i 7o .

magic” state. \ |6> | W

Gadget that consumes single copy of |M) state
to deterministically implement a SWAP gate




Matchgate hierarchy gate teleportation protocol

Gottesman and Chuang 1999:

- : A

Bell measurement

) 5 - .
: b Q |4) ’ | G(H, H)
< ] ( : L=
@ Rlly | U‘Of) Bell state : X z
4 0) — : A=
U7) G(H, H) | G(H, H)
. / 0) — : g I
Teleportation protocol that performs any U X |
in the Clifford hierarchy fault-tolerantly. 10) — | |
G(H, H) U | Ry 2yooszs U |4)
0) — | -
|

\

Matchgate magic state |My)

Circuit to implement deterministically a gate U € G 15,1)1 by gate teleportation
protocol using n.n. matchgates fSWAP and G(H,H), a pre-prepared ‘'matchgate-

magic” state and a “correction” operator R, := iU (Hu cj"‘) UT, indexed by
measurement outcomes z € {0,1}*". 20



Protocol for 2 qubits

Bell measurement

z2

|

) G(H, H)

Z1

' ™\

I
]
I
I
: -
Bell state : >C
I
|U) — : /7< 2:4=.
G(H,H) | G(H,H)
_X I
I
0) — | —
G(II: L[) U : Rzlaz2}z:5:|z4 U Il/;)
0) — | —
\ J |

Matchgate magic state | M)
] O | |

21



Protocol for 2 qubits

IMy) = (1@ U)B|0000) B = fSWAP 5G(H, H) oG(H, H)s.4



Protocol for 2 qubits

The two inputs wires and one half of the magic Bell measurement
state are measured in the computational basis I.’ S 22
state after applying BT. | G(H, H)

It gives a method for probabilistically implement
any unitary gate U (not necessarily in the : ;ﬁ

hierarchy).

<1

X

-

3

)

For U being in the hierarchy it's guaranteed that Bt
the output can be corrected based on the \ ’
outcomes. I

The necessary correction is a sequence of gates from the R\ ,22,23,2 U |¥)
lower level of the hierarchy. — —

Recursive application of the protocol allows one to deterministically
implement any gate in the hierarchy.




Important remarks about the protocol

Bell measurement

Magic states can be prepared offline beforehand,

, A
..e. independently of the input of the circuit. |¢>’ i G(H, H)
| g
Crucially, magic states need to be used in bell state | X
matchgate circuits built out of nearest-neighbour | 10 — | <o
qubit lines, and SWAP is not a free gate. ) GH, H) i G, H) o B
! oy X )
For implementing U the magic state needs to be G(H, H) Ul R U )
moved next to the gate being implemented. For 10) — | —
that the state must be swapped through arbitrary T T ———— |
states using only free gates. - |
l |My) = (1@ U) B |0000)
Magic states can be freely swapped if and only if = | The magic state is fermionic when the gate U is
they are fermionic. itself fermionic.

24



Protocol for n-qubit gates

|21) —

|z2) —

G(H, H)

G EE O EE . S S . S . e . .

|23) —

|24) —

G(H, H)

|32n—3) —

|2an—2) —

G(H, H)

|32n—1} —

|22n) —

G(H, H)

n — 1 layers of fermionic swaps, fSSWAP = G(Z,X)

Implements a permutation of the wires whereby
odd numbered qubits are listed first followed by
even numbered qubits

Transposition of neighbouring qubits picks up a —1
phase when both modes are occupied (|11)).

_

<

0;0

25




Characterisation of 2-qubit gates in the hierarchy

All gates in the hierarchy are fermionic (i.e. either even or odd)

Even gates Odd gates
Ay 0 0 A 0 A A 0
|9 Bu B 0 J(A, By = [ V0 Bt gy
GABY:=| o 5 5 o |€U® AB) =15 "0 0o B, (4)
Ayy 0 0 Ao 0 Ao A 0

[They are matchgates only when |4| = |B|. J

Proposition. gf) is the set of unitaries of the form J (A, A™) with |A| = —1.

Proposition. Forany k = 2, ¢ I(f)is the set of unitaries of the form G (A, B) or J(A, B) with
k-2
[4]>" " =|B

|2k—2

Characteristic examples: SWAP = G(I,X) and CZ = G(Z, 1), which are both third level gates. 26



Efficiency of 2-qubit protocol

Proposition. For any k=22, G, (2) s the set of unitaries of the form G (A,B) or J(A, B) with

2k2

|A| |B | . 1 Bell measurement
i A
(2) . n %) ! G(H,H)
Each of the sets G, is a subgroup of U(2") . . g AR |
Bell state : K
[0) — i A
The correction operator is: R, := i*®@U (HM ci“) ut, G, H) i Gt )
indexed by measurement outcomes z € {0,1}*. X i
j0) — | —
The correction is a product of up to four gates that | =~ G(H, H) Ul e I
belong strictly in the lower level |
l Matchgate magic state | My )
This four-way branching causes the overall efficiency of implementing a gate to scale exponentially in k.

!

The fact that gf) Is a group makes the product in the correction (now a single gate) be in a strictly lower
level than k. Therefore, the protocol scales linearly with the level k.




Matchgate-equivalence classes

Two gates are said to be (generalised-)matchgate-equivalent if they can be obtained from one
another by multiplying on both sides with (generalised) matchgate circuits.

Proposition. Any two-qubit even unitary gate is matchgate-equivalent to the controlled-phase
Cy = G(Ps,1), where P, = diag(1, e'?), for a unique phase ¢ € [0,2m).

Corollary. There are 22 classes of even two-qubit k-level gates. Representatives of each
class are given by the gates C,, so that e'¥ = |A|/|B| are the 252 roots of unity.

Im I

m Im Im Im
~ A
< Re } Re @ Re @ Re @ Re

g§2) ggQ} g‘f) ggQ} géQ)




Matchgate-equivalence classes

An odd gate .J(A, B) can be decomposed as G(A, B) J(1,1)

!

Bijection between even and odd gate === Equivalence classes of odd k-level gates

|Al/1B|

J(A,B)=G(A,B)J(1,1) = J(1,1) G(B,A) == Multiplication by an odd gate { B4
B

The equivalence classes of C,, and C_, collapse!

Proposition. Any two-qubit fermionic unitary gate is matchgate-equivalent to the controlled-phase
Cy := G(Py,1), where P, = diag(1, e'®), for a unique phase ¢ € [0,1].

Corollary. There are 2¥~3 + 1 classes of fermionic two-qubit k-level gates, i.e. gates in G ,(62) , under
generalised matchgate equivalence. Representatives of each class are given by the gates C,, for

@ €E {zzkarz 1j=0,.., 2"‘3} so that e = |A|/|B| are the 2¥~2-th roots of unity nonnegative imaginary

part.




Stone-von Neumann theorem

The generators X, Z of the one-qubit Pauli group satisfy ZX = —XZ and X? = Z? = 1.
For multiple qubits, we have [L;, [1; ] = 0 for i # j.

These are the finite-dimensional canonical commutation relations.

!

Analogue of the more familiar relation between two canonical conjugate quantities: [x, p] = ih

Stone-von Neumann theorem:
« Foundational result in quantum theory that was originally proved to unify the matrix and
the wave mechanics pictures of quantum theory.

« Roughly, it asserts that two representations of canonical commutation relations are
unitarily equivalent.

30



fermionic Stone-von Neumann theorem

Consider a set {cﬂ}iil(Majorana operators) of 2n Hermitian operators that satisfy the canonical

anticommutation relations (CAR): {c,, ¢,} = 26, I.

. ] 2n
presentation of an algebra over C == elements: >, _ Zm<...<#m Opyopim Cuy " Clim

Jordan-Wigner representation of Majorana operators:
k— k—
Cokp—1 — (Hz’=11 ZZ) Xk) Co = (Hi:11 ZZ) Yk (k =1,... 7’/7,)

The monomials €, * - - ¢y, with 1 < --- < um form a basis of M5~ (C) of n-qubits

2n

Theorem (fermionic Stone-von Neumann theorem). Given two sets {c”}iiland {d,} _ of n-qubit

operators which satisfy CARs, there is an n-qubit unitary U = U(2™), unique up to a phase s.t.
Uc, Ut =d,.
7 u

31



fermionic Stone-von Neumann theorem

Theorem (fermionic Stone-von Neumann theorem). Given two sets {Cﬂ}iiland {d#}Zn

1of n-qubit
operators which satisfy CARs, there is an n-qubit unitary U = U(2"), unique up to a phase s.t.
Uc, Ut =d,.

Sketch proof.

We set ¢(cy, ..c, ) =d,, ...d, for1<p; <---<p, <2n This sends a basis of M,»(C) to
another, so it extends to a linear automorphism ¢@: M,n(C) — M,n(C).

Afterwards, we check that it preserves adjoints and multiplications. Therefore ¢ is a

*-automorphism. By Skolem-Noether theorem it is an inner automorphism induced by a unitary
U.

32



fermionic Stone-von Neumann theorem

The unitary U can be given explicitly as follows: for each z € Z7, the action of U on the
corresponding computational basis vector satisfies

Ulz) =ci'cs® ¢ U|0) = (HZ:I 552—1) U |0),

and U|0) is the simultaneous +1-eigenvector of the operators (—ic,j_1C5y) for all k € [n].

Corollary. There is a bijective correspondence between n-qubit fermionic unitary maps up to a phase and
tuples of n-qubit odd operators (éu)f};l satisfying CAR.

Sketch proof.
Given a unitary U, take ¢, = UTCMU . These relations satisfy the CAR, an (inner) automorphism.

Its conjugation action on the Majoranas since they generate the whole matrix space they fully
determine the action on the matrix algebra. This shows that the map from unitaries up to a phase to
CAR tuples is injective.

The previous theorem shows that the map is surjective. 33



fermionic Stone-von Neumann theorem

Restricting to fermionic (even or odd) unitaries (recall they preserve matrix parity under
conjugation) we have the following Corollaries:

Corollary. Given two sets {Cu},iila”d {du}iilof odd n-qubit operators which satisfy CARs, there is an n-

qubit fermionic unitary U = U(2™), unique up to a phase, s.t. Uc,U T = d,.

Corollary. There is a bijective correspondence between n-qubit fermionic unitary maps up to a phase and
tuples of n-qubit odd operators (¢,) f[;l satisfying CAR.

34



Hierarchical fermionic Stone-von Neumann theorem

The following version follows from the definition of the matchgate hierarchy:

Corollary (Hierarchical Stone-von Neumann theorem) Given a set {cﬂ} of odd operators in(G Iin) that

satisfy the CARs, there exists a unitary U & Qk Jpuptoa phase, s.t. Uc,U T = ¢, for all u. This U is given
explicitly as follows: for each z € 7%, the action of U on the computational basis vector satisfies

~ ~ ~Zn, L n ~
Ulz) =ci'es? -5 4 U0) = ( k=1 652_1) U o),
and U|0) is the simultaneous +1-eigenvector of the operators (—ic,,_1C) for all k € [n].

Corollary. There is a bijection between Q and 2n-tuples in gg ") O that satisfy the CAR.
Consequently glg”) spans a subspace of 2" >< 2™ matrices of dimension (2n).

35



Outlook

« Based on the concept of Clifford hierarchy we introduced an analogous hierarchy in the
context of matchgate circuits, the (generalised-) matchgate hierarchy of fermionic unitary
gates.

* Presented a gate teleportation protocol where any n-qubit gate in the hierarchy can be
deterministically implemented using adaptive matchgate circuits and magic states.

« (Gave a complete characterisation of two-qubit gates in the hierarchy, whereby
matchgate-equivalence classes of even k-level gates correspond to the 2¥~2-th roots of
unity.

« For an arbitrary number of qubits we showed a "hierarchy-aware” fermionic Stone-von
Neumann theorem which may help understanding the structure of the matchgate hierarchy

36



Open questions

 How to characterise the gates in the matchgate hierarchy for higher number of qubits?
One possible way to do it is by relaxing the matchgate identities.

« Search for finer analysis of the resource complexity of the gate teleportation protocol for n-
qubit gates as one climbs up the hierarchy.

« Looking at the structure of the matchgate hierarchy using the Majorana expansion of unitaries
into linear combinations of monomials of Majoranas.

« Parafermions are a generalisation of Majoranas which satisfy the generalised version of CAR:
¢ =Tand cyc, = weyc, for p < v where w = e?™/2, |t would be interesting to explore how the

story carries over that case.

* In the Clifford hierarchy semi-Clifford gates (of the form C;DC, for C; Clifford and D diagonal)
admit a more efficient gate teleportation protocol. A semi-Clifford gate consumes an n-qubit state
rather than 2n-qubit state.

« Clifford hierarchy plays essential role in fault-tolerance of quantum computing with stabiliser
circuits. Can we find a fault tolerant model for matchgate circuits? 37



Thank you for your attention!

Questions?



