An introduction to contextuality and quantum advantage

Part 2

Rui Soares Barbosa

rui.soaresbarbosa@inl.int

Quantum and Linear-Optical Computation (QLOC) group meeting 16th July 2020

Central object of study of quantum information and computation theory: the advantage afforded by quantum resources in information-processing tasks.

- Central object of study of quantum information and computation theory: the advantage afforded by quantum resources in information-processing tasks.
- A range of examples are known and have been studied ... but a systematic understanding of the scope and structure of quantum advantage is lacking.

- Central object of study of quantum information and computation theory: the advantage afforded by quantum resources in information-processing tasks.
- A range of examples are known and have been studied ... but a systematic understanding of the scope and structure of quantum advantage is lacking.
- > A hypothesis: this is related to **non-classical** features of quantum mechancics.

- Central object of study of quantum information and computation theory: the advantage afforded by quantum resources in information-processing tasks.
- A range of examples are known and have been studied ... but a systematic understanding of the scope and structure of quantum advantage is lacking.
- > A hypothesis: this is related to **non-classical** features of quantum mechancics.
- ▶ In this talk, we focus on **non-local** and **contextual** behaviours as quantum resources.
- Contextuality is a feature of **empirical data** that is a key signature of non-classicality.

Recap on contextuality

'The sheaf-theoretic structure of non-locality and contextuality' Abramsky & Brandenburger, New Journal of Physics, 2011.

'Contextuality, cohomology, and paradox'

Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

(cf. Cabello-Severini-Winter, Acín-Fritz-Leverrier-Sainz)

- Not all properties may be observed simultaneously.
- > Sets of jointly observable properties provide **partial snapshots**.

- ▶ Not all properties may be observed simultaneously.
- > Sets of jointly observable properties provide **partial snapshots**.

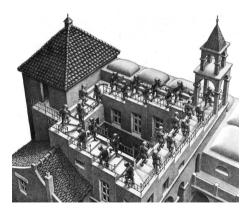


M. C. Escher, Ascending and Descending

- Not all properties may be observed simultaneously.
- > Sets of jointly observable properties provide **partial snapshots**.

Local consistency

- Not all properties may be observed simultaneously.
- > Sets of jointly observable properties provide **partial snapshots**.



Local consistency but Global inconsistency

A measurement scenario is described by:

► a finite set X of **measurements**;

- a finite set X of measurements;
- ▶ for each measurement $x \in X$, a non-empty (finite) set O_x of possible **outcomes**;

- a finite set X of measurements;
- ▶ for each measurement $x \in X$, a non-empty (finite) set O_x of possible **outcomes**;
- a set Σ of measurement **contexts**:

- ▶ a finite set *X* of **measurements**;
- ▶ for each measurement $x \in X$, a non-empty (finite) set O_x of possible **outcomes**;
- a set Σ of measurement **contexts**:
 - A context is a set of measurements $\sigma \subseteq X$ that can be jointly performed.

- ▶ a finite set X of **measurements**;
- ▶ for each measurement $x \in X$, a non-empty (finite) set O_x of possible **outcomes**;
- a set Σ of measurement **contexts**:
 - A context is a set of measurements $\sigma \subseteq X$ that can be jointly performed.
 - If σ is a context, then any $\tau \subseteq \sigma$ is also a context.

- a finite set X of measurements;
- ▶ for each measurement $x \in X$, a non-empty (finite) set O_x of possible **outcomes**;
- a set Σ of measurement **contexts**:
 - A context is a set of measurements $\sigma \subseteq X$ that can be jointly performed.
 - If σ is a context, then any $\tau \subseteq \sigma$ is also a context.
 - Any measurement $x \in X$ can be performed, so $\{x\}$ is a context.

- a finite set X of measurements;
- ▶ for each measurement $x \in X$, a non-empty (finite) set O_x of possible **outcomes**;
- a set Σ of measurement **contexts**:
 - A context is a set of measurements $\sigma \subseteq X$ that can be jointly performed.
 - If σ is a context, then any $\tau \subseteq \sigma$ is also a context.
 - Any measurement $x \in X$ can be performed, so $\{x\}$ is a context.
 - Hence, Σ is a collection of subsets of X that is down-closed and includes all singletons (aka an abstract simplicial complex).

- ▶ a finite set X of **measurements**;
- ▶ for each measurement $x \in X$, a non-empty (finite) set O_x of possible **outcomes**;
- a set Σ of measurement **contexts**:
 - A context is a set of measurements $\sigma \subseteq X$ that can be jointly performed.
 - If σ is a context, then any $\tau \subseteq \sigma$ is also a context.
 - Any measurement $x \in X$ can be performed, so $\{x\}$ is a context.
 - Hence, Σ is a collection of subsets of X that is down-closed and includes all singletons (aka an abstract simplicial complex).

$$\mathsf{E.g.} \ X = \{a_0, a_1, b_0, b_1\}, \qquad O_x = \{0, 1\}, \qquad \Sigma = \downarrow \{\{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\}\}.$$

▶ Whenever we perform a measurement $x \in X$, we observe some outcome $s \in O_x$.

- ▶ Whenever we perform a measurement $x \in X$, we observe some outcome $s \in O_x$.
- If we perform together the measurements in some context

$$\sigma = \{x_1, \ldots, x_n\} \in \Sigma ,$$

- Whenever we perform a measurement $x \in X$, we observe some outcome $s \in O_x$.
- If we perform together the measurements in some context

$$\sigma = \{x_1, \ldots, x_n\} \in \Sigma$$
 ,

we observe a joint outcome

$$\mathbf{s} = [x_1, \ldots, x_n \mapsto s_1, \ldots, s_n] \in \mathbf{O}_{\sigma} := \prod_{x \in \sigma} O_x .$$

- Whenever we perform a measurement $x \in X$, we observe some outcome $s \in O_x$.
- If we perform together the measurements in some context

$$\sigma = \{x_1, \ldots, x_n\} \in \Sigma$$
 ,

we observe a joint outcome

$$\mathbf{s} = [x_1, \ldots, x_n \mapsto s_1, \ldots, s_n] \in \mathbf{O}_{\sigma} := \prod_{x \in \sigma} O_x$$

• If $\tau \subseteq \sigma$, a joint outcome for σ , $\mathbf{s} \in \mathbf{O}_{\sigma}$, restricts to a joint outcome for τ , $\mathbf{s}|_{\tau} \in \mathbf{O}_{\tau}$:

- Whenever we perform a measurement $x \in X$, we observe some outcome $s \in O_x$.
- If we perform together the measurements in some context

$$\sigma = \{x_1, \ldots, x_n\} \in \Sigma$$
 ,

we observe a joint outcome

$$\mathbf{s} = [x_1, \ldots, x_n \mapsto s_1, \ldots, s_n] \in \mathbf{O}_{\sigma} := \prod_{x \in \sigma} O_x$$

• If $\tau \subseteq \sigma$, a joint outcome for σ , $\mathbf{s} \in \mathbf{O}_{\sigma}$, restricts to a joint outcome for τ , $\mathbf{s}|_{\tau} \in \mathbf{O}_{\tau}$:

• E.g. take $\{a\} \subseteq \{a, b\}$.

- Whenever we perform a measurement $x \in X$, we observe some outcome $s \in O_x$.
- If we perform together the measurements in some context

$$\sigma = \{x_1, \ldots, x_n\} \in \Sigma$$
 ,

we observe a joint outcome

$$\mathbf{s} = [x_1, \ldots, x_n \mapsto s_1, \ldots, s_n] \in \mathbf{O}_{\sigma} := \prod_{x \in \sigma} O_x$$

• If $\tau \subseteq \sigma$, a joint outcome for σ , $\mathbf{s} \in \mathbf{O}_{\sigma}$, restricts to a joint outcome for τ , $\mathbf{s}|_{\tau} \in \mathbf{O}_{\tau}$:

- E.g. take $\{a\} \subseteq \{a, b\}$.
- ▶ The joint outcome $[a, b \mapsto 0, 1] \in \mathbf{O}_{\{a, b\}}$

- Whenever we perform a measurement $x \in X$, we observe some outcome $s \in O_x$.
- If we perform together the measurements in some context

$$\sigma = \{x_1, \ldots, x_n\} \in \Sigma$$
 ,

we observe a joint outcome

$$\mathbf{s} = [x_1, \ldots, x_n \mapsto s_1, \ldots, s_n] \in \mathbf{O}_{\sigma} := \prod_{x \in \sigma} O_x$$

• If $\tau \subseteq \sigma$, a joint outcome for σ , $\mathbf{s} \in \mathbf{O}_{\sigma}$, restricts to a joint outcome for τ , $\mathbf{s}|_{\tau} \in \mathbf{O}_{\tau}$:

- E.g. take $\{a\} \subseteq \{a, b\}$.
- ▶ The joint outcome $[a, b \mapsto 0, 1] \in \mathbf{O}_{\{a, b\}}$

▶ restricts to
$$[a, b \mapsto 0, 1]|_{\{a\}} = [a \mapsto 0] \in \mathbf{O}_{\{a\}}$$
.

An **empirical model** is a family $\{e_{\sigma}\}_{\sigma \in \Sigma}$, where:

An **empirical model** is a family $\{e_{\sigma}\}_{\sigma \in \Sigma}$, where:

▶ for each context σ , e_{σ} is a probability distribution on joint outcomes \mathbf{O}_{σ} ;

An **empirical model** is a family $\{e_{\sigma}\}_{\sigma \in \Sigma}$, where:

- for each context σ , e_{σ} is a probability distribution on joint outcomes \mathbf{O}_{σ} ;
- these satisfy generalised no-signalling:

An **empirical model** is a family $\{e_{\sigma}\}_{\sigma \in \Sigma}$, where:

- for each context σ , e_{σ} is a probability distribution on joint outcomes \mathbf{O}_{σ} ;
- these satisfy generalised no-signalling:

• If $\tau \subseteq \sigma$, then e_{σ} on \mathbf{O}_{σ} marginalises to a probability distribution $e_{\sigma}|_{\tau}$ on \mathbf{O}_{τ} :

for
$$\mathbf{t}\in \mathbf{0}_{ au}$$
, $e_{\sigma}|_{ au}(\mathbf{t}):=\sum_{\mathbf{s}\in \mathbf{0}_{\sigma},\mathbf{s}|_{ au}=\mathbf{t}}e_{\sigma}(\mathbf{s})$.

An **empirical model** is a family $\{e_{\sigma}\}_{\sigma \in \Sigma}$, where:

- for each context σ , e_{σ} is a probability distribution on joint outcomes \mathbf{O}_{σ} ;
- these satisfy generalised no-signalling:

• If $\tau \subseteq \sigma$, then e_{σ} on \mathbf{O}_{σ} marginalises to a probability distribution $e_{\sigma}|_{\tau}$ on \mathbf{O}_{τ} :

for
$$\mathbf{t}\in \mathbf{O}_{ au}$$
, $e_{\sigma}|_{ au}(\mathbf{t}):=\sum_{\mathbf{s}\in \mathbf{O}_{\sigma},\mathbf{s}|_{ au}=\mathbf{t}}e_{\sigma}(\mathbf{s})$.

- The requirement is that $e_{\sigma}|_{\tau} = e_{\tau}$.
- So the statistics for a (joint) measurement τ are independent of what other measurements are also performed together with it.

 $X = \{a_0, a_1, b_0, b_1\}, \qquad O_x = \{0, 1\}, \qquad \Sigma = \downarrow \{\{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\}\}.$

А	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, 0)	(1, 1)	
<i>a</i> 0	b_0	1/2	0	0	1/2	
	b_1		$^{1/8}$	$^{1/8}$	3/8	
	b_0	3/8	1/8	1/8	3/8	
	b_1	1/8	3/8	3/8	$^{1/8}$	

e.g.
$$e_{\{a_0,b_0\}}[a_0,b_0\mapsto 0,0] = 1/2.$$

 $X = \{a_0, a_1, b_0, b_1\}, \qquad O_x = \{0, 1\}, \qquad \Sigma = \downarrow \{\{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\}\}.$ $A = B \mid (0, 0) \quad (0, 1) \quad (1, 0) \quad (1, 1)$

a_0	b_0	$^{1/2}$	0	0	$^{1/2}$
a_0		3/8	$^{1/8}$	$^{1/8}$	3/8
a_1	b_0	3/8	1/8	1/8	3/8
a_1	b_1	1/8	3/8	3/8	1/8

e.g.
$$e_{\{a_0, b_0\}}[a_0, b_0 \mapsto 0, 0] = 1/2.$$

No-signalling: what is, e.g., e_{a_0} ?

 $X = \{a_0, a_1, b_0, b_1\}, \qquad O_x = \{0, 1\}, \qquad \Sigma = \downarrow \{\{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\}\}.$ $\frac{A \quad B \quad (0, 0) \quad (0, 1) \quad (1, 0) \quad (1, 1)}{a_0 \quad b_0 \quad \frac{1}{2} \quad 0 \quad 0 \quad \frac{1}{2}}$ $a_0 \quad b_1 \quad \frac{3}{8} \quad \frac{1}{8} \quad \frac{1}{8} \quad \frac{3}{8} \quad \frac{3}{8} \quad e.g. \quad e_{\{a_0, b_0\}}[a_0, b_0 \mapsto 0, 0] = \frac{1}{2}.$

No-signalling: what is, e.g., e_{a_0} ? $e_{\{a_0,b_0\}}|_{\{a_0\}}$ vs. $e_{\{a_0,b_1\}}|_{\{a_0\}}$

Formalising empirical data: example

 $X = \{a_0, a_1, b_0, b_1\}, \qquad O_x = \{0, 1\}, \qquad \Sigma = \downarrow \{\{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\}\}.$

		(<mark>0,0</mark>)				
<i>a</i> 0	b_0	1/2	0	0	$^{1/2}$	
a_0	b_1	3/8	$^{1/8}$	1/8	³ /8	e.g. $e_{\{a_0,b_0\}}[a_0,b_0\mapsto 0,0]=1/2.$
a_1	b_0	3/8	1/8	1/8	3/8	
		1/8				

No-signalling: what is, e.g., e_{a_0} ? $e_{\{a_0,b_0\}}|_{\{a_0\}}$ vs. $e_{\{a_0,b_1\}}|_{\{a_0\}}$

 $\bullet \ e_{\{a_0,b_0\}}|_{\{a_0\}}([a_0\mapsto 0]) = e_{\{a_0,b_0\}}[a_0,b_0\mapsto 0,0] + e_{\{a_0,b_0\}}[a_0,b_0\mapsto 0,1] = 1/2 + 0 = 1/2.$

Formalising empirical data: example

 $X = \{a_0, a_1, b_0, b_1\}, \qquad O_x = \{0, 1\}, \qquad \Sigma = \downarrow \{\{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\}\}.$

		(<mark>0,0</mark>)				
		1/2				
a 0	b_1	3/8	$^{1/8}$	1/8	³ /8	e.g. $e_{\{a_0,b_0\}}[a_0,b_0\mapsto 0,0]=1/2.$
a_1	b_0	3/8	1/8	1/8	3/8	
a_1	b_1	1/8	3/8	3/8	$^{1/8}$	

No-signalling: what is, e.g., e_{a_0} ? $e_{\{a_0,b_0\}}|_{\{a_0\}}$ vs. $e_{\{a_0,b_1\}}|_{\{a_0\}}$

 $\bullet \ e_{\{a_0,b_0\}}|_{\{a_0\}}([a_0\mapsto 0]) = e_{\{a_0,b_0\}}[a_0,b_0\mapsto 0,0] + e_{\{a_0,b_0\}}[a_0,b_0\mapsto 0,1] = 1/2 + 0 = 1/2.$

▶ $e_{\{a_0,b_1\}}|_{\{a_0\}}([a_0 \mapsto 0]) = e_{\{a_0,b_1\}}[a_0,b_1 \mapsto 0,0] + e_{\{a_0,b_1\}}[a_0,b_1 \mapsto 0,1] = \frac{3}{8} + \frac{1}{8} = \frac{1}{2}$.

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a probability distribution d on $\mathbf{O}_X = \prod_{x \in X} O_x$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$

.

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a probability distribution d on $\mathbf{O}_X = \prod_{x \in X} O_x$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a probability distribution d on $\mathbf{O}_X = \prod_{x \in X} O_x$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is **contextual**.

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a probability distribution d on $\mathbf{O}_X = \prod_{x \in X} O_x$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is **contextual**.

Contextuality: family of data that is locally consistent but globally inconsistent.

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a probability distribution d on $\mathbf{O}_X = \prod_{x \in X} O_x$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is **contextual**.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell's and Bell-Kochen-Specker's theorems is that there are behaviours arising from quantum mechanics that are contextual.

Quantifying contextuality

Contextuality and advantages

Contextuality has been associated with quantum advantage in information-processing and computational tasks.

Contextuality and advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
- Measure of contextuality ~> quantify such advantages.

^cContextuality fraction as a measure of contextuality' Abramsky, B, & Mansfield, Physical Review Letters, 2017.

Non-contextuality: global distribution $d \in Prob(\mathbf{O}_X)$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$.

Non-contextuality: global distribution $d \in \text{Prob}(\mathbf{O}_X)$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$.

Which fraction of a model admits a non-contextual explanation?

Non-contextuality: global distribution $d \in \text{Prob}(\mathbf{O}_X)$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$.

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on O_X such that:

for all
$$\sigma \in \Sigma$$
, $c|_{\sigma} \leq e_{\sigma}$.

Non-contextuality: global distribution $d \in \text{Prob}(\mathbf{O}_X)$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on O_X such that:

for all
$$\sigma \in \Sigma$$
, $c|_{\sigma} \leq e_{\sigma}$.

Equivalently, it is the maximum weight λ over all convex decompositions

$$e = \lambda e^{\it NC} + (1-\lambda)e^{\prime}$$

where e^{NC} is a non-contextual model.

Non-contextuality: global distribution $d \in \text{Prob}(\mathbf{O}_X)$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on O_X such that:

for all
$$\sigma \in \Sigma$$
, $c|_{\sigma} \leq e_{\sigma}$.

Equivalently, it is the maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda) e^{SC}$$

where e^{NC} is a non-contextual model. e^{SC} is strongly contextual!

Non-contextuality: global distribution $d \in \text{Prob}(\mathbf{O}_X)$ such that:

for all
$$\sigma \in \Sigma$$
, $d|_{\sigma} = e_{\sigma}$

Which fraction of a model admits a non-contextual explanation?

Non-contextual fraction of e: maximum mass of a subdistribution c on O_X such that:

for all
$$\sigma \in \Sigma$$
, $c|_{\sigma} \leq e_{\sigma}$.

Equivalently, it is the maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda) e^{SC}$$

where e^{NC} is a non-contextual model. e^{SC} is strongly contextual!

$$\mathsf{NCF}(e) = \lambda$$
 $\mathsf{CF}(e) = 1 - \lambda$

- CF(e) = 0 iff e is non-contextual.
- CF(e) = 1 iff e is strongly contextual.

- CF(e) = 0 iff e is non-contextual.
- CF(e) = 1 iff e is strongly contextual.
- \triangleright CF(e) is a monotone for free operations in the resource theory of contextuality.

- CF(e) = 0 iff e is non-contextual.
- CF(e) = 1 iff e is strongly contextual.
- \triangleright CF(e) is a monotone for free operations in the resource theory of contextuality.
- \triangleright CF(e) is equal to the maximal violation by e of a Bell inequality.

- CF(e) = 0 iff e is non-contextual.
- CF(e) = 1 iff e is strongly contextual.
- \triangleright CF(e) is a monotone for free operations in the resource theory of contextuality.
- CF(e) is equal to the maximal violation by e of a Bell inequality.
- \triangleright CF(e) is calculated via linear programming, the dual LP yields this inequality.

Contextuality and quantum advantage

Contextual fraction and cooperative games

- ▶ Game described by *n* formulae (one for each allowed input).
- ▶ These describe the winning condition that the corresponding outputs must satisfy.

Contextual fraction and cooperative games

- ▶ Game described by *n* formulae (one for each allowed input).
- ▶ These describe the winning condition that the corresponding outputs must satisfy.
- If the formulae are k-consistent (at most k are jointly satisfiable), hardness of the task is n-k/n.

'Logical Bell inequalities', Abramsky & Hardy, Physical Review A, 2012.

Contextual fraction and cooperative games

- ▶ Game described by *n* formulae (one for each allowed input).
- > These describe the winning condition that the corresponding outputs must satisfy.
- If the formulae are k-consistent (at most k are jointly satisfiable), hardness of the task is n-k/n.

'Logical Bell inequalities', Abramsky & Hardy, Physical Review A, 2012.

We have

$$1-ar{p}_{S} \geq \mathsf{NCF} \, rac{n-k}{n}$$

Contextuality and advantage in quantum computation

Measurement-based quantum computation (MBQC)

'Contextuality in measurement-based quantum computation' Raussendorf, Physical Review A, 2013.

Magic state distillation

Contextuality supplies the 'magic' for quantum computation' Howard, Wallman, Veitch, Emerson, Nature, 2014.

Shallow circuits

'*Quantum advantage with shallow circuits*' Bravyi, Gossett, Koenig, Science, 2018.

Contextuality analysis: Aasnæss, Forthcoming, 2020.

E.g. Raussendorf (2013) ℓ 2-MBQC

- E.g. Raussendorf (2013) ℓ 2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)

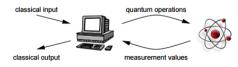
- E.g. Raussendorf (2013) ℓ 2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- E.g. Raussendorf (2013) ℓ2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

> additional power to compute non-linear functions resides in resource empirical models.



- E.g. Raussendorf (2013) ℓ 2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output
 - only \mathbb{Z}_2 -linear computations.
- ▶ additional power to compute non-linear functions resides in resource empirical models.

- E.g. Raussendorf (2013) ℓ2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- ▶ additional power to compute non-linear functions resides in resource empirical models.
- ► Raussendorf (2013): If an ℓ2-MBQC deterministically computes a non-linear Boolean function f : 2^m → 2^l then the resource must be strongly contextual.

- E.g. Raussendorf (2013) ℓ 2-MBQC
- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output
 - only \mathbb{Z}_2 -linear computations.
- > additional power to compute non-linear functions resides in resource empirical models.
- ► Raussendorf (2013): If an ℓ2-MBQC deterministically computes a non-linear Boolean function f : 2^m → 2^l then the resource must be strongly contextual.
- Probabilistic version: non-linear function computed with sufficiently large probability of success implies contextuality.

▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using ℓ 2-MBQC

- ▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using l2-MBQC
- Hardness of the problem

 $\nu(f) := \min \{ d(f,g) \mid g \text{ is } \mathbb{Z}_2 \text{-linear} \}$

(average distance between f and closest \mathbb{Z}_2 -linear function)

where for Boolean functions f and g, $d(f,g) := 2^{-m} | \{ \mathbf{i} \in 2^m | f(\mathbf{i}) \neq g(\mathbf{i}) \}.$

- ▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using ℓ 2-MBQC
- Hardness of the problem

 $\nu(f) := \min \{ d(f,g) \mid g \text{ is } \mathbb{Z}_2 \text{-linear} \}$

(average distance between f and closest \mathbb{Z}_2 -linear function)

where for Boolean functions f and g, $d(f,g) := 2^{-m} | \{ \mathbf{i} \in 2^m | f(\mathbf{i}) \neq g(\mathbf{i}) \}.$

• Average probability of success computing f (over all 2^m possible inputs): \bar{p}_S .

- ▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using ℓ 2-MBQC
- Hardness of the problem

 $\nu(f) := \min \{ d(f,g) \mid g \text{ is } \mathbb{Z}_2 \text{-linear} \}$

(average distance between f and closest \mathbb{Z}_2 -linear function)

where for Boolean functions f and g, $d(f,g) := 2^{-m} | \{ \mathbf{i} \in 2^m | f(\mathbf{i}) \neq g(\mathbf{i}) \}.$

• Average probability of success computing f (over all 2^m possible inputs): \bar{p}_S .

Then,

$$1-ar{
ho}_{\mathcal{S}}~\geq~\mathsf{NCF}(e)~
u(f)$$

Further topics

The logic of contextuality: partial Boolean algebras

'*The problem of hidden variables in quantum mechanics*' Kochen & Specker, Journal of Mathematics and Mechanics, 1965.

'Noncommutativity as a colimit'

Heunen & van den Berg, Applied Categorical Structures, 2010.

'The logic of contextuality', Abramsky & B, 2020.

multiple viewpoints and the quantum-mechanical tensor product?

The logic of contextuality: partial Boolean algebras

'The problem of hidden variables in quantum mechanics' Kochen & Specker, Journal of Mathematics and Mechanics, 1965.

'Noncommutativity as a colimit'

Heunen & van den Berg, Applied Categorical Structures, 2010.

'The logic of contextuality', Abramsky & B, 2020.

multiple viewpoints and the quantum-mechanical tensor product?

The topology of contextuality: cohomological witnesses

'*The cohomology of non-locality and contextuality*' Abramsky, B, & Mansfield, CSL 2015.

'Contextuality, cohomology, and paradox' Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

The logic of contextuality: partial Boolean algebras

'The problem of hidden variables in quantum mechanics' Kochen & Specker, Journal of Mathematics and Mechanics, 1965.

'Noncommutativity as a colimit'

Heunen & van den Berg, Applied Categorical Structures, 2010.

'The logic of contextuality', Abramsky & B, 2020.

multiple viewpoints and the quantum-mechanical tensor product?

The topology of contextuality: cohomological witnesses

'The cohomology of non-locality and contextuality' Abramsky, B, & Mansfield, CSL 2015.

'Contextuality, cohomology, and paradox' Abramsky, B, Kishida, Lal, & Mansfield, CSL 2015.

Monogamy relations limiting contextuality

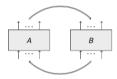
'On monogamy of non-locality and macroscopic averages', B, QPL, 2014.

► A resource theory of contextuality

- When is one a more powerful resource than another?
- When are two behaviours essentially the same?

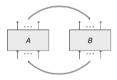
► A resource theory of contextuality

- When is one a more powerful resource than another?
- When are two behaviours essentially the same?



► A resource theory of contextuality

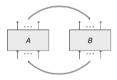
- When is one a more powerful resource than another?
- When are two behaviours essentially the same?



- Simulations using "free" operations that transform contextual blackboxes.
- Adaptivity (a la MBQC) using measurement protocols.

► A resource theory of contextuality

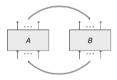
- When is one a more powerful resource than another?
- When are two behaviours essentially the same?



- Simulations using "free" operations that transform contextual blackboxes.
- Adaptivity (a la MBQC) using measurement protocols.
- Graded notions by depth, space, number of copies, other free models, etc.

► A resource theory of contextuality

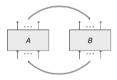
- When is one a more powerful resource than another?
- When are two behaviours essentially the same?



- Simulations using "free" operations that transform contextual blackboxes.
- Adaptivity (a la MBQC) using measurement protocols.
- Graded notions by depth, space, number of copies, other free models, etc.
- "No-copying": $e \rightsquigarrow e \otimes e$ iff e is noncontextual.

► A resource theory of contextuality

- When is one a more powerful resource than another?
- When are two behaviours essentially the same?



- Simulations using "free" operations that transform contextual blackboxes.
- Adaptivity (a la MBQC) using measurement protocols.
- Graded notions by depth, space, number of copies, other free models, etc.
- "No-copying": $e \rightsquigarrow e \otimes e$ iff e is noncontextual.
- "No-catalysis": $e \not\rightarrow e'$ implies $e \otimes d \not\rightarrow e' \otimes d$.

Questions...

?