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Motivation

• Very pedagogical paper.

• Ideas about algorithms can be easy to produce but not so easy to justify and prove their
performance (at least for me).

• Learn the way of thinking and path to follow when facing these problems.

• You might learn something.

• You don’t want to miss this cool and trendy technique.
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Context

• Quantum state tomography. Learn about an unknown state ∈ H of dimension 2n where n
is the number of qubits.

• Measuring only allows accessing to a part of the system each time, needing several copies
of the state.

• Curse of dimensionality. Number of parameters scales exponentially with size.

Shadow tomography

We are interested in certain properties of the state:

oi = ⟨ψ|Oi |ψ⟩ ,

for a certain set of observables {O1, ...,OM}.
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Related work1

General quantum state tomography

• Reconstructs full density matrix.

• Information-theoretic bounds assures that, at least, d rank ρ copies are needed.

• Saturating this bounds imply circuits with entanglement that acts on each qubit
simultaneously.

• More tractable techniques allow to rank(ρ)2d .

• For full generality, d = 2n copies are needed.

• Do not forget the classical power needed to store and process data.

1More information can be found in Section 3 in Supplementary information of [1]
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Related work

Matrix Product State tomography

• In certain many-body systems, a MPS with low bond dimension can approximate the state.

• Number of samples scales polynomially.

• In the general case, similar to general QST.

Neural Network tomography

• A deep neural network is trained by feeding in quantum measurement outcomes. The internal
network configuration shapes to provide a classical description of the system.

• Still not well understood the class of systems that can be efficiently represented.

Direct fidelity estimation

• Tailor-made to learn ⟨ψ|ρ|ψ⟩ up to accuracy ϵ

• Can vary from 1
ϵ2 to 2n

ϵ4
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Related work

Shadow tomography

• Aims at simultaneously estimating the outcome probabilities associated with M
2-outcome measurements: pi (ρ) = tr(Eiρ) where the maximum operator norm of Ei is 1.

• The best result need a number of copies of Õ(log(M)2log(d)2/ϵ2)
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Main idea
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Procedure
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Data acquisition

Snapshot. Repeat N times

• Select a random unitary U from the set U that is assumed to be tomographically
complete, i.e., for different states ρ, σ,∃U ∈ U s.t. ⟨b|UρU†|b⟩ ≠ ⟨b|UσU†|b⟩, with
computational basis {|b⟩ : b ∈ {0, 1}n}

• Apply this U to the unknown state ρ→ UρU†

• Measure in the computational basis.

• Invert U on the outcome of the measurement: U†|b⟩⟨b|U
• Store it in a computer.
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Classical shadow of ρ

• ρ is collapsed to |b̂⟩⟨b̂| with prob Pr [b̂ = b] = ⟨b|UρU†|b⟩ , b ∈ {0, 1}n

• Average over all the unitaries of our set:

E(U†|b̂⟩⟨b̂|U) = EU∼U
∑

b∈{0,1}n
⟨b|UρU†|b⟩U†|b⟩⟨b|U = M(ρ)

• Think about this like a quantum channel M. We are interested in the inverse:

ρ̂ = M−1(U†|b⟩⟨b|U)

• Tomographic completeness ensures that this inverse is unique.

• We call ρ̂ the classical shadow of ρ. Not semi-definite, in general.

• E(ρ̂) = ρ by design.
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Classical representation and prediction

Using the stored data, we can efficiently apply M−1 to each snapshot, constructing a classical
snapshot of ρ. The whole set is called classical shadow of ρ:

S(ρ,N) =
{
ρ̂1 = M−1(U†

1 |b̂1⟩⟨b̂1|U1), ..., ρ̂N = M−1(U†
N |b̂N⟩⟨b̂N |UN)

}
.

Median of means

We want to predict O1, ...,OM observables.

• Import the classical shadow S(ρ,N)

• Split the shadow into K equally-sized sets and compute the mean of each set:

ρ̂(k) =
1

⌊N/K⌋
∑k⌊N/K⌋

i=(k−1)⌊N/K⌋+1 ρ̂i

• Predict each expected value oi as: oi = median
{
tr
(
Oi ρ̂(1)

)
, . . . , tr

(
Oi ρ̂(K)

)}
for

i = 1, ...,M
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On the predictions of linear functions

Theorem 1

Fix a measurement primitive U , a collection of O1, ...,OM of 2n × 2n Hermitian matrices and
accuracy parameters ϵ, δ ∈ [0, 1]. Set

K = 2 log(2M/δ) and N =
34

ϵ2
max

1≤i≤M

∥∥∥∥Oi −
tr(Oi )

2n
I
∥∥∥∥2
shadow

.

Then, a collection of NK independent classical shadows allow for accurately predicting all
features via median of means:

|ôi (N,K )− tr(Oiρ)| ≤ ϵ for all 1 ≤ i ≤ M.

with probability at least 1− δ.
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On the predictions of linear functions

Shadow norm

∥O∥shadow = max
σ: state

EU∼U
∑

b∈{0,1}n
⟨b|UσU†|b⟩ ⟨b|UM−1(O)U†|b⟩2

1/2

The norm and, therefore, the convergence and number of samples needed depend on M,
which depends on the set of unitaries U .
The dimension of the system does not appear!

Generalization of Theorem 1 without constants

Ntot =

(
log(2M)

ϵ2
max

1≤i≤M

∥∥∥∥Oi −
tr(Oi )

2n
I
∥∥∥∥2
shadow

)
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Performance depending on U

Random Clifford measurements

With U = Cl(2n):

ρ̂ = (2n + 1)U†|b̂⟩⟨b̂|U − I and
∥∥∥∥O − tr(O)

2n

∥∥∥∥2
shadow

≤ 3tr(O2).

Very powerful, difficult to implement in practice.

Random Pauli measurements

Only tensor product of single-qubit Clifford gates. U = U1 ⊗ ...⊗ Un ∼ U = Cl(2)⊗n

ρ̂ =
n⊗

j=1

(3U†|b̂⟩⟨b̂|U − I) and
∥∥∥∥O − tr(O)

2n

∥∥∥∥2
shadow

≤ 4locality(O) ∥O∥2∞
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Matching information-theoretic lower bounds

• Random Clifford measurements:

Theorem 2

Any procedure based on a fixed set of single-copy measurements that can predict, with
additive error ϵ, M arbitrary linear functions tr(Oiρ), requires at least
Ω(log(M)maxi tr(O

2
i )/ϵ

2) copies of the state ρ.

• Random Pauli measurements:

Theorem 3

Any procedure based on a fixed set of single-copy measurements that can predict, with
additive error ϵ, M arbitrary k-linear functions tr(Oiρ), requires at least Ω(log(M)3k/ϵ2)
copies of the state ρ.
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Predicting linear functions with classical shadows

Lemma 1

Fix O and set ô = tr(Oρ̂), where ρ̂ is a classical shadow. Then

Var [ô] = E
[
(ô − E[ô])2

]
≤
∥∥∥∥O − tr(O)

2n
I
∥∥∥∥2
shadow

Handwritten proof
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Predicting linear functions with classical shadows

• Once we know the variance, which depends on the specific set of unitaries, we want to see
the convergence of the method.

• We recall classical concentration arguments: Chernoff, Hoeffding inequalities (they all
derive from Markov inequality).

• Applied to this scheme, samples scale as N = Var [ôi ]/(δϵ
2). Bad scaling with ϵ, our

additive error.

• Use median of means.
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Proof of theorem 1

Handwritten proof
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Proof of scaling for random global Clifford unitaries

Handwritten proof

• Unitary t-designs.

• Application to our case of interest.
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Quantum process tomography

• Need of characterizing quantum devices.

• Focus on the dynamics of the physical system.

Approaches

• Maximum Likelihood estimation

• Linear inversion method

• Bayesian methods

• Compressed sensing methods
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Quantum channel

A quantum channel is a linear map from the space of operators on a Hilbert space to the
space of operators of another Hilbert space that is CP and preserves trace.

Quantum channel

A quantum channel is a linear map

Φ : L(X ) → L(Y),

i.e., Φ ∈ T (X ,Y), with X ,Y Hilbert spaces, satisfying that Φ is completely positive and trace
preserving.

If X = Y = H, it can map the state ρ→ Φ(ρ)
Example: U unitary, Φ(ρ) = UρU† is called a unitary channel.
How can we learn a quantum channel using techniques like Classical shadows tomography?
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Choi–Jamio lkowski isomorphism

Choi–Jamio lkowski isomorphism

Given E : L(X ) → L(Y) a linear map. Fixed an orthonormal basis for X and define
P+ =

∑d
i ,j=1 |ii⟩⟨jj |. Then the mapping

ΛE = (I ⊗ E)(P+)

defines a isomorphism between the vector spaces of linear maps on a d-dimensional system and
linear operators on a dim(X )× dim(Y)-dimensional Hilbert space L(Y ⊗ X ).
The inverse is given by:

E(ρ) = tr1
[(
ρT ⊗ I

)
(ΛE)

]
ρ ∈ L(X )

If E is CP, the obtained operator is positive on L(Y ⊗ X ).
Quantum process tomography can be thought as quantum state tomography!!
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Choi–Jamio lkowski isomorphism

Check of the inverse function

tr1
[(
ρT ⊗ I

)
(ΛE)

]
= tr1

(ρT ⊗ I
)
(I ⊗ E)

d∑
i ,j=1

|jj⟩⟨kk|


=

d∑
i ,j=1

tr1
[(
ρT ⊗ I

)
(|j⟩⟨k| ⊗ E(|j⟩⟨k |)

]
=

d∑
i ,j=1

tr
(
ρT |j⟩⟨k |

)
⊗ E(|j⟩⟨k |)

=
d∑

i ,j=1

⟨k |ρT j⟩ E(|j⟩⟨k |) = E
d∑

i ,j=1

(|j⟩⟨k| ⟨j |ρ|k⟩) = E(ρ)

tr(ΛE) = d → ρΛE = ΛE/d = ΛE/2
n
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Intuition

2
2Source: https://bit.ly/3xflPkY
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Intuition
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Theoretical analysis of classical shadows for quantum process

tomography

Theorem 4

For a n-qubit quantum process ρΛ and ϵ, δ ∈ (0, 1), given a set of density matrix pairs
{(ρin1 , σ1), ..., (ρinM , σM)}, the number of measurements N that suffices to predict
tr((ρini ⊗ σi )ρΛ) for any i up to error ϵ with probability 1− δ is of order:

log(2M/δ)

ϵ2
max

1≤i≤M

∥∥∥∥Oi −
tr(Oi )

2n
I
∥∥∥∥2
shadow

with Oi = (ρini ⊗ σi ) and the shadow norm introduced before.
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Theoretical analysis of classical shadows for quantum process

tomography

Global random Clifford measurements

The number of copies needed scales as log(2M/δ)
ϵ2

max1≤i≤M tr(O2
i ). If ρ

in
i , σi are all pure states,

tr(O2
i ) = 1

1-qubit random Clifford measurements

The number of copies needed scales as log(2M/δ)
ϵ2

max1≤i≤M 4ki ∥Oi∥2∞ . If ρini , σi are all pure

states, ∥Oi∥2∞ = 1. ki defines the locality of the operator Oi

Estimating these expectation values is equivalent to compute the overlap between σi and ρi :
tr(E(ρini )σi = 2n tr((ρini ⊗ σi )ρΛ). The scaling is the same except for the dependence on the
number of qubits due to normalization.
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Full quantum process tomography using global Clifford unitaries

Not only we want to estimate the overlap between two states, one of it evolved under the
channel, but to characterize the Choi matrix completely. Which will be the scaling?

Theorem 5

For a n-qubit quantum process ρΛ and ϵ, δ ∈ (0, 1), the number of random global Clifford
measurements N that suffices to simultaneously predict any reduced k-qubit process Choi
matrix ρΛ(k) such that

• Frobenius norm error up to ϵ with probability 1− δ is of order 4k+n

ϵ2
log(2(8n)2k/δ).

For full quantum process tomography, k=n. It scales exponentially with the number
of qubits. Sad news, but it was expected.
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