WHICH PHYSICAL THEORIES HAVE TWO STATE OVERLAPS?

Rafael Wagner International Iberian Nanotechnology Laboratory (INL) University of Minho (UM)

TWO STATE OVERLAPS

TWO STATE OVERLAPS

Quantum theory

Classical probabilistic theory

PHYSICAL THEORIES

Martin Plávala

Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany

Sci Post

SciPost Phys. Lect.Notes 28 (2021)

Probabilistic theories and reconstructions of quantum theory

Markus P. Müller^{1,2*}

 Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada

OUTLINE OF THE TALK

OUTLINE OF THE TALK

Two-state overlap inequalities (for GPTs)

OUTLINE OF THE TALK

Roberto D. Baldijão (Gdansk) Two-state overlaps for GPTs

Two-state overlap inequalities (for GPTs)

- A subset in this vector space that characterize states $~~\Omega$

- A subset in this vector space that characterize states $~~\Omega$

- Real finite-dimensional vector space $\ V \subseteq \mathbb{R}^d$
- A subset in this vector space that characterize states

 Ω

• The state space defines a (closed convex pointed) cone in the vector space

Dual cone

- Real finite-dimensional vector space $\ V \subseteq \mathbb{R}^d$
- A subset in this vector space that characterize states

()

• The state space defines a (closed convex pointed) cone in the vector space

$$\Omega^* := \{ \mathbf{e} \in V^* : \mathbf{e}(\mathbf{s}) \ge 0, \forall \mathbf{s} \in \Omega \}$$

• A subset of the dual cone characterizes the effects

u

The unique 'unit' effect

u The unique 'unit' effect \mathbf{e} $\exists \alpha \geq 0$ Such that

GPT system

GPT system

GPT system

WHAT DO WE WANT FROM OVERLAPS?

The Thinker, Auguste Rodin, 1904

• I) It needs to be a function that takes two states as an input

 $r: \Omega \times \Omega \to \mathbb{R}$ $(\mathbf{s}, \mathbf{t}) \mapsto r_{\mathbf{s}, \mathbf{t}}$

• I) It needs to be a function that takes two states as an input

$$r: \Omega \times \Omega \to \mathbb{R}$$
$$(\mathbf{s}, \mathbf{t}) \mapsto r_{\mathbf{s}, \mathbf{t}}$$

• 2) It needs to be empirically accessible

• I) It needs to be a function that takes two states as an input

$$r: \Omega \times \Omega \to \mathbb{R}$$
$$(\mathbf{s}, \mathbf{t}) \mapsto r_{\mathbf{s}, \mathbf{t}}$$

• 2) It needs to be empirically accessible

• Remark I: $\forall \mathbf{s}, \mathbf{t} \in \Omega, r_{\mathbf{s}, \mathbf{t}} \geq 0$

• Remark I: $\forall \mathbf{s}, \mathbf{t} \in \Omega, r_{\mathbf{s}, \mathbf{t}} \geq 0$

• Remark II: For pure states and pure effects

 $r_{\mathbf{s},\mathbf{t}} \in [0,1]$

• It needs to be symmetric

• Remark I: $\forall \mathbf{s}, \mathbf{t} \in \Omega, r_{\mathbf{s}, \mathbf{t}} \geq 0$

• Remark I: $\forall \mathbf{s}, \mathbf{t} \in \Omega, r_{\mathbf{s}, \mathbf{t}} \geq 0$

• Remark II: For pure states and pure effects

$$r_{\mathbf{s},\mathbf{t}} \in [0,1]$$

• Remark I: $\forall \mathbf{s}, \mathbf{t} \in \Omega, r_{\mathbf{s}, \mathbf{t}} \geq 0$

• Remark II: For pure states and pure effects

 $r_{\mathbf{s},\mathbf{t}} \in [0,1]$

· Remark III: $\forall \mathbf{s}, \mathbf{t} \in \Omega \ \exists \mathbf{e_s}, \mathbf{e_t} \in \mathcal{E}$

· Remark IV: $orall \mathbf{s}, \mathbf{t} \in \Omega \ \exists \mathbf{e_s}, \mathbf{e_t} \in \mathcal{E}$

These effects are not going to be unique in general

· Remark IV: $orall \mathbf{s}, \mathbf{t} \in \Omega \ \exists \mathbf{e_s}, \mathbf{e_t} \in \mathcal{E}$

These effects are not going to be unique in general

 $r_{\psi,\psi} = |\langle \psi | \psi \rangle|^2 = 1 = \operatorname{Tr}(\mathbb{I}|\psi\rangle\langle\psi|)$

Unit effect acting on a state

TWO-STATE OVERLAPS IN PHYSICAL THEORIES

 $(V, \Omega, \mathcal{E}, u)$

GPT system can have two-state overlaps if

 $\forall \mathbf{s}, \mathbf{t} \in \Omega \exists \mathbf{e}_{\mathbf{s}}, \mathbf{e}_{\mathbf{t}} \in \mathcal{E}$ $\mathbf{e}_{\mathbf{s}}(\mathbf{t}) = \mathbf{e}_{\mathbf{t}}(\mathbf{s})$

TWO-STATE OVERLAPS IN PHYSICAL THEORIES

 $(V, \Omega, \mathcal{E}, u)$

GPT system can have two-state overlaps if

 $\forall \mathbf{s}, \mathbf{t} \in \Omega \exists \mathbf{e}_{\mathbf{s}}, \mathbf{e}_{\mathbf{t}} \in \mathcal{E}$ $\mathbf{e}_{\mathbf{s}}(\mathbf{t}) = \mathbf{e}_{\mathbf{t}}(\mathbf{s})$

In such a case, a two-state overlap is a map $\, r: \Omega imes \Omega o \mathbb{R} \,$

such that for any pair of states there exists a pair of effects for which

$$r(\mathbf{s}, \mathbf{t}) \equiv r_{\mathbf{s}, \mathbf{t}} = \mathbf{e}_{\mathbf{s}}(\mathbf{t}) = \mathbf{e}_{\mathbf{t}}(\mathbf{s}) = r_{\mathbf{t}, \mathbf{s}}$$

From the definition, two-state overlaps are bilinear in the state space.

 $(V, \Omega, \mathcal{E}, u)$

GPT system can have two-state overlaps if

 $\forall \mathbf{s}, \mathbf{t} \in \Omega \exists \mathbf{e_s}, \mathbf{e_t} \in \mathcal{E}$ $\mathbf{e_s}(\mathbf{t}) = \mathbf{e_t}(\mathbf{s})$

In such a case, a two-state overlap is a map $\,r:\Omega imes\Omega o\mathbb{R}$

such that for any pair of states there exists a pair of effects for which

 $r(\mathbf{s}, \mathbf{t}) \equiv r_{\mathbf{s}, \mathbf{t}} = \mathbf{e}_{\mathbf{s}}(\mathbf{t}) = \mathbf{e}_{\mathbf{t}}(\mathbf{s}) = r_{\mathbf{t}, \mathbf{s}}$

NOT ALL THEORIES CAN HAVE TWO-STATE OVERLAPS

$$\mathbf{e}(\cdot) = \langle \mathbf{e}, \cdot \rangle$$

$$\mathbf{e}(\cdot) = \langle \mathbf{e}, \cdot \rangle$$

$$\Omega^* \subsetneq \Omega$$

Pre-dual theories

NOT ALL THEORIES CAN HAVE TWO-STATE OVERLAPS

$$\mathbf{e}(\cdot) = \langle \mathbf{e}, \cdot \rangle$$

$\Omega^* \subsetneq \Omega \qquad \mathbf{s}^* \in \Omega \setminus \mathcal{E}$

Pre-dual theories

NOT ALL THEORIES CAN HAVE TWO-STATE OVERLAPS

$$\mathbf{e}(\cdot) = \langle \mathbf{e}, \cdot \rangle$$

 $\Omega^* \subsetneq \Omega \qquad \mathbf{s}^* \in \Omega \setminus \mathcal{E}$

Pre-dual theories

There is at least one state such that

$$r_{\mathbf{s},\mathbf{s}^{\star}} = \mathbf{e}_{\mathbf{s}}(\mathbf{s}^{\star}) = \langle \mathbf{e}_{\mathbf{s}}, \mathbf{s}^{\star} \rangle < 0$$

Otherwise this state would define an effect (real inner-products are symmetric)

PAPER • OPEN ACCESS

Pseudo standard entanglement structure cannot be distinguished from standard entanglement structure

Hayato Arai¹ and Masahito Hayashi^{5,1,2,3,4} Published 9 February 2023 • © 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft <u>New Journal of Physics, Volume 25, February 2023</u> **Citation** Hayato Arai and Masahito Hayashi 2023 *New J. Phys.* **25** 023009 DOI 10.1088/1367-2630/acb565

They construct a subtheory of quantum theory where the state space contain all quantum states and all entanglement witnesses of trace one. This implies that

 $\exists \rho, \rho_W \in \Omega : \operatorname{Tr}(\rho \rho_W) < 0$

$\mathcal{E} = \Omega^* = \Omega$

Non-restricted strongly-self dual

$\mathcal{E} = \Omega^* = \Omega$

Non-restricted strongly-self dual

In these theories the cone of states and the cone of effects can be embedded in a finite-dimensional real inner-product vector space

$\mathcal{E} = \Omega^* = \Omega$

Non-restricted strongly-self dual

In these theories the cone of states and the cone of effects can be embedded in a finite-dimensional real inner-product vector space

 $r(\cdot, \cdot) := \langle \cdot, \cdot \rangle$

The (self-dualizing) inner-product works as a two-state overlap

I) Well defined for all pairs of states, II) empirically accessible and inducing a bilinear III) symmetric form (which is taken to be the overlap)

PRA 87,052131 (2013)

THEORIES THAT

CAN HAVE

OVERLAPS

GPTs having caps and cups

APPLICATION

Inequalities witnessing coherence, nonlocality, and contextuality

Rafael Wagner, Rui Soares Barbosa, and Ernesto F. Galvão Phys. Rev. A **109**, 032220 – Published 21 March 2024

Bounds on classical overlaps

OVERLAP INEQUALITIES

Inequalities witnessing coherence, nonlocality, and contextuality

Rafael Wagner, Rui Soares Barbosa, and Ernesto F. Galvão Phys. Rev. A **109**, 032220 – Published 21 March 2024

Bounds on classical overlaps

OVERLAP INEQUALITIES

Inequalities witnessing coherence, nonlocality, and contextuality

Rafael Wagner, Rui Soares Barbosa, and Ernesto F. Galvão Phys. Rev. A **109**, 032220 – Published 21 March 2024

Bounds on classical overlaps

Classical probabilistic theory

$$r_{\mathbf{s},\mathbf{t}} = \sum \operatorname{Prob}(\omega|\mathbf{t})\operatorname{Prob}(\omega|\mathbf{s})$$

 ω Two-state overlaps between normalized states of classical probabilistic theories cannot violate the incoherence inequalities

OVERLAP INEQUALITIES

Two-state overlaps can be empirically accessible

Empirical adequacy of the ontological model

Empirical adequacy of the ontological model

An ontological model is a map (functor) representing every element of the GPT as a substochastic matrix

 $\mathbf{s}\mapsto \xi(\mathbf{s})(\lambda)$

Probability distribution

 $\mathbf{e} \mapsto \xi(\mathbf{e})(\lambda)$

Response function

Empirical adequacy of the ontological model

Substochastic matrix

Diagram preservation

There exists a basis for the space defining the substochastic matrices

EXAMPLE OF DIAGRAMMATIC FLIPPING

Cannot violate the two-state overlap inequalities by construction Any violation of a two-state overlap inequality is a witness of generalized contextuality for quantum theory (in its GPT version)

APPLICATION

MORE?

Certifying almost all quantum states with few single-qubit measurements

Hsin-Yuan Huang^{1,2,3}, John Preskill^{1,4}, and Mehdi Soleimanifar¹

¹California Institute of Technology ²Google Quantum AI ³Massachusetts Institute of Technology ⁴AWS Center for Quantum Computing

Efficient distributed inner product estimation via Pauli sampling

M. Hinsche^{*1}, M. Ioannou^{*1}, S. Jerbi¹, L. Leone¹, J. Eisert^{1,2}, and J. Carrasco^{*1}

¹Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Berlin, Germany ²Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany

ASK THE QUESTION AT TALKS IF YOU'RE WONDERING, LIKELY OTHERS ARE TOO TLA USAGE WHAT'S A TLA ? REQUENCY PHEW! THANK YEAR GOODNESS TLA ?? WHAT THE ... Sketchplanations

THANK YOU

- rafael.wagner@inl.int
- @QuantumRW

STRONGLY SELFDUAL GPTS HAVE CAPS AND CUPS?

Definition 1. A system is strongly self-dual if and only if there exists an isomorphism $\Phi: V_+^* \mapsto V_+$ giving rise to a corresponding symmetric bilinear form T with $T(e, f) = e[\Phi(f)] = T(f,e)$ and $T(e,e) \ge 0$ for all $e, f \in V^*$.

That is, *T* provides a semi-inner product on effects. In a similar way for strongly self-dual systems the inverse map Φ^{-1} leads to a semi-inner product on states.

PHYSICAL REVIEW A 87, 052131 (2013)

Generalized probabilistic theories without the no-restriction hypothesis

Peter Janotta¹ and Raymond Lal² ¹Universität Würzburg, Am Hubland, Fakultät für Physik und Astronomie, 97074 Würzburg, Germany ²University of Oxford, Department of Computer Science, Quantum Group, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom (Received 21 February 2013; published 23 May 2013)

STRONGLY SELFDUAL GPTS HAVE CAPS AND CUPS?

Reconstructing quantum theory from diagrammatic postulates

John H. Selby¹, Carlo Maria Scandolo^{2,3}, and Bob Coecke⁴

¹ICTQT, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland ²Department of Mathematics & Statistics, University of Calgary, Canada ³Institute for Quantum Science and Technology, University of Calgary, Canada ⁴Cambridge Quantum Computing Ltd 2021-04-17 **Definition 2.36** (Cups and caps). A theory has *cups* and *caps* if for each system it has processes:

$$A \to A$$
 and $A \to A$

which satisfy:

$$\bigcap_{i=1}^{n} = \left[i, i \right] = \left[$$

Equivalently, this means that in diagrams inputs can be connected to inputs, outputs to outputs, and also that loops are allowed.

STRONGLY SELFDUAL GPTS HAVE CAPS AND CUPS?

Reconstructing quantum theory from diagrammatic postulates

John H. Selby¹, Carlo Maria Scandolo^{2,3}, and Bob Coecke⁴

¹ICTQT, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland ²Department of Mathematics & Statistics, University of Calgary, Canada ³Institute for Quantum Science and Technology, University of Calgary, Canada ⁴Cambridge Quantum Computing Ltd 2021-04-17

PHYSICAL REVIEW A 87, 052131 (2013)

Generalized probabilistic theories without the no-restriction hypothesis

Peter Janotta¹ and Raymond Lal² ¹Universität Würzburg, Am Hubland, Fakultät für Physik und Astronomie, 97074 Würzburg, Germany ²University of Oxford, Department of Computer Science, Quantum Group, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom (Received 21 February 2013; published 23 May 2013)