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Why Variational Quantum
Algorithms??




Traditional practical algorithms like

have huge resource demands,
require error free operations which is incompatible
with the current Hardware defining the NISQ era.



Practical Resource Requirements

Factoring a 2048-bit RSA number demands a quantum processor with 10°
logical qubits and a circuit width of order 10°.

Solving a linear system of equations of size ~ 3 * 10° requires roughly a
circuit width of 350 and a depth of order 107 (excluding the oracle calls).

#Hgates depth #qubits
k T Clifford I overall

128 1.19-2% 155.2% 106-2%0 1.16-2%% 2 953

192 R0 [g) (9] .9 33 .9 9 4 440
956 L4122 18320 419t (BT 9 9 6631

Table 5. Quantum resource estimates for Grover’s algorithm to attack AES-k, where k£ € {128, 192, 256}.



NISQ devices can’t afford:

* The huge overload of physical Qubits necessary for QEC to provide useful
number of logical qubits.

* High-fidelity operations such that the accumulated error over a significant
depth is low enough.

e Error-free readouts.

Current width ~ 50-100 Qubits (no QEC)
Current depth ~100s of Operations



What can be done then?



Best Answer currently Is to use
Variational Quantum Algorithms.




Variational Quantum Algorithms (VQASs) are hybrid Algorithms which use a
Quantum Computer (QC) and a Classical Computer (CC) “repeatedly” to
arrive at an approximation to the problem’s solution.
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Building Blocks of VQA

e Objective/Cost function- Encode the problem in the form of Hamiltonian
Expectation value or some other objective function.

o Parametrised Quantum Circuit (PQC)/Ansatze - intended to map the initial
state to a subspace containing the desired (solution) state.

e Classical Optimizer.
(H)u oy = (0|U' () HU (8) |0)

meinO(O,{(H>U(9)})
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Image taken from: Bharti et al., 2021, arXiv:2101.08448[quant-ph]
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Advantages of VQAs

* Trading off high Coherence time with repetitions - Since focus is to reach the
solution iteratively hence large coherence time isn’t needed.

 Robustness to Noise - Unless the Noise isn’t displacing the final subspace too

far from the intended subspace one can just wait till the convergence is
achieved.

 Mapping practically useful algorithms to their VQA versions- like the
Variational Quantum Factoring, Variational Quantum Linear System Solver, etc.
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Scope of Work in VQASs

Ansatze affects Convergence speed and Closeness of final state with the

optimal state- Hence Problem inspired Ansatze preparation techniques need
to be developed.

Barren plateau region escaping techniques during gradient descent classical
optimisers.

Measurement Reduction techniques.

Almost no work on Energetic advantages in the literature (upto my best
knowledge).

Contextuality test of the Ansatze.
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Variational Quantum Eigensolver (VQE)

» Given an n-qubit Hamiltonian H , find its Ground State and Ground State
energy. Since n-qubit Paulis form a basis for the n-dimensional Hermitian
Operators (with real coefficients):

p £a B B
H = Z h, o, + Z h, 0.0,
1

[ i

* Linearity of the Observables:

f L - I y’ I \ ii / I , \
Hy =S K (o) + Y Wylaiah) + ...
1

1 pafy
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What is Quantum Contextuality?

It Is a “special” condition on the Hidden Variable model trying to reproduce the
predictions of Quantum Mechanics. The condition is that the value assigned to
an observable must depend on what other observables are being measured

with it, hence the term “Context” for value assignment.
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Approaches to study Contextuality

 Bell-Kochen-Specker (BKS) - Given a set of Observables and a set of
contexts over this set, assign values™ to these Observables and if you arrive at
a logical inconsistency/contradiction it means this set exhibits Contextuality.

* Violating Non-Contextuality Inequalities - Provided a set of Observables,
say X, and a set, say C, of Contexts over X, one then assumes joint Probability
distributions over X and derives correlations over Contexts in C which turn out
to form a Polytope. Now, if we can find a quantum state such that it predicts a
correlation outside this polytope, it means this set exhibits Contextuality.
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PHYSICAL REVIEW LETTERS 123, 200501 (2019)

Contextuality Test of the Nonclassicality of Variational Quantum Eigensolvers

William M. Kirby® and Peter J. Love
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA

® (Received 20 May 2019; revised manuscript received 23 September 2019; published 12 November 2019)

Contextuality is an indicator of nonclassicality, and a resource for various quantum procedures. In this
Letter, we use contextuality to evaluate the variational quantum eigensolver (VQE), one of the most
promising tools for near-term quantum simulation. We present an efficiently computable test to determine
whether or not the objective function for a VQE procedure is contextual. We apply this test to evaluate the

contextuality of experimental implementations of VQE, and determine that several, but not all, fail this test
of quantumness.

DOI: 10.1103/PhysRevLett.123.200501
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Contextuality test of the VQE procedure

* The approach taken is the BKS approach: Given a set of Observables, assign
values in a functionally consistent manner to these Observables and if you

arrive at a logical inconsistency/contradiction it means this set exhibits
Contextuality.

» Functional consistency means that if [A,IA@] = 0 and C = f(A,I?) then the
value assigned to the observable C = f(A, B) will be v(C) = f(v(A), v(B)).
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H= ) hP,

S=1{P;}

Now construct a Closed Subtheory of S = S

S is the set of all observables whose value can be “inferred” from the values
assigned to observables in 3.
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Inference ??

Inference here means that if
[A Bl=0—= AB € S




Closer look at the Sub-theory

S contains both Directly and Indirectly inferable observables from .
A,l? e S s.t. [A,IAB] = () and CA',ﬁ € S s.t. [@,15] = ()
Al@, CD € § are called Directly Inferable Observables

Now if [AB, CD] = 0 then ABCD € S

This ABCD is called the indirectly inferred Observable meaning that its value will
not be inferred in 1 step after the assignment of values to 3.
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Explicit Example

S={IQRX.XRLZRQLIRZ)

S={IRX.XQRLZRQLIRZ,7QXXRZXRX,ZR Z. !

Directly Inferred



Definition of Contextuality for Hamiltonian

H= ) hP,

S=1{P;}
Construct S

Value assignment inconsistency In S = Contextuality

The authors call this “Strong Contextuality”
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Example of this Logical Inconsistency??

S={IQRX.XRLZRQLIRZ)

S={IRXXQRLZRLIRZ,7RX.XRZXRX,ZR Z,



XQ®X

/R 7/

V. €

ViV
AP,

V3V,
XQZ
ViVaV3Vy

/X Q XL
XL Q X/ =
Vi Vo3V,

£l
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V1 Vh ViVs

[ QX /X1 / QX
V3 V4 V3V4
XQ1 [Q Z X®XZ

V1V2V3V4
'VIVB Vr Vg
X®X /X 7/

ViVrV3Vy

Observables A and -A get assigned the same value contradicting the QM prediction that they can only be Anti-
Correlated where A is

Hence the set S exhibits Contextuality (the famous Peres-Mermin Square)
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Generalizing in terms of Determining tree and Determining set

H= ) hP,
S = {P,)

A determining tree 7 for a Pauli measurement A € S over a set of Pauli measurements S is a tree whose
nodes are Pauli Operators and whose leaves are operators in § such that:

(1) the root of the tree is A
(2) all children of any parent pairwise commute

Any operator in S can be represented with a determining tree with leaves in S
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rfor YYin S

Root

/ \
/\ / \

Leaves

= {IX, X1, Z1, 1/}

S — {?128:9;)(][9:ZZI:>J[25;‘2228{94)<225342(:X:9‘ZZ:ZZ’227)Z; o jy]jzi}



rfor YYin S

Root = Node at the top of the tree

/ N

2 X —— Simple Node NOT called Leaf or Root

/\ /\

Leaves = Nodes IN the tree Which are operators in

YY = (XZ)ZX)=(XI)(UZ)(Z])(IX)
Eventually, a Root is a product of Leaves

Since we are assigning only =1 to the leaves, this means that only those leaves will contribute to
the assignment of the root which occur odd number of times.
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For a determining tree 7 let D be the set of leaves
with odd multiplicities then D will be called a
Determining set for 7.



Definition of Contextuality

H= ) hP,

S={P)

A set S of Pauli Observables is called Contextual if for some Pauli A € S there exists a determining
tree 7 over S and a determining tree 7’ for -A over S such that they have identical Determining Sets.
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-YY

XX ZZ
/ \ / \ 4 / \
Xl IZ V4| IZ

IX X IX

Determining trees for +YY over {XI,1X,ZI,1Z}.

YY = (XZ)(ZX) = (XD(IZ)(ZI)(IX)
YY = (XX)(Z2) = (XDIX)(ZD)(IZ)

35



Necessary and Sufficient conditions for Contextuality
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Condition 1

A set S of Pauli operators is Contextual iff for some B € S there
exists a determining tree for -B over S, whose determining set is

(B).



— [IX, X1, ZI,1Z)

— X1

/N

— X/

7N

—rY

/\ /\

77 /1

/\/\

IX ZI

Among all the leaves only X7 has odd multiplicity, hence determining set of — X1 is { X1}.
—XI = XDHUX)Z)UZ)(ZI)IX)(IZ)
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Condition 2

A set S of Pauli Observables is Contextual iff there exists a determining
tree of — I over S such that the determining set is empty.

Effectively it means that —/ gets an assignment of +1 contradicting QM.
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Condition 3

A set S of Pauli Operators is Contextual iff it contains a subset
consisting of four operators whose compatibility graph has one
of the following forms:

vy

>
vy

o —>2
O

O
-
O
O
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Rough Sketch of the proof of Condition 3

“If” part :
From such subgraphs one can construct a determining tree of —/ over $ with an
empty determining set, hence by Condition 2, $ will be Contextual.

“Only if” part :
(i) removal of Casimirs* from 5, call the remaining set 7.
(ii) a proof that over 1 transitivity of Commutation can’t hold.

* Universally Commuting elements

41



Necessary and Sufficient Condition for noncontextuality

Given a set S of Pauli Observables, let 7' C § be the set obtained by removing the
Casimirs from .

S is noncontextual iff transitivity of Commutation holds on 7.

Since Commutation is by definition:

() Reflexive - [A,A] = 0 -
(i) Symmetric - if [A, B] = Othen [B,A] = 0.

So presence of transitivity over 1' makes Commutation an equivalence relation on 7.
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TABLE L

Evaluation of contextuality in VQE experiments.

CD, is the minimum number of terms we must remove from the

Hamiltonian to reach a noncontextual set, as a fraction of the total
number of terms (|S|). In [22], |S| varies.

Citation: System: Contextual? CD, |[S]
Dumitrescu et al. [22] Deuteron No 0 ‘e
Kandala et al. [17] H, No 0 4
O’Malley et al. [13] H, No 0 5
Hempel et al. [18] H, (BK) No 0 5
Hempel et al. [18] H, JW) No 0 14
Colless et al. [19] H, No 0 5
Kokail et al. [23] Schwinger Yes ~0.16 231
Model
Nam et al. [20] H,O Yes 0.27 22
Hempel et al. [18] LiH Yes 0.33 12
Peruzzo et al. [11° HeH™ Yes 0.38 8
Kandala et al. [17] BeH Yes ~0.74 164
Kandala et al. [17,21] LiH Yes ~0.77 99
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Remember that all this while Contextuality of S means that one can
observe a logical contradiction in value assignment over .

although there might be NO contradiction within the elements of .S only
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QPU
(Hy)
aed Quantum module 1 _
1 (Hy)
amed  Quantum module 2 R 2

(Hs)
Quantum module 3 e

i

(Hpn)

_— | ——

Quantum state preparation

(H) = Zh’ ) + th o'zo“;‘

i i foufy
But in a VQE experiment we aren’t measuring any observables outside S!!!
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Contextuality bounds the efficiency of classical simulation of quantum processes

Angela Karanjai,! Joel J. Wallman,? and Stephen D. Bartlett!

LCentre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, Australia
“Institute for Quantum Computing and Department of Applied Mathematics,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Contextuality has been conjectured to be a super-classical resource for quantum computation,
analogous to the role of non-locality as a super-classical resource for communication. We show that
the presence of contextuality places a lower bound on the amount of classical memory required to
simulate any quantum sub-theory, thereby establishing a quantitative connection between contex-
tuality and classical simulability. We apply our result to the qubit stabilizer sub-theory, where the
presence of state-independent contextuality has been an obstacle in establishing contextuality as
a quantum computational resource. We find that the presence of contextuality in this sub-theory
demands that the minimum number of classical bits of memory required to simulate a multi-qubit
system must scale quadratically in the number of qubits; notably, this is the same scaling as the
Gottesman-Knill algorithm. We contrast this result with the (non-contextual) qudit case, where
linear scaling is possible.

Give a quantitative link between Classical Simulation and Contextuality, hence a motivation to investigate if any

Quantum Advantage in VQEs is associated with Contextuality.
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NC-Inequality approach sticks to the given set

Provided a set of Observables, say S, and a set, say €, of Contexts over S, one then assumes joint Probability
distributions over S and derives correlations over Contexts in € which turn out to form a Polytope.

Now, if we can find a quantum state such that it predicts a correlation outside this polytope, it means this set
exhibits Contextuality.

Let us call it “Weak Contextuality”
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PHYSICAL REVIEW A 99, 020103(R) (2019)

Rapid Communications

Necessary and sufficient condition for contextuality from incompatibility

Zhen-Peng Xu'-? and Ad4n Cabello*”
' Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China

2Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain
® (Received 17 June 2018; revised manuscript received 6 December 2018; published 12 February 2019)

Measurement incompatibility 1s the most basic resource that distinguishes quantum from classical physics.
Contextuality is the critical resource behind the power of some models of quantum computation and is
also a necessary ingredient for many applications in quantum information. A fundamental problem is thus
identifying when incompatibility produces contextuality. Here, we show that, given a structure of incompatibility
characterized by a graph in which nonadjacent vertices represent incompatible ideal measurements, the necessary
and sufficient condition for the existence of a quantum realization producing contextuality 1s that this graph
contains induced cycles of size larger than three.

DOI: 10.1103/PhysRevA.99.020103
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Non-Chordality of a Compatibility graph €= Quantum Contextuality

Non-Chordality means that the graph has at least one cycle of size > 4
with no chord (edge between non-adjacent vertices)

& »
CS
[ *
C()
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Notice here that Contextuality for S means that experimental statistics of S only
can’t be reproduced by any underlying hidden variable model.

(No reference of anything outside ).

Let us call it “Weak Contextuality”
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Comparing the two scenarios

Presence of these graphs means that this set of 4 observables can be
extended to a bigger set exhibiting Value-assignment inconsistency.
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Comparing the two scenarios

A B

Non-Chordal
oD & D
\ / Contextual in both cases

Chordal

The first two graphs are noncontextual according to the Non-Chordality condition suggesting
that a HV model exists if we don’t allow any external inclusion of Observables.
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Weak Contextuality for § == Strong Contextuality for $

A Bl A B

Non-Chordality =— - As subgraphs

07w D,

|
|
|
|
|
|
L G D)

Hence for a set § of Pauli Observables one can always go from SD
contextuality to SID Contextuality by expanding the set S to §.
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Open Questions

How Contextuality links with Classical Simulation of non-closed
Quantum Subtheories??

What about Strong Contextuality of Non-Pauli sets??
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Variational Quantum Algorithms (VQAS).
Contextuality test for Variational Quantum Eigensolvers (VQEsS).
Classical Simulation of Non-Contextual VQE procedures.

Contextual Subspace VQE.
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PHYSICAL REVIEW A 102, 032418 (2020)

Classical simulation of noncontextual Pauli Hamiltonians

William M. Kirby © and Peter J. Love”
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA

® (Received 20 February 2020; accepted 19 August 2020; published 24 September 2020)

Noncontextual Pauli Hamiltonians decompose into sets of Pauli terms to which joint values may be assigned
without contradiction. We construct a quasiquantized model for noncontextual Pauli Hamiltonians. Using this
model, we give an algorithm to classically simulate the noncontextual variational quantum eigensolver. We also
use the model to show that the noncontextual Hamiltonian problem is NP-complete. Finally, we explore the
applicability of our quasiquantized model as an approximate simulation tool for contextual Hamiltonians. These
results support the notion of noncontextuality as classicality in near-term quantum algorithms.

DOI: 10.1103/PhysRevA.102.032418
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Non-Contextual Hamiltonian

H= ) hP,
S = {P,)

Given a set S of Pauli Observables, let T'C S be the set obtained by removing
Casimirs from S. Then:

S is noncontextual iff Commutation holds Transitivity over 7.
In terms of Compatibility graph of 7' it means that it is a Union of disjoint Cliques.
S=TUuZ
where T = U C; with G; = {C;;, Cp, ..., Cyc } and Z=S\T.
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S=TUZ

where T = U C; withC; ={C;, Cp, ..., Gy} and Z = S\T.

N
H = Z Zhijcij + ) hgB
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Steps to Construct a Classical Simulation of VQE

Since S is noncontextual therefore joint value assignments on S exist but not every joint
assignment would be consistent (since some elements might be products of commuting
elements). Then:

1. Obtain an independent set R of Pauli operators from S. From R anything from § to its
closed subtheory S can be inferred, hence R = §.

2. Obtain Probability Distributions over assignments to R and Parametrise them in such a
way that they correspond to Eigenstates of H.

3. Minimise < H > over this parametrised Probability Distribution and obtain the ground
state energy & from the optimal parameters one can then construct the Quantum State.
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More detalls™ describing each of
these steps

* Rough picture



Step 1: Obtaining the independent set R

S=TuUZ

where T = U C; with G, ={C;, Cp, ..., Gy} and Z = S\T.

Construct a set, G/, of some Casimirs Inferable from S

N
G=2ZU (U{Aij\j=2,3,---,\ci\})

i=1

Aij = CijCi

here G’ will, in general, be a dependent set, so need to obtain an independent set G from G
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N
G=2ZU (U{Aij\j=2,3,---,lci‘})

i=1

Aij = CiiCi

here G’ will, in general, be a dependent set, so need to obtain an independent set G from it
This can be done by a technique called Multiplicative variant of Gaussian Elimination®

B .10 e
S=TUZ

where T' = U C; with G, ={C;,Cp, ..., Gy} and Z = S\T.

Since G generates GG, therefore it generates Z and each element Alj, also each element of 1'is

of the form Clj which can be obtainable my multiplying Alj with C;; from R.

Thus proving that each observable in set $ can be obtained as product of commuting
elements in R, hence values assigned to R lead to value assignments in 3.

* Only applies to Completely Commuting set
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Step 2 : Obtain Probability Distributions over assignments to R + Parametrisation

R={Cali=12,...,N}JUG

. € {1}
These Value assignments will be called the Ontic states

Probability distributions (PDs) over the ontic states will define the Epistemic states

P(ci,Ch oo sCrs 815805 - - - )

A parametrisation that reproduces the expectation value for eigenstates of Hamiltonian
is sufficient to simulate VQE.

G| N
1 -
Fg»(C1s...sCN:1 81,825 ... ) = (l_[ 5gj,qj) l_[ E\ci ril s.t. ‘ r\ —3 |

j=1 i=1
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Step 3 : Minimizing < H > over the PDs

H = ZN: (g h,]C,,) + Y hgB

=1 BeZ

Aij = CiiCi

N |G
H = Z (th]Az]) T Z hgB

i=1 BeZ

Each Aij and B are product of operators from G and hence belong to G

H = Z (hBB -1- Z hB zBCzl)

BeG
where B = njeJB G
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This is in general a non-convex function whose global minima gives the ground state energy.



In general finding the ground state energy of a Hamiltonian is QMA-hard but the noncontextual
Hamiltonian problem is only NP-complete.

At worst Classically Hard
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Variational Quantum Algorithms (VQAS).
Contextuality test for Variational Quantum Eigensolvers (VQES).
Classical Simulation of Non-Contextual VQE procedures.

Contextual Subspace VQE.
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Contextual Subspace Variational Quantum Eigensolver

William M. Kirby,! Andrew Tranter,*? and Peter J. Love!l:3

! Department of Physics and Astronomy, Tufts University, Medford, MA 02155
> Cambridge Quantum Computing, 9a Bridge Street Cambridge, CB2 1UB United Kingdom
3 Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973

We describe contextual subspace variational quantum eigensolver (CS-VQE), a hybrid quantum-
classical algorithm for approximating the ground state energy of a Hamiltonian. The approximation
to the ground state energy is obtained as the sum of two contributions. The first contribution
arises from a noncontextual approximation to the Hamiltonian, and is computed classically. The
second contribution is obtained by using the variational quantum eigensolver (VQE) technique to
compute a contextual correction on a quantum processor. In general the VQE computation of the
contextual correction uses fewer qubits and measurements than the VQE computation of the original
problem. Varying the number of qubits used for the contextual correction adjusts the quality of the
approximation. We simulate CS-VQE on tapered Hamiltonians for small molecules, and find that
the number of qubits required to reach chemical accuracy can be reduced by more than a factor of
two. The number of terms required to compute the contextual correction can be reduced by more
than a factor of ten, without the use of other measurement reduction schemes. This indicates that

CS-VQE is a promising approach for eigenvalue computations on noisy intermediate-scale quantum
(NISQ) devices.
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Contextual Subspace VQE

A Quantum-Classical hybrid algorithm which computes approximations to ground state energy
of an n-qubit Hamiltonian as a sum of two contributions:
() Non-Contextual Contribution (Classical).
(i) Quantum Correction over (i) using VQE on less than n Qubits.

Note: No Intention to prepare the ground state
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Motivation for Contextual subspace VQE

In a usual VQE scenario, at the end of each iteration over the Quantum Circuit, large number of
measurements are needed to be done to compute expectation value of the Complete Hamiltonian.

CPU
(Hy)
>
(Hy)
Quantum module 2 e
(H3)
-

Quantum state preparation
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S0 Is it possible to delegate as much Computation as
possible to the Classical Computer and still achieve
good approximations to ground state energy??

Maybe Contextual Subspace VQE could help since it reduces overload from
the noisy QC.

/1



Given a general n-qubit hamiltonian H

H= ) hP,

S=1{P;}
Divide § into a Non-Contextual set S, . and its Complement™ ..
H=H  +H,.

1. Run the Classical simulation of the noncontextual (1, ) VQE and obtain the first
part of the approximation.

2. Compute correction to the Classical result by running VQE on the remaining part

H_ of H on an ansatze that corresponds to the ground state of the noncontextual
part.

(2



Step-1: The Non-Contextual Simulation

S

nc

=aiie L 2. N1y

v, € {£1}®! = Ontic States

N
Pgn(ct,...,cn, 81,82, ... Og , qj) l_[ —Icz + r;| = Epistemic States

1 =1

J

(H) @G, = Z (hB +

hB,iri) l—[ g; <_I\/Iinimize this to get
BeG

the ground state energy
JETB

3 T,_'.Mz



Meaning of Epistemic states (quasi-quantised states)

G| N
1
P(ﬁ,?)(cla +++sCN, 81,825 - - - ) — (l_lggj,qj) l_[ E‘Ci T ri‘

j=1
R={Chli=1,2,..., NJUG
In terms of (g, 7), the expectation values for R are
(Gi)an =g
(Ci1)@g,» = ri-
Define A = Z’”icﬂ where | 7| =1, g € {£1]

v

This means that each (¢, 1) represents a joint eigenspace of the Observables G U {A}
Epistemic states = JointEigenspace of G U {A}
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Before getting to step 2, we need to check if we really require it

N
(H)(g]’,;!) = Z (hB -+ ZhB,,-ri) l_[ q]° — Minimize this

=1 jGJB

¥

do, To — Non contextual ground statespace

BeG

do» T, represents joint Eigenspace of G U {A}
H — an + HC

If the non contextual states of H . uniquely identify quantum states, then for any non contextual
state the expectation value of every term in H . is zero i.e. No Quantum Correction is Possible.

Non-degeneracy of g, 7;, eigenspace => No Quantum Correction needed
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Step-2 : Compute Quantum correction to the classical simulation

N
(H)(gj,;!) = Z (hB -+ Zhg,iri) l_[ CIj — Minimize this

BeG =1 JETB

¥

4o, To — Non contextual ground statespace

This Eigenspace is called the

Run a VQE for H . on the Contextual subspace to calculate the quantum correction

Turns out that this can be done on less than n-qubits by restricting 1. to a subset of n-qubits
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Restricting /1. to a subset of n-qubits

H=H  +H,
Restriction can be done by mapping the Contextual Subspace to a Stabilizer subspace

For any Unitary U, If we map an Observable A — UA U then:
<A >y, =< UAU' >y,

Eigenvalues and hence statistics of A are preserved under Unitary Transformation.

’r’



Restricting /1. to a subset of n-qubits

H=H  +H,
It is possible to construct a Unitary D that takes H — DHD" such that

i.e. each of the operators in G get mapped to some single Qubit Pauli 7k = [ ®.. Q074 ...Q81.
R={Cyqli=1,2,..., NJUG

Since R is an independent set of operators with G being a set of independent Casimirs

and G U {C;, } also forms an Independent Commuting set, Therefore |G| < n — 1.
(Because n-qubit system can only have n Independent Commuting Operators at max.)

Therefore under Unitary D, set G gets mapped to Single Qubit Pauli’s which require atmost | G| qubits.
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Restricting /1. to a subset of n-qubits

Let # | denote the Hilbert space of | G| = n; qubits acted on by single-qubit Pauli Z operators,
and let Z , denote the Hilbert space of remaining n, qubits s.t. n = n; + nywith £, = #|  # ».

/

Under Unitary D, H. - DH D= H

C

Therefore H,. = Z h,P
P

Further it can be shown that P |W(q,, 7y) > = p;hp(I ® P,) | ¥(qy, 7y) >
pr=*1

Hence, effectively H; acts only on the n, qubits.
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Perform VQE for H; on n, < n qubits to attain the quantum correction.

This would complete the CS-VQE implementation!!!
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Summary

What are VQAs? Why we need them? (Dis)Advantages? Open Problems?
What Constitutes a test of Contextuality for VQEs?
Classical Simulation for Hamiltonians failing this test.

Combining the Classical simulation with VQE to produce another hybrid-
algorithm.
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Thank you!!!

Any Questions???
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