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Motivation

A way to understand the power of quantum computers is to study restricted classes of 

quantum circuits that can be classically simulated but become universal by the addition of 

extra resources.

Stabiliser sub-theory:

• Clifford circuits 

• Gottesman-Knill theorem

• Cliffords + T gate

• Non-stabiliser magic states

Matchgate sub-theory:

• Matchgate circuits 

• Valiant΄s theorem

• Matchgates + SWAP gate

• Connected to fermionic linear optics (FLO)

• Fermionic non-Gaussian magic states

Clifford hierarchy gates can be deterministically implemented using gate teleportation 

protocol on stabiliser circuits. They can be performed fault-tolerantly.

Promotion of restricted classes of circuits to quantum universality can be done through

quantum gate teleportation protocol introduced by Shor and in more generality by 

Gottesman and Chuang.
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Matchgate quantum computation

Valiant ´02: Matchgates arose from the theory of perfect matchings in the context of 

counting constraint satisfaction problems.   

Action of 
A acts on the even-parity subspace spanned by   00 ,   11

  01 ,   10B acts on the odd-parity subspace spanned by

Matchgate circuits

Matchgate is a 2-qubit unitary gate of the form:

parity-preserving operator

⊂
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even-parity subspace odd-parity subspace

eigenspace of 𝑍⊗𝑛 with +1 eigenvalue eigenspace of 𝑍⊗𝑛 with -1 eigenvalue

n-qubit operator M
parity-preserving or even if 

parity-reversing or odd if 

Matchgate circuits parity-preserving (even) 

+ generalized matchgate circuits (even + odd operators)

Matchgate quantum computation

(ℂ2)⊗𝑛= ⨁
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computational 

basis states
+ + 𝑍𝑘 measurement classically efficiently simulable

n.n. matchgate circuits

Clifford setting and quantum universality:

• Clifford circuits + non-Clifford gate

• Clifford gates + non-stabilizer states (΄magic΄ states)  

Hebenstreit et al. ´19: 

Quantum universality with ΄magic΄ states using gate teleportation protocol

pure fermionic non-Gaussian states

n.n. matchgate circuits + quantum universality
non-matchgate

*

*fermionic SWAP:

Matchgate quantum computation

probabilistic, may require multiple rounds
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Majorana fermions and fermionic linear optics

Physical significance of matchgate circuits quantum evolution of non-interacting fermions   

n fermionic modes with creation and annihilation operators 𝑎𝑘
†

and 𝑎𝑘

satisfy CAR: 

2n Hermitian unitary operators 𝑐𝜇 𝜇=1

2𝑛
known as Majorana operators:

and

CAR presentation of an algebra over  elements:  

Jordan-Wigner transform  

Fermionic physics:

Clifford algebra  

CAR presentation of the Majorana group (𝜇1 < ⋯ < 𝜇𝔪)
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Jordan-Wigner transformation

Jordan-Wigner transformation: 

• n fermionic mode systems         n qubits (one dimensional chains of spin-1/2 particles)

• n fermionic operators          n-qubit Pauli operators

computational basis state:                                      (              ) Fock state:

Majorana operators 𝑐𝜇 𝜇=1

2𝑛
represented by n-qubit Hermitian unitaries (i.e. in               ) as: 

The monomials                        with                            form a basis of                 of n-qubits   

n-mode fermionic state being represented by n-qubit state: 
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Even and odd operators in fermionic language

n-qubit operator M is even if                           or odd if

Fermionic language: 
• An operator is even (resp. odd) if it is a l.c. of even (resp. odd) degree monomials of Majorana operators

• The parity subspace           (resp.           ) is spanned by the monomials                    with 𝔪 even (resp. odd)   

Physical states are constrained by the parity superselection rule    even + odd number parity states 

or 
even

or 

Adjoining ancillary modes enlarges the physically implementable evolutions to include odd unitaries

Even or odd unitaries fermionic

or 
even

or Parity is conserved quantity: 

Physical states are constrained to be eigenstates of : fermionic states

Example:
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Non-interacting (΄free΄) fermions

Non-interacting (‘free’ ) fermionic systems are governed by quadratic Hamiltonians:

where                        is a 2n x 2n real antisymmetric matrix

Gaussian unitary (or fermionic linear optical) implemented by matchgate circuits

Action of Gaussians on Majorana operators:

for

conversely

there exists anti-symmetric matrix h s.t. 𝑅 = 𝑒ℎ

Gaussian operations 

Classical simulability of Gaussians (or matchgate circuits)

Generalized matchgate circuits (reflections)

(adding 𝑐𝜇 to the gate set)
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Non-interacting (΄free΄) fermions

Alternative definitions of Gaussianity is given in terms of the operator                               :

• A fermionic operator U is  Gaussian  iff                              

• A fermionic state         is Gaussian iff 

Gaussian states:

An n-qubit state is called Gaussian if it arises as the action of a Gaussian operator on the Fock state
or equivalently of a matchgate circuit on a computational basis state  

The above definitions suggest a general definition of Gaussianity:

A 2𝑛 × 2𝑚 matrix M is called Gaussian iff 
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Clifford hierarchy

Gates in the Clifford hierarchy were introduced by Gottesman and Chuang to analyse 

resources in the gate teleportation protocol. They can be implemented fault-tolerantly to 

achieve universality.  

Increasing sequence of sets of n-qubit gates 

The first level of the hierarchy is the n-qubit Pauli group            which is generated by the 

𝑋𝑖 and 𝑍𝑖 Pauli operators.  

The second level is the Clifford group:

The Clifford hierarchy is defined recursively:                                                                      (             )

Examples of 3-level gates: Toffoli gate, the T gate and the controlled-phase gate CP.
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(Generalized) matchgate hierarchy

Definition. Fix any 𝑛 > 1, the number of qubits (or fermionic modes). The n-qubit generalized 

matchgate hierarchy is the sequence of n-qubit gates                   defined as follows:

• The first level of the hierarchy is the set of unit-norm, l.c. of Majorana operators,

• Higher levels are defined recursively, for any 𝑘 ≥ 1:

ensures unitarity

restricts the gates to be fermionic

Motivation:

• Foundational reason: Physical operations are parity constrained         fermionic operators

• Practical reason: In the gate teleportation protocol magic states must be ΄ freely΄ swapped 

(without the use of SWAP gate), which was shown (Hebenstreit ´19) to be done iff the state 

is fermionic.
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Fermionic unitaries

Lemma. Let 𝑈 ∈ 𝒰(2𝑛) be an n-qubit unitary. If conjugation by 𝑈 preserves the parity of 
operators, in that it maps even operators to operators and odd operators to odd operators, i.e. 

and 

then 𝑈 is fermionic (i.e. either even or odd).

The following lemma characterises fermionic gates as the ones that preserve matrix parity under

conjugation:

Corollary. For all 𝑛, 𝑘 ≥ 1, .    Gates in the hierarchy are fermionic!

unitaries realised by matchgate circuits 

We denote 𝑘-level even gates as

unitaries realised by generalised matchgate circuits 

Gates in the hierarchy are fermionic!
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Examples

The SWAP = 𝐺(𝕀, 𝑋) is an example of an even two-qubit third-level gate since:

Another example is the CZ = 𝐺 𝑍, 𝕀 = diag(1,1,1, −1) and more generally the controlled-phase

gate 𝐶  2𝜋 2𝑘−2 ≔ diag(1,1,1, 𝑒
2𝜋𝑖

2𝑘−2) which is a k-level gate. 

Examples of three-qubit gates in the third level:

An interesting family of examples is the n-qubit 𝐶𝑛−1𝑍 gate which is in the 𝒏 + 𝟏 -th level of the 

matchgate hierarchy.
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Basic properties of the hierarchy

Closed under scaling by a phase:

Proposition. For 𝑛 ≥ 1 and 𝑘 ≥ 2,                  implies                        for all 

Closed under right multiplication by Majorana operators:

Proposition. For 𝑛 ≥ 1 and 𝑘 ≥ 2,                  implies                      for all μ.

bijection between and

Closed under right multiplication by Majorana operators:

Proposition. For 𝑛, 𝑘 ≥ 1,                 implies                          for all μ.

Nested levels:

Proposition. For 𝑛, 𝑘 ≥ 1,                       .

Closed under tensor product:

Proposition. For 𝑛,𝑚 ≥ 1 and 𝑘 ≥ 2,                  and                   implies   

Closed under scaling by a phase:

Proposition. For 𝑛 ≥ 1 and 𝑘 ≥ 2,                  implies                        for all 
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Magic states and quantum universality 

Quantum universality:

1. Clifford gate set (free operations) + non-Clifford gate (resourceful gate)

2. Clifford gate set  + ΄magic΄ states (and adaptive measurements)

Paradigmatic example: 

(resourceful) T gate which can be implemented using the magic states

using the so called T-gadget

Gadget that consumes single copy of        state

to deterministically implement a T gate 

Bell state

Quantum teleportation protocol



Quantum universality of matchgates 

n.n. matchgate circuits + quantum universality
non-matchgate

Gadget that consumes single copy of         state

to deterministically implement a SWAP gate 

Hebenstreit et al. ´19: 

(resourceful) SWAP gate can be implemented via a ‘SWAP-gadget’ (teleportation protocol) 

using the magic state  

Characterization of magic states for matchgates:

Theorem. Every pure fermionic (eigenstate of 

𝑍⊗𝑛) state which is non-Gaussian (cannot be 

generated by a matchgate circuit from a 

computational basis state) is a ΄matchgate-
magic΄ state.



Matchgate hierarchy gate teleportation protocol 

Teleportation protocol that performs any U

in the Clifford hierarchy fault-tolerantly.

Gottesman and Chuang 1999:

Circuit to implement deterministically a gate                  by gate teleportation 

protocol using n.n. matchgates fSWAP and G(H,H), a pre-prepared ΄matchgate-

magic΄ state and a ´correction´ operator 𝑅𝒛 ≔ 𝑖𝛼 𝑧 𝑈  𝜇 𝑐𝜇
𝑧𝜇 𝑈†, indexed by 

measurement outcomes 𝒛 ∈ 0,1 2𝑛. 20
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Protocol for 2 qubits
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Protocol for 2 qubits

fSWAP
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Protocol for 2 qubits

𝑩†

The two inputs wires and one half of the magic 

state are measured in the computational basis 

state after applying 𝑩†.

It gives a method for probabilistically implement 

any unitary gate U (not necessarily in the 

hierarchy).

For U being in the hierarchy it’s guaranteed that 

the output can be corrected based on the 

outcomes.

The necessary correction is a sequence of gates from the

lower level of the hierarchy. 

Recursive application of the protocol allows one to deterministically 

implement any gate in the hierarchy.  



Important remarks about the protocol
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Magic states can be prepared offline beforehand, 

i.e. independently of the input of the circuit.

Crucially, magic states need to be used in 

matchgate circuits built out of nearest-neighbour

qubit lines, and SWAP is not a free gate.

For implementing U the magic state needs to be 

moved next to the gate being implemented. For 

that the state must be swapped through arbitrary 

states using only free gates. 

Magic states can be freely swapped if and only if 

they are fermionic.
The magic state is fermionic when the gate U is 

itself fermionic.



Protocol for n-qubit gates
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• 𝑛 − 1 layers of fermionic swaps, fSWAP = G(Z,X)

• Implements a permutation of the wires whereby 

odd numbered qubits are listed first followed by 

even numbered qubits

• Transposition of neighbouring qubits picks up a −1
phase when both modes are occupied (  11 ). 
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Characterisation of 2-qubit gates in the hierarchy 

All gates in the hierarchy are fermionic (i.e. either even or odd)

Even gates Odd gates

Proposition.         is the set of unitaries of the form 𝐽(𝐴, 𝐴†) with 𝐴 = −1. 

Proposition. For any 𝑘 ≥ 2,         is the set of unitaries of the form 𝐺(𝐴, 𝐵) or 𝐽(𝐴, 𝐵) with

 𝐴 2
𝑘−2

=  𝐵 2
𝑘−2

.

Characteristic examples: SWAP = 𝐺(𝕀, 𝑋) and 𝐶𝑍 = 𝐺 𝑍, 𝕀 , which are both third level gates.

They are matchgates only when 𝑨 =  𝑩 .



Efficiency of 2-qubit protocol

Proposition. For any 𝑘 ≥ 2,         is the set of unitaries of the form 𝐺(𝐴, 𝐵) or 𝐽(𝐴, 𝐵) with

 𝐴 2
𝑘−2

=  𝐵 2
𝑘−2

.

The correction is a product of up to four gates that 

belong strictly in the lower level   

The correction operator is: 𝑅𝒛 ≔ 𝑖𝛼 𝑧 𝑈  𝜇 𝑐𝜇
𝑧𝜇 𝑈†, 

indexed by measurement outcomes 𝒛 ∈ 0,1 4.

Each of the sets         is a subgroup of 𝒰(2𝑛) . 

This four-way branching causes the overall efficiency of implementing a gate to scale exponentially in 𝒌.

The fact that         is a group makes the product in the correction (now a single gate) be in a strictly lower 

level than 𝑘. Therefore, the protocol scales linearly with the level 𝑘.    



Matchgate-equivalence classes

Two gates are said to be (generalised-)matchgate-equivalent if they can be obtained from one 

another by multiplying on both sides with (generalised) matchgate circuits. 

Proposition. Any two-qubit even unitary gate is matchgate-equivalent to the controlled-phase

, where 𝑃𝜑 = diag(1, 𝑒𝑖𝜑), for a unique phase 𝜑 ∈  0,2𝜋).

Corollary. There are 2𝑘−2 classes of even two-qubit k-level gates. Representatives of each 

class are given by the gates 𝐶𝜑, so that 𝑒𝑖𝜑 =  𝐴 / 𝐵 are the 2𝑘−2 roots of unity.



Matchgate-equivalence classes

Proposition. Any two-qubit fermionic unitary gate is matchgate-equivalent to the controlled-phase 

gate                 , where 𝑃𝜑 = diag(1, 𝑒𝑖𝜑), for a unique phase 𝜑 ∈  0, 𝜋].

Corollary. There are 2𝑘−3 + 1 classes of fermionic two-qubit k-level gates, i.e. gates in        , under 

generalised matchgate equivalence. Representatives of each class are given by the gates 𝐶𝜑, for 

𝜑 ∈
2𝑗𝜋

2𝑘−2  𝑗 = 0,… , 2𝑘−3 so that 𝑒𝑖𝜑 =  𝐴 / 𝐵 are the 2𝑘−2-th roots of unity nonnegative imaginary 

part.

An odd gate               can be decomposed as 

Bijection between even and odd gate  Equivalence classes of odd k-level gates 

Multiplication by an odd gate
 𝐴 / 𝐵

 𝐵 / 𝐴 

The equivalence classes of 𝐶𝜑 and 𝐶−𝜑 collapse!
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Stone-von Neumann theorem 

The generators 𝑋, 𝑍 of the one-qubit Pauli group satisfy 𝑍𝑋 = −𝑋𝑍 and 𝑋2 = 𝑍2 = 𝕀.

For multiple qubits, we have 𝑖 , 𝑗 = 0 for 𝑖 ≠ 𝑗. 

These are the finite-dimensional canonical commutation relations.

Analogue of the more familiar relation between two canonical conjugate quantities: 𝑥, 𝑝 = 𝑖ℏ

Stone-von Neumann theorem:

• Foundational result in quantum theory that was originally proved to unify the matrix and 

the wave mechanics pictures of quantum theory.

• Roughly, it asserts that two representations of canonical commutation relations are 

unitarily equivalent.
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fermionic Stone-von Neumann theorem 

Consider a set 𝑐𝜇 𝜇=1

2𝑛
(Majorana operators) of 2n Hermitian operators that satisfy the canonical 

anticommutation relations (CAR): 𝑐𝜇, 𝑐𝑣 = 2𝛿𝜇𝜈 𝕀.

Jordan-Wigner representation of Majorana operators: 

The monomials                        with                            form a basis of                 of n-qubits   

presentation of an algebra over  elements:  

Theorem (fermionic Stone-von Neumann theorem). Given two sets 𝑐𝜇 𝜇=1

2𝑛
and 𝑑𝜇 𝜇=1

2𝑛
of n-qubit 

operators which satisfy CARs, there is an n-qubit unitary 𝑈 = 𝒰(2𝑛), unique up to a phase s.t. 

𝑈𝑐𝜇𝑈† = 𝑑𝜇.
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fermionic Stone-von Neumann theorem 

Theorem (fermionic Stone-von Neumann theorem). Given two sets 𝑐𝜇 𝜇=1

2𝑛
and 𝑑𝜇 𝜇=1

2𝑛
of n-qubit 

operators which satisfy CARs, there is an n-qubit unitary 𝑈 = 𝒰(2𝑛), unique up to a phase s.t. 

𝑈𝑐𝜇𝑈† = 𝑑𝜇.

Sketch proof. 

We set 𝜑 𝑐𝜇1
…𝑐𝜇𝔪

= 𝑑𝜇1
…𝑑𝜇𝔪

for 1 ≤ 𝜇1 ≤ ⋯ ≤ 𝜇𝔪 ≤ 2𝑛. This sends a basis of 𝑀2𝑛 ℂ to 

another, so it extends to a linear automorphism 𝜑:𝑀2𝑛 ℂ → 𝑀2𝑛 ℂ . 

Afterwards, we check that it preserves adjoints and multiplications. Therefore φ is a

*-automorphism. By Skolem-Noether theorem it is an inner automorphism induced by a unitary 

U.
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fermionic Stone-von Neumann theorem 

The unitary U can be given explicitly as follows: for each 𝒛 ∈ ℤ2
𝑛, the action of U on the 

corresponding computational basis vector satisfies

and 𝑈  𝟎 is the simultaneous +1-eigenvector of the operators (−𝑖  𝑐2𝑘−1  𝑐2𝑘) for all 𝑘 ∈ 𝑛 . 

Corollary. There is a bijective correspondence between n-qubit fermionic unitary maps up to a phase and 

tuples of n-qubit odd operators (  𝑐𝜇)𝜇=1
2𝑛 satisfying CAR.  

Sketch proof. 

Given a unitary U, take  𝑐𝜇 = 𝑈†𝑐𝜇𝑈 . These relations satisfy the CAR, an (inner) automorphism.

Its conjugation action on the Majoranas since they generate the whole matrix space they fully 

determine the action on the matrix algebra. This shows that the map from unitaries up to a phase to 

CAR tuples is injective. 

The previous theorem shows that the map is surjective.
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fermionic Stone-von Neumann theorem 

Corollary. Given two sets 𝑐𝜇 𝜇=1

2𝑛
and 𝑑𝜇 𝜇=1

2𝑛
of odd n-qubit operators which satisfy CARs, there is an n-

qubit fermionic unitary 𝑈 = 𝒰(2𝑛), unique up to a phase, s.t. 𝑈𝑐𝜇𝑈† = 𝑑𝜇.

Corollary. There is a bijective correspondence between n-qubit fermionic unitary maps up to a phase and 

tuples of n-qubit odd operators (  𝑐𝜇)𝜇=1
2𝑛 satisfying CAR.  

Restricting to fermionic (even or odd) unitaries (recall they preserve matrix parity under 

conjugation) we have the following Corollaries:
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Hierarchical  fermionic Stone-von Neumann theorem 

The following version follows from the definition of the matchgate hierarchy: 

Corollary (Hierarchical Stone-von Neumann theorem). Given a set  𝑐𝜇 𝜇=1

2𝑛
of odd operators in          that 

satisfy the CARs, there exists a unitary                  , up to a phase, s.t. 𝑈𝑐𝜇𝑈† =  𝑐𝜇 for all μ. This U is given 

explicitly as follows: for each 𝒛 ∈ ℤ2
𝑛, the action of U on the computational basis vector satisfies

and 𝑈  𝟎 is the simultaneous +1-eigenvector of the operators (−𝑖  𝑐2𝑘−1  𝑐2𝑘) for all 𝑘 ∈ 𝑛 . 

Corollary. There is a bijection between           and 2n-tuples in                     that satisfy the CAR.  

Consequently          spans a subspace of 2𝑛 × 2𝑛 matrices of dimension (2𝑛)𝑘.  
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Outlook 

• Based on the concept of Clifford hierarchy we introduced an analogous hierarchy in the 

context of matchgate circuits, the (generalised-) matchgate hierarchy of fermionic unitary 

gates.

• Presented a gate teleportation protocol where any n-qubit gate in the hierarchy can be 

deterministically implemented using adaptive matchgate circuits and magic states. 

• Gave a complete characterisation of two-qubit gates in the hierarchy, whereby 

matchgate-equivalence classes of even k-level gates correspond to the 𝟐𝒌−𝟐-th roots of 

unity.

• For an arbitrary number of qubits we showed a ΄hierarchy-aware΄ fermionic Stone-von 

Neumann theorem which may help understanding the structure of the matchgate hierarchy
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Open questions 

• How to characterise the gates in the matchgate hierarchy for higher number of qubits? 

One possible way to do it is by relaxing the matchgate identities. 

• Search for finer analysis of the resource complexity of the gate teleportation protocol for n-

qubit gates as one climbs up the hierarchy.

• Looking at the structure of the matchgate hierarchy using the Majorana expansion of unitaries 

into linear combinations of monomials of Majoranas.

• Parafermions are a generalisation of Majoranas which satisfy the generalised version of CAR:  

𝑐𝜇
𝑑 = 𝕀 and 𝑐𝜇𝑐𝑣 = 𝜔𝑐𝑣𝑐𝜇 for 𝜇 < 𝜈 where 𝜔 = 𝑒  2𝜋𝑖 𝑑. It would be interesting to explore how the 

story carries over that case.

• In the Clifford hierarchy semi-Clifford gates (of the form 𝐶1𝐷𝐶2 for 𝐶𝑖 Clifford and D diagonal) 

admit a more efficient gate teleportation protocol. A semi-Clifford gate consumes an n-qubit state 

rather than 2n-qubit state.

• Clifford hierarchy plays essential role in fault-tolerance of quantum computing with stabiliser 

circuits. Can we find a fault tolerant model for matchgate circuits? 



Thank you for your attention!

Questions?


