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Outline

• What are the projective-unitary invariant properties of a set of states?

• Geometrical in nature

• Invariant under unitaries & gauge choices

• Mathematical characterization

• Measuring these properties

• Applications

• Linear independence test

• Basis-independent tests of: imaginarity, coherence

• Characterizing multi-photon indistinguishability



Projective-unitary invariant properties of a set of quantum states

• Properties that are invariant under:

• unitary transformations

• physically meaningless choice of global phases (gauge degree of freedom in QM)

• For real-valued vectors, pairwise angles/inner 

products gives complete characterization (up to 

+- signs). Example:

• Geometrical in character – pertain to the 

relative orientation of the states

• Quantum-mechanical states are rays in a complex vector space – how 

does the characterization change in this case?



Bargmann invariants

[Chien, Waldron. SIAM J. DISCRETE MATH. 30 (2), 976 (2016)]

• Bargmann invariants related to geometric phases, photonic indistinguishability

Analogy: area of spherical triangle whose 

vertices are given by 3 unit vectors

• Mathematical result: projective-unitary invariant properties only depend on k-vertex 

Bargmann invariants:

• For a set with N vectors, we may need to know up to N-vertex invariants

• If there’s no pair of orthogonal states, 3-vertex invariants are sufficient

[Bargmann, J. Math. Phys. 5, 862 (1964)] [Simon, Mukunda, Phys. Rev. Lett. 70, 880 (1993)]

[A. J. Menssen, A. E. Jones, B. J. Metcalf, M. C. Tichy, S. Barz, W. S. Kolthammer, and I. A. 

Walmsley, Phys. Rev. Lett. 118, 153603 (2017)]



Bargmann invariants

• Notes:

• Overlaps are special cases of 3-invariants (repeated indices)

• Phase of any single inner product is a gauge d.o.f., but cyclic products of inner 

products are gauge-invariant. See:

• k-vertex Bargmann invariants:
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• Known result: SWAP test circuit enables estimate 

of the two-state overlap:

Measuring Bargmann invariants: cycle test

• Our result: cycle test circuits measure real and imaginary parts of any m-vertex 

Bargmann invariant:

[Brod, Oszmaniec, Galvão, in preparation]



Cycle test circuits

• The cycle test circuit can have linear depth (with local C-SWAP/Fredkin gates):

[Brod, Oszmaniec, Galvão, in preparation]

… or log-depth with non-local C-SWAP gates:



Gram matrix encodes all PU-invariant properties

[Brod, Oszmaniec, Galvão, in preparation]

• Complete knowledge of PU-invariant properties enables applications we will 

describe next.

• In the case of no null overlaps, characterization is simple:

• Information is neatly encoded in the Gram matrix:

• Phase of Gkl = phase of 

• Use all 3-invariants of a reference state with all pairs – “triangulating” the set

• All parameters in G are gauge-invariant and can be measured with cycle tests



Application: basis-independent linear-independence test 

[Brod, Oszmaniec, Galvão, in preparation]

• Recognizing dimension of spanning space useful e.g. in machine learning

• Volume of parallelepiped created by a set of vectors is V=sqrt(det(G))

• N states are linearly independent iff det(G)>0

• Example with N=3: 

• N=4: 



Application: imaginarity witness 

[Brod, Oszmaniec, Galvão, in preparation]

• “Imaginarity”: resource provided by complex numbers in quantum theory

• Recent results show imaginarity is unavoidable in QT (for certain Bell nonlocality 

scenarios)

• Quantum physics needs complex numbers. M.-O. Renou et al.,  arXiv:2101.10873v1 (theory)

• Ruling out real-number description of quantum mechanics- arXiv:arXiv:2103.08123v1 (Experiment by Jian-

Wei Pan group)

• Cycle test can be used to witness 

imaginarity:



Application: basis-independent coherence witness 

[Brod, Oszmaniec, Galvão, in preparation]

• Previously: basis-independent coherence witness using overlaps:

• For 3 states: 3-invariant must be real, and besides:

• We can now do the same, but with the complete PU characterization of a set of states

• Imaginarity coherence 

[Galvão, Brod, Phys. Rev. A 101, 062110 (2020)] [Giordani et al. Phys. Rev. Res. , 3, 023031 (2021)]
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= probability of getting same outcomes from 

independent measurements of reference 

observables on the two states

Then the two-state overlap

• Classical, incoherent states: diagonal states in a fixed reference basis. Overlaps and 

higher-order invariants have an interpretation as a probability. Example:



Application: characterizing multi-photon indistinguishability

[Brod, Oszmaniec, Galvão, in preparation]

• Previously: overlaps for multi-photon indistinguishability tests

Giordani et al., Experimental quantification of genuine four-

photon indistinguishability.  N. J. Phys. 22 043001 (2020)

Brod et al., Witnessing genuine multiphoton 

indistinguishability. Phys. Rev. Lett. 122, 063602 (2019)

• Higher order invariants may help in the certification of multi-photon indistinguishability

• Example: Single 3-vertex invariant gives lower bound for the 3 overlaps/HOM visibilities:

• Higher-order invariants can be directly measured using multimode interferometers, e.g. 

3-mode balanced tritters (QFT):

[Menssen et al., PRL 118, 153603 (2017)]
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Conclusion

[Brod, Oszmaniec, Galvão, in preparation]

• k-vertex Bargmann invariants encode all physically sound, relational information about 

the geometrical arrangement of a set of quantum states

• Cycle tests can be used to measure all invariants

• We’ve found many applications of these results, generalizing uses of overlaps:

• Basis-independent coherence and imaginarity witnesses

• Tests for linear independence

• Multiphoton indistinguishability

• What other algorithmic/cryptographic applications can we propose?

Thank you for your attention!


