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Overview

I Central object of study of quantum information and computation theory:
the advantage afforded by quantum resources in information-processing tasks.

I A range of examples are known and have been studied . . . but a systematic understanding of
the scope and structure of quantum advantage is lacking.

I A hypothesis: this is related to non-classical features of quantum mechancics.

I In this talk, we focus on non-local and contextual behaviours as quantum resources.

I Contextuality is a feature of empirical data that is a key signature of non-classicality.
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Recap on contextuality

‘The sheaf-theoretic structure of non-locality and contextuality ’

Abramsky & Brandenburger, New Journal of Physics, 2011.

‘Contextuality, cohomology, and paradox ’

Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

(cf. Cabello–Severini–Winter, Aćın–Fritz–Leverrier–Sainz)



The essence of contextuality

I Not all properties may be observed simultaneously.

I Sets of jointly observable properties provide partial snapshots.

Local consistency but Global inconsistency
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Formalising empirical data: measurement scenarios

A measurement scenario is described by:

I a finite set X of measurements;

I for each measurement x ∈ X , a non-empty (finite) set Ox of possible outcomes;

I a set Σ of measurement contexts:

I A context is a set of measurements σ ⊆ X that can be jointly performed.

I If σ is a context, then any τ ⊆ σ is also a context.

I Any measurement x ∈ X can be performed, so {x} is a context.

I Hence, Σ is a collection of subsets of X that is down-closed and includes all singletons
(aka an abstract simplicial complex).

E.g. X = {a0, a1, b0, b1}, Ox = {0, 1}, Σ = ↓ { {a0, b0}, {a0, b1}, {a1, b0}, {a1, b1} }.
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Formalising empirical data: measurement outcomes

I Whenever we perform a measurement x ∈ X , we observe some outcome s ∈ Ox .

I If we perform together the measurements in some context

σ = {x1, . . . , xn} ∈ Σ ,

we observe a joint outcome

s = [x1, . . . , xn 7→ s1, . . . , sn] ∈ Oσ :=
∏
x∈σ

Ox .

I If τ ⊆ σ, a joint outcome for σ, s ∈ Oσ, restricts to a joint outcome for τ , s|τ ∈ Oτ :

I E.g. take {a} ⊆ {a, b}.

I The joint outcome [a, b 7→ 0, 1] ∈ O{a,b}

I restricts to [a, b 7→ 0, 1]|{a} = [a 7→ 0] ∈ O{a}.
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Formalising empirical data: empirical models

An empirical model is a family {eσ}σ∈Σ, where:

I for each context σ, eσ is a probability distribution on joint outcomes Oσ;

I these satisfy generalised no-signalling:

I If τ ⊆ σ, then eσ on Oσ marginalises to a probability distribution eσ|τ on Oτ :

for t ∈ Oτ , eσ|τ (t) :=
∑

s∈Oσ,s|τ =t

eσ(s) .

I The requirement is that eσ|τ = eτ .

I So the statistics for a (joint) measurement τ are independent of what other measurements are
also performed together with it.
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Formalising empirical data: example

X = {a0, a1, b0, b1}, Ox = {0, 1}, Σ = ↓ { {a0, b0}, {a0, b1}, {a1, b0}, {a1, b1} }.

A B (0, 0) (0, 1) (1, 0) (1, 1)
a0 b0

a0 b1

a1 b0

a1 b1

e.g. e{a0,b0}[a0, b0 7→ 0, 0] = 1/2.

No-signalling: what is, e.g., ea0 ? e{a0,b0}|{a0} vs. e{a0,b1}|{a0}

I e{a0,b0}|{a0}([a0 7→ 0]) = e{a0,b0}[a0, b0 7→ 0, 0] + e{a0,b0}[a0, b0 7→ 0, 1] = 1/2 + 0 = 1/2.

I e{a0,b1}|{a0}([a0 7→ 0]) = e{a0,b1}[a0, b1 7→ 0, 0] + e{a0,b1}[a0, b1 7→ 0, 1] = 3/8 + 1/8 = 1/2.
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R S Barbosa An introduction to contextuality and quantum advantage 6/17



Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual
if there is a probability distribution d on OX =

∏
x∈X Ox such that:

for all σ ∈ Σ, d |σ = eσ .

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Bell–Kochen–Specker’s theorems is that there are behaviours arising
from quantum mechanics that are contextual.
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Quantifying contextuality



Contextuality and advantages

I Contextuality has been associated with quantum advantage in information-processing and
computational tasks.

I Measure of contextuality  quantify such advantages.

‘Contextuality fraction as a measure of contextuality ’
Abramsky, B, & Mansfield, Physical Review Letters, 2017.
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The contextual fraction
Non-contextuality: global distribution d ∈ Prob(OX ) such that:

for all σ ∈ Σ, d |σ = eσ .

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on OX such that:

for all σ ∈ Σ, c |σ ≤ eσ .

Equivalently, it is the maximum weight λ over all convex decompositions

e = λeNC + (1− λ)e′

where eNC is a non-contextual model.

NCF(e) = λ CF(e) = 1− λ
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The contextual fraction as a measure of contextuality

I CF(e) = 0 iff e is non-contextual.

I CF(e) = 1 iff e is strongly contextual.

I CF(e) is a monotone for free operations in the resource theory of contextuality.

I CF(e) is equal to the maximal violation by e of a Bell inequality.

I CF(e) is calculated via linear programming, the dual LP yields this inequality.
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Contextuality and quantum advantage



Contextual fraction and cooperative games

I Game described by n formulae (one for each allowed input).

I These describe the winning condition that the corresponding outputs must satisfy.

I If the formulae are k-consistent (at most k are jointly satisfiable),
hardness of the task is n−k

n .

‘Logical Bell inequalities’, Abramsky & Hardy, Physical Review A, 2012.

I We have

1− p̄S ≥ NCF
n − k

n
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Contextuality and advantage in quantum computation

I Measurement-based quantum computation (MBQC)

‘Contextuality in measurement-based quantum computation’
Raussendorf, Physical Review A, 2013.

I Magic state distillation

‘Contextuality supplies the ‘magic’ for quantum computation’
Howard, Wallman, Veitch, Emerson, Nature, 2014.

I Shallow circuits

‘Quantum advantage with shallow circuits’
Bravyi, Gossett, Koenig, Science, 2018.

I Contextuality analysis: Aasnæss, Forthcoming, 2020.
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Contextuality and MBQC

E.g. Raussendorf (2013) `2-MBQC

I measurement-based quantum computing scheme
(m input bits, l output bits, n parties)

I classical control:
I pre-processes input
I determines the flow of measurements
I post-processes to produce the output

only Z2-linear computations.

I additional power to compute non-linear functions resides in resource empirical models.

Impact of contributions

Classical
Dependence logics
(Hyttinen, Paolini, Väänänen ’15)

Binary constraint systems
(Kolaitis ’16)

Complexity
(Abramsky, Gottlob, Kolaitis ’13)

Quantum

Stronger no-go theorems
Unifies non-locality and
contextuality
Power of computational models
(Raussendorf ’13)

“MBQC” models
(Raussendorf, Briegel ’01)

Using our framework: “non-linearity implies contextuality”

5 / 9
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Contextuality and MBQC
E.g. Raussendorf (2013) `2-MBQC

I measurement-based quantum computing scheme
(m input bits, l output bits, n parties)

I classical control:
I pre-processes input
I determines the flow of measurements
I post-processes to produce the output

only Z2-linear computations.

I additional power to compute non-linear functions resides in resource empirical models.

I Raussendorf (2013): If an `2-MBQC deterministically computes a non-linear Boolean
function f : 2m −→ 2l then the resource must be strongly contextual.

I Probabilistic version: non-linear function computed with sufficently large probability of
success implies contextuality.
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Contextual fraction and MBQC

I Goal: Compute Boolean function f : 2m −→ 2l using `2-MBQC

I Hardness of the problem

ν(f ) := min {d(f , g) | g is Z2-linear}

(average distance between f and closest Z2-linear function)

where for Boolean functions f and g , d(f , g) := 2−m| {i ∈ 2m | f (i) 6= g(i)}.

I Average probability of success computing f (over all 2m possible inputs): p̄S .

I Then,

1− p̄S ≥ NCF(e) ν(f )
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Further topics



Some further topics I
I The logic of contextuality: partial Boolean algebras

‘The problem of hidden variables in quantum mechanics’
Kochen & Specker, Journal of Mathematics and Mechanics, 1965.

‘Noncommutativity as a colimit’
Heunen & van den Berg, Applied Categorical Structures, 2010.

‘The logic of contextuality ’, Abramsky & B, 2020.

I multiple viewpoints and the quantum-mechanical tensor product?

I The topology of contextuality: cohomological witnesses

‘The cohomology of non-locality and contextuality ’
Abramsky, B, & Mansfield, CSL 2015.

‘Contextuality, cohomology, and paradox ’
Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

I Monogamy relations limiting contextuality

‘On monogamy of non-locality and macroscopic averages’, B, QPL, 2014.
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Some further topics II

I A resource theory of contextuality

‘A comonadic view on simulations and quantum resources’
Abramsky, B, Karvonen, & Mansfield, LiCS 2019.

I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

I Simulations using “free” operations that transform contextual blackboxes.
I Adaptivity (a la MBQC) using measurement protocols.
I Graded notions by depth, space, number of copies, other free models, etc.
I “No-copying”: e  e ⊗ e iff e is noncontextual.
I “No-catalysis”: e 6 e′ implies e ⊗ d 6 e′ ⊗ d .

R S Barbosa An introduction to contextuality and quantum advantage 17/17



Some further topics II

I A resource theory of contextuality

‘A comonadic view on simulations and quantum resources’
Abramsky, B, Karvonen, & Mansfield, LiCS 2019.

I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

I Simulations using “free” operations that transform contextual blackboxes.
I Adaptivity (a la MBQC) using measurement protocols.
I Graded notions by depth, space, number of copies, other free models, etc.
I “No-copying”: e  e ⊗ e iff e is noncontextual.
I “No-catalysis”: e 6 e′ implies e ⊗ d 6 e′ ⊗ d .

R S Barbosa An introduction to contextuality and quantum advantage 17/17



Some further topics II

I A resource theory of contextuality

‘A comonadic view on simulations and quantum resources’
Abramsky, B, Karvonen, & Mansfield, LiCS 2019.

I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

I Simulations using “free” operations that transform contextual blackboxes.
I Adaptivity (a la MBQC) using measurement protocols.
I Graded notions by depth, space, number of copies, other free models, etc.
I “No-copying”: e  e ⊗ e iff e is noncontextual.
I “No-catalysis”: e 6 e′ implies e ⊗ d 6 e′ ⊗ d .

R S Barbosa An introduction to contextuality and quantum advantage 17/17



Some further topics II

I A resource theory of contextuality

‘A comonadic view on simulations and quantum resources’
Abramsky, B, Karvonen, & Mansfield, LiCS 2019.

I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

I Simulations using “free” operations that transform contextual blackboxes.
I Adaptivity (a la MBQC) using measurement protocols.

I Graded notions by depth, space, number of copies, other free models, etc.
I “No-copying”: e  e ⊗ e iff e is noncontextual.
I “No-catalysis”: e 6 e′ implies e ⊗ d 6 e′ ⊗ d .

R S Barbosa An introduction to contextuality and quantum advantage 17/17



Some further topics II

I A resource theory of contextuality

‘A comonadic view on simulations and quantum resources’
Abramsky, B, Karvonen, & Mansfield, LiCS 2019.

I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

I Simulations using “free” operations that transform contextual blackboxes.
I Adaptivity (a la MBQC) using measurement protocols.
I Graded notions by depth, space, number of copies, other free models, etc.

I “No-copying”: e  e ⊗ e iff e is noncontextual.
I “No-catalysis”: e 6 e′ implies e ⊗ d 6 e′ ⊗ d .

R S Barbosa An introduction to contextuality and quantum advantage 17/17



Some further topics II

I A resource theory of contextuality

‘A comonadic view on simulations and quantum resources’
Abramsky, B, Karvonen, & Mansfield, LiCS 2019.

I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

I Simulations using “free” operations that transform contextual blackboxes.
I Adaptivity (a la MBQC) using measurement protocols.
I Graded notions by depth, space, number of copies, other free models, etc.
I “No-copying”: e  e ⊗ e iff e is noncontextual.

I “No-catalysis”: e 6 e′ implies e ⊗ d 6 e′ ⊗ d .

R S Barbosa An introduction to contextuality and quantum advantage 17/17



Some further topics II

I A resource theory of contextuality

‘A comonadic view on simulations and quantum resources’
Abramsky, B, Karvonen, & Mansfield, LiCS 2019.

I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

I Simulations using “free” operations that transform contextual blackboxes.
I Adaptivity (a la MBQC) using measurement protocols.
I Graded notions by depth, space, number of copies, other free models, etc.
I “No-copying”: e  e ⊗ e iff e is noncontextual.
I “No-catalysis”: e 6 e′ implies e ⊗ d 6 e′ ⊗ d .

R S Barbosa An introduction to contextuality and quantum advantage 17/17



Questions...

?


