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First steps

Random Walks
M. Dyer, A. Frieze, and R. Kannan (1991):
A random polynomial-time algorithm for approximating the volume of
convex bodies.
R. Motwani and P. Raghavan (1995):
Randomized Algorithms.
U. Schöning (1999):
A probabilistic algorithm for k-sat and constraint satisfaction
problems.
M. Jerrum, A. Sinclair, and E. Vigoda (2004):
A polynomial-time approximation algorithm for permanent of a matrix
with nonnegative entries.
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Keep walking

Quantum Walks
Y. Aharonov, L. Davidovich, and N. Zagury (1993):
Quantum random walks.
E. Farhi and S. Gutmann (1998):
Quantum computation and decision trees.
M. Szegedy (2004):
Quantum speed-up of markov chain based algorithms
A. Patel, K. Raghunathan, and P. Rungta (2005). Quantum random
walks do not need a coin toss.
A. Childs (2009):
Universal computation by quantum walk.
R. Portugal (2016):
The staggered quantum walk model.
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CQW + Infinite Line Graph

The space of our quantum walk is composed by coin HC and walker spaces
HW , and we have H = HC ⊗HW . The evolution operator consists of
tossing a coin and performing a shift, and we say

U = S(C ⊗ IW ) −→ |ψ(t)〉 = Ut |ψ(0)〉 (1)

We can describe the shift operator as
S |0〉 |x〉 = |0〉 |x + 1〉 (2)
S |1〉 |x〉 = |1〉 |x − 1〉

and S in the computational basis has the format

S = |0〉 〈0| ⊗
∑

x
|x + 1〉 〈x |+ |1〉 〈1| ⊗

∑
x

|x − 1〉 〈x | (3)
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Simulation & Remarks

We consider t = 70, initial condition, and the Hadamard coin, as

|ψ(0)〉 = |0〉 |0〉 ,C =
1√
2

[
1 1
1 −1

]
(4)
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Simulation & Remarks

We consider t = 70, initial condition, and the Hadamard coin, as

|ψ(0)〉 = |0〉 − i |1〉√
2

|0〉 ,C =
1√
2

[
1 1
1 −1

]
(6)
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Simulation & Remarks

Classical: σ(t) ∼
√

t
Quantum: σ(t) ∼ t
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CTQW + Infinite Line Graph

Given a graph G defined by its Laplacian matrix L, we can define a
relation between a random walk and a quantum walk by

∂p(x , t)
∂t = γLp(x , t) −→ i ∂ |ψ(x , t)〉

∂t = H |ψ(x , t)〉 (7)

Considering γ a jumping-rate (amplitude per time) and H = −γL, we
have the solution

U = e iγLt −→ |ψ(t)〉 = U |ψ(0)〉 (8)
We may define the adjacency matrix for an infinite line

A =
∑

x
|x + 1〉 〈x |+ |x〉 〈x + 1| (9)

and its Laplacian matrix as

L = A − D =
∑

x
|x + 1〉 〈x |+ |x〉 〈x + 1| − 2I (10)

where D denotes the degree matrix of a graph.
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Simulation & Remarks

(a) |ψa〉 (b) |ψb〉

We consider here t = 40, γ = 1 and initial conditions

|ψa〉 = |0〉 and |ψb〉 = |+〉 (11)
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SQW + Tesselation & Infinite Line

We construct this walk based on a graph tesselation, that is a set of
disjoint cliques over all vertices; and a graph covering, that is a family of
tesselations, where every edge belongs to, at least, one tesselation.

Considering an infinite line, we can tesselate this graph as

Tα = {{2x , 2x + 1} : x ∈ Z},
Tβ = {{2x + 1, 2x + 2} : x ∈ Z}.
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SQW + Operators & Infinite Line

We may define states associated to each tesselation such as

|αx〉 =
|2x〉+ |2x + 1〉√

2
,

|βx〉 =
|2x + 1〉+ |2x + 2〉√

2
.

and operators associated to each tesselation as

Hα = 2
∞∑

x=−∞
|αx〉 〈αx | − I,

Hβ = 2
∞∑

x=−∞
|βx〉 〈βx | − I.

Finally, we can describe the evolution operator as
U = e iθβHβe iθαHα .

where θα, θβ ∈ [0, π]
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Simulation & Remarks

We consider θα = θβ = θ, after t = 50, and initial condition

|ψ(0)〉 = |0〉+ |1〉√
2

(12)
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Simulation & Remarks

B. Chagas and R. Portugal (2020). Discrete-time quantum walks on
oriented graphs.

We can modify the operators in order to have a sense of direction as
H0 =

∑
x

e−iα |2x − 1〉 〈2x |+ e+iα |2x〉 〈2x − 1| ,

H1 =
∑

x
e−iα |2x〉 〈2x + 1|+ e+iα |2x + 1〉 〈2x | .

and the evolution will be
U = e iθβH1e iθαH0 .
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Simulation & Remarks

Defining the standard deviation as σ(t) =
√
〈x2〉 − 〈x〉2, we have the

moments

〈x〉
t = 2(|a|2 − |b|2)(1 − cos θ) +

i sin 2θ(abe iα − abe−iα)

1 + |cosθ| +O
(

1
t

)
〈x2〉
t2 = 4(1 − | cos θ|) +O

(
1
t

)
considering the initial condition

|ψ(0)〉 = a |0〉+ b |b〉 (13)

where |a|2 + |b|2 = 1.
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Simulation & Remarks
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Quantum Walk + Algorithms

Triangle Finding
F. Magniez, M. Santha, and M. Szegedy (2003). Quantum algorithms
for the triangle problem.
Problem: Given a graph G on n nodes, find a triangle, if there is any.

Element Distinctness
A. Ambainis (2014). Quantum walk algorithm for element distinctness
Problem: determine whether the elements of a list are distinct.

Matrix Product Verification
H. Buhrman, and R. Špalek (2005). Quantum verification of matrix
products.
Problem: Let A, B, C be n × n matrices over any integral domain. A
verification of a matrix product is deciding whether AB = C .

Group Commutativity
F. Magniez, and A. Nayak (2005). Quantum complexity of testing
group commutativity
Problem: Given a black-box group G with generators g1, ..., gk , decide
if G is abelian
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Searching Problems

Searching Algorithms: Given a list of elements, find a marked element, if
there is any.

L. Grover (1996):
A fast quantum mechanical algorithm for database search.
M. Boyer, et al (1996):
Tight bounds on quantum searching.
C. Zalka (1999):
Grover‘s quantum searching algorithm is optimal.

Searching Algorithms Based on Quantum Walks
A. Childs, and J. Goldstone (2004). Spatial search by quantum walk.
R. Portugal (2018). Quantum walks and search algorithms.
J. Janmark, D. Meyer, and T. Wong (2014). Global symmetry is
unnecessary for fast quantum search.
S. Chakraborty, L. Novo, A. Ambainis, and Y. Omar. Spatial search
by quantum walk is optimal for almost all graphs.
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CTQW + Searching Algorithm

Given a graph G defined by its Laplacian matrix L, we can modify the
Hamiltonian

H = −γL (14)

by introducing the oracle Hamiltonian

Hw = − |w〉 〈w | (15)

and now on we consider the time-independent Hamiltonian,

H = −γL + Hw = −γL − |w〉 〈w | . (16)

Moreover, the evolution operator will be

|ψ(t)〉 = e itH |s〉 (17)

where |s〉 denotes a uniform superposition.
Bruno Chagas Quantum Walks, Algorithms and Implementations 23



Quantum Algorithms based on Quantum Walks Searching Irish Centre for High-End Computing, Ireland

Implementation

The optimal case, for one marked element over a clique graph, occurs when

t =
π

2
√

N and γ =
1
N (18)
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SQW + Searching Algorithm

Given the evolution operator for a general staggered quantum walk as

U =
∏

k
e iθkHk (19)

we can add an oracle unitary operator, considering the marked element w ,
as

Uw = I − 2 |w〉 〈w | (20)

and the searching evolution consists of

|ψ(t)〉 = (UUw )
t |s〉 , (21)

where |s〉 is the uniform superposition state.
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Hexagonal Lattice

|αx ,y 〉 =
1√
2
(
|x , y , 1〉+ |x + 1, y , 0〉

)
|βx ,y 〉 =

1√
2
(
|x , y , 1〉+ |x , y + 1, 0〉

)
|γx ,y 〉 =

1√
2
(
|x , y , 0〉+ |x , y , 1〉

)
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Evolution Operator

The evolution operator for this graph will be

U = e iθHγe iθHβe iθHα (22)

considering the operators

Hα = 2
n−1∑

x ,y=0
|αx ,y 〉 〈αx ,y | − I,

Hβ = 2
n−1∑

x ,y=0
|βx ,y 〉 〈βx ,y | − I,

Hγ = 2
n−1∑

x ,y=0
|γx ,y 〉 〈γx ,y | − I,

where
|ψt〉 = Ut |ψ0〉
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n=121, t=58, θ = π/3,
∣∣ψb

0
〉

∣∣∣ψb
0

〉
=

1√
2
(|1, 1, 0〉+ |1, 0, 1〉)
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n=121, t=58, θ = π/3, |ψc
0〉

|ψc
0〉 =

1√
6
(|1, 1, 0〉+ |1, 0, 1〉+ |1, 0, 0〉+ |0, 0, 1〉+ |0, 1, 0〉+ |0, 1, 1〉)
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n=121, t=58, θ = π/6, |ψc
0〉

|ψc
0〉 =

1√
6
(|1, 1, 0〉+ |1, 0, 1〉+ |1, 0, 0〉+ |0, 0, 1〉+ |0, 1, 0〉+ |0, 1, 1〉)
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Searching Problem

B. Chagas, R. Portugal, S. Boettcher, and E. Segawa (2018). Staggered
Quantum Walk on Hexagonal Lattices.

We considered the evolution operator

|ψ(t)〉 = (UUw )
t |s〉 , (23)

where U is the staggered quantum walk operator for the hexagonal graph,
and Uw the oracle operator. We’ve got the following time execution

t = Θ(
√

N`nN)
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Some questions

What about plannar graphs?
B. Chagas, R. Portugal, S. Boettcher, and E. Segawa (2018).
Staggered Quantum Walk on Hexagonal Lattices.
R. Portugal, and T. Fernandes (2017). Quantum search on the
two-dimensional lattice using the staggered model with Hamiltonians
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Some questions

What about physical realizations of continuous-time quantum walks?
R. Balu, D. Castillo, and G. Siopsis (2018). Physical realization of
topological quantum walks on IBM-Q and beyond Staggered
Quantum Walk on Hexagonal Lattices.
F. Acasiete, F. Agostini, J. Moqadam, and R. Portugal (2020).
Experimental Implementation of Quantum Walks on IBM Quantum
Computers
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Some questions

What’s the relation between angles and tesselation in staggered quantum
walks?

A. Abreu, L. Cunha, T. Fernandes, C. de Figueiredo, L. Kowada, F.
Marquezino, D. Posner, R. Portugal (2017). The tessellation problem
of quantum walks
R. Santos (2018). The role of tessellation intersection in staggered
quantum walks.
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Questions?

Obrigado!
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