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Why Variational Quantum 
Algorithms??
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Traditional practical algorithms like Shor’s 
algorithm, Grover’s Algorithm, Quantum Linear 

System Algorithm have huge resource demands, 
require error free operations which is incompatible 
with the current Hardware defining the NISQ era.
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Factoring a 2048-bit RSA number demands a quantum processor with  
logical qubits and a circuit width of order .  
(Jones et al., 2012- Phys. Rev. X 2, 031007)


 Solving a linear system of equations of size ~  requires roughly a 
circuit width of 350 and a depth of order  (excluding the oracle calls).  
(Artur et al. 2017, Quantum Inf. Process 16, 60)
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Practical Resource Requirements

Markus et al., 2015, arXiv:1512.04965v1[quant-ph] 



   NISQ devices can’t afford:

• The huge overload of physical Qubits necessary for QEC to provide useful 
number of logical qubits.


• High-fidelity operations such that the accumulated error over a significant 
depth is low enough.


• Error-free readouts.  
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Current width ~ 50-100 Qubits (no QEC) 
Current depth ~100s of Operations



What can be done then?
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 Best Answer currently is to use 
Variational Quantum Algorithms. 
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Variational Quantum Algorithms (VQAs) are hybrid Algorithms which use a 
Quantum Computer (QC) and a Classical Computer (CC) “repeatedly” to 

arrive at an approximation to the problem’s solution.
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                      Building Blocks of VQA

• Objective/Cost function- Encode the problem in the form of Hamiltonian 
Expectation value or some other objective function.


• Parametrised Quantum Circuit (PQC)/Ansatze - intended to map the initial 
state to a subspace containing the desired (solution) state.


• Classical Optimizer.  
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Image taken from: Bharti et al., 2021, arXiv:2101.08448[quant-ph] 



                     Advantages of VQAs

• Trading off high Coherence time with repetitions - Since focus is to reach the 
solution iteratively hence large coherence time isn’t needed.


• Robustness to Noise - Unless the Noise isn’t displacing the final subspace too 
far from the intended subspace one can just wait till the convergence is 
achieved.


• Mapping practically useful algorithms to their VQA versions- like the 
Variational Quantum Factoring, Variational Quantum Linear System Solver, etc.    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                   Scope of Work in VQAs

• Ansatze affects Convergence speed and Closeness of final state with the 
optimal state- Hence Problem inspired Ansatze preparation techniques need 
to be developed.


• Barren plateau region escaping techniques during gradient descent classical 
optimisers.


• Measurement Reduction techniques. 

• Almost no work on Energetic advantages in the literature (upto my best 
knowledge).


• Contextuality test of the Ansatze.
14



     Variational Quantum Eigensolver (VQE)
• Given an n-qubit Hamiltonian  , find its Ground State and Ground State 

energy. Since n-qubit Paulis form a basis for the n-dimensional Hermitian 
Operators (with real coefficients):


• Linearity of the Observables: 

H
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                                      Peruzzo et al., 2014, Nat. Commun. 5, 4213 
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Image taken from: Bharti et al., 2021, arXiv:2101.08448[quant-ph] 
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What is Quantum Contextuality?

18

It is a “special” condition on the Hidden Variable model trying to reproduce the 
predictions of Quantum Mechanics. The condition is that the value assigned to 
an observable must depend on what other observables are being measured 
with it, hence the term “Context” for value assignment.



        Approaches to study Contextuality

• Bell-Kochen-Specker (BKS) - Given a set of Observables and a set of 
contexts over this set, assign values* to these Observables and if you arrive at 
a logical inconsistency/contradiction it means this set exhibits Contextuality.


• Violating Non-Contextuality Inequalities - Provided a set of Observables, 
say X, and a set, say C, of Contexts over X, one then assumes joint Probability 
distributions over X and derives correlations over Contexts in C which turn out 
to form a Polytope. Now, if we can find a quantum state such that it predicts a 
correlation outside this polytope, it means this set exhibits Contextuality.  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* in a functionally consistent way
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Contextuality test of the VQE procedure

• The approach taken is the BKS approach: Given a set of Observables, assign 
values in a functionally consistent manner to these Observables and if you 
arrive at a logical inconsistency/contradiction it means this set exhibits 
Contextuality.


• Functional consistency means that if  and  then the 
value assigned to the observable  will be .  

[ ̂A, B̂] = 0 Ĉ = f( ̂A, B̂)
Ĉ = f( ̂A, B̂) v(Ĉ) = f(v( ̂A), v(B̂))
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         Now construct a Closed Subtheory of   

    is the set of all observables whose value can be “inferred” from the values         
assigned to observables in . 

 

H = ∑
i

hiPi

S ≡ {Pi}

S ≡ S̄

S̄
S
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Inference here means that if 
     [ ̂A, B̂] = 0 ⟹ ̂AB̂ ∈ S̄

Inference ??
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  contains both Directly and Indirectly inferable observables from . 

 s.t.  and  s.t.   

 ,   are called Directly Inferable Observables 

Now if   then    

This  is called the indirectly inferred Observable meaning that its value will 
not be inferred in 1 step after the assignment of values to . 

S̄ S
̂A, B̂ ∈ S [ ̂A, B̂] = 0 Ĉ, D̂ ∈ S [Ĉ, D̂] = 0
̂AB̂ ĈD̂ ∈ S̄

[ ̂AB̂, ĈD̂] = 0 ̂AB̂ĈD̂ ∈ S̄
̂AB̂ĈD̂

S
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               Closer look at the Sub-theory



 S = {I ⊗ X, X ⊗ I, Z ⊗ I, I ⊗ Z}

S̄ = {I ⊗ X, X ⊗ I, Z ⊗ I, I ⊗ Z, Z ⊗ X, X ⊗ Z, X ⊗ X, Z ⊗ Z, ZX ⊗ XZ, XZ ⊗ XZ}
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             Explicit Example

Directly Inferred 
Indirectly Inferred



 

 

     Construct  

Value assignment inconsistency in Contextuality 

H = ∑
i

hiPi

S ≡ {Pi}

S̄

S̄ ⟹
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Definition of Contextuality for Hamiltonian

The authors call this “Strong Contextuality”
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                  Example of this Logical Inconsistency??

 S = {I ⊗ X, X ⊗ I, Z ⊗ I, I ⊗ Z}

S̄ = {I ⊗ X, X ⊗ I, Z ⊗ I, I ⊗ Z, Z ⊗ X, X ⊗ Z, X ⊗ X, Z ⊗ Z, ZX ⊗ XZ, XZ ⊗ XZ}



I ⊗ X

X ⊗ I

X ⊗ X

Z ⊗ I

I ⊗ Z

Z ⊗ Z

Z ⊗ X

X ⊗ Z

ZX ⊗ XZ

v1 v2

v3 v4

v1v2

v3v4

v1v3 v2v4
XZ ⊗ XZ = − ZX ⊗ XZ

v1v2v3v4

v1v2v3v4

vi ∈ {±1}
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I ⊗ X

X ⊗ I

X ⊗ X

Z ⊗ I

I ⊗ Z

Z ⊗ Z

Z ⊗ X

X ⊗ Z

ZX ⊗ XZ

v1 v2

v3 v4

v1v2

v3v4

v1v3 v2v4
XZ ⊗ XZ = − ZX ⊗ XZ

v1v2v3v4

v1v2v3v4

Observables  and -  get assigned the same value contradicting the QM prediction that they can only be Anti-
Correlated where  is   

̂A ̂A
̂A ZX ⊗ XZ = Y ⊗ Y

Hence the set S exhibits Contextuality (the famous Peres-Mermin Square)
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Generalizing in terms of Determining tree and Determining set

A determining tree  for a Pauli measurement  over a set of Pauli measurements  is a tree whose 
nodes are Pauli Operators and whose leaves are operators in  such that: 

(1) the root of the tree is  
(2) all children of any parent pairwise commute


τ A ∈ S̄ S
S

A

 

 

H = ∑
i

hiPi

S ≡ {Pi}

Any operator in  can be represented with a determining tree with leaves in  S̄ S
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S = {IX, XI, ZI, IZ}
S̄ = {IX, XI, ZI, IZ, ZX, XZ, XX, ZZ, YY, − YY}

                 for  in τ YY S̄

 Root

Leaves
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                 for  in τ YY S̄

 Root  Node at the top of the tree≡

Leaves  Nodes in the tree which are operators in ≡ S

    =  
Eventually, a Root is a product of Leaves

YY = (XZ)(ZX) (XI)(IZ)(ZI)(IX)

Since we are assigning only  to the leaves, this means that only those leaves will contribute to  
the assignment of the root which occur odd number of times. 

±1

Simple Node NOT called Leaf or Root 



For a determining tree  let  be the set of leaves 
with odd multiplicities then  will be called a 

Determining set for . 

τ D
D

τ
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A set  of Pauli Observables is called Contextual if for some Pauli  there exists a determining 
tree  over  and a determining tree  for -  over  such that they have identical Determining Sets.

H = ∑
i

hiPi

S ≡ {Pi}

S A ∈ S̄
τ S τ′ A S

34

    Definition of Contextuality
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 = 

- ( )( ) = 
YY = (XZ)(ZX) (XI)(IZ)(ZI)(IX)
YY = XX ZZ (XI)(IX)(ZI)(IZ)
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Necessary and Sufficient conditions for Contextuality



 A set  of Pauli operators is Contextual iff for some  there 
exists a determining tree for -  over , whose determining set is 

. 

S B̂ ∈ S
B̂ S
{B}

37

            Condition 1
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−XI

IZ−XZ

−YY ZX

ZI IXXX ZZ

XI IX ZI IZ

Among all the leaves only  has odd multiplicity, hence determining set of  is . XI −XI {XI}

               S = {IX, XI, ZI, IZ}

−XI = (XI)(IX)(ZI)(IZ)(ZI)(IX)(IZ)



A set  of Pauli Observables is Contextual iff there exists a determining 
tree of  over  such that the determining set is empty. 

 
Effectively it means that  gets an assignment of +1 contradicting QM. 

S
−I S

−I
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   Condition 2 



A set  of Pauli Operators is Contextual iff it contains a subset 
consisting of four operators whose compatibility graph has one 

of the following forms: 

S
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                                          Condition 3 



 “If” part :  
From such subgraphs one can construct a determining tree of  over  with an 

empty determining set, hence by Condition 2,  will be Contextual. 

 “Only if” part : 
(i) removal of Casimirs* from , call the remaining set . 

(ii) a proof that over  transitivity of Commutation can’t hold.   
   

−I S
S

S T
T

41

 Rough Sketch of the proof of Condition 3

* Universally Commuting elements 



Necessary and Sufficient Condition for noncontextuality 

Given a set  of Pauli Observables, let  be the set obtained by removing the 
Casimirs from .  
 
                    is noncontextual iff transitivity of Commutation holds on . 

Since Commutation is by definition:


(i)  Reflexive -  
(ii) Symmetric - if  then .


So presence of transitivity over  makes Commutation an equivalence relation on .

S T ⊆ S
S

S T

[ ̂A, ̂A] = 0
[ ̂A, B̂] = 0 [B̂, ̂A] = 0

T T
42
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 Kirby et al., 2019, Phys. Rev. Lett. 123, 200501  



Remember that all this while Contextuality of  means that one can 
observe a logical contradiction in value assignment over .  

 
although there might be NO contradiction within the elements of  only

S
S̄

S
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But in a VQE experiment we aren’t measuring any observables outside !!!S
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arXiv:1802.07744[quant-ph]

 Give a quantitative link between Classical Simulation and Contextuality, hence a motivation to investigate if any 
Quantum Advantage in VQEs is associated with Contextuality.  



Provided a set of Observables, say , and a set, say , of Contexts over , one then assumes joint Probability 
distributions over S and derives correlations over Contexts in  which turn out to form a Polytope. 


 
Now, if we can find a quantum state such that it predicts a correlation outside this polytope, it means this set 
exhibits Contextuality.  

S 𝒞 S
𝒞
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NC-Inequality approach sticks to the given set        

Let us call it “Weak Contextuality”
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Vorobyev’s Theorem tells that Non-chordality is necessary for Contextuality - here they prove that it is also sufficient.
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Non-Chordality of a Compatibility graph ⟺ Quantum Contextuality

Non-Chordality means that the graph has at least one cycle of size  4 
with no chord (edge between non-adjacent vertices)

≥



Notice here that Contextuality for  means that experimental statistics of  only 
can’t be reproduced by any underlying hidden variable model.  

(No reference of anything outside ).

S S

S
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Let us call it “Weak Contextuality”
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Comparing the two scenarios

Presence of these graphs means that this set of 4 observables can be 
extended to a bigger set exhibiting Value-assignment inconsistency. 
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Comparing the two scenarios

Chordal

Non-Chordal

 The first two graphs are noncontextual according to the Non-Chordality condition suggesting 
that a HV model exists if we don’t allow any external inclusion of Observables. 

Contextual in both cases
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Strong Contextuality for   Weak Contextuality for S ⇏ S

Weak Contextuality for      Strong Contextuality for  
 

S ⟹ S

Non-Chordality ⟹ As subgraphs

Hence for a set  of Pauli Observables one can always go from SD 
contextuality to SID Contextuality by expanding the set S to .

S
S̄

⟺
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    Open Questions

How Contextuality links with Classical Simulation of non-closed     
Quantum Subtheories?? 

 
 

What about Strong Contextuality of Non-Pauli sets??
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Given a set  of Pauli Observables, let  be the set obtained by removing the 
Casimirs from . Then: 
 
                      is noncontextual iff Commutation holds Transitivity over .

S T ⊆ S
S

S T

 

 

H = ∑
i

hiPi

S ≡ {Pi}

Non-Contextual Hamiltonian

In terms of Compatibility graph of  it means that it is a Union of disjoint Cliques.T

S = T ∪ Z

where    with   and  .  T = ⋃
i

Ci Ci = {Ci1, Ci2, . . . , Ci|Ci|} Z = S∖T
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S = T ∪ Z

where    with   and  .  T = ⋃
i

Ci Ci = {Ci1, Ci2, . . . , Ci|Ci|} Z = S∖T



     Steps to Construct a Classical Simulation of VQE

 Since  is noncontextual therefore joint value assignments on  exist but not every joint 
assignment would be consistent (since some elements might be products of commuting 
elements). Then:


1. Obtain an independent set  of Pauli operators from . From  anything from  to its 
closed subtheory  can be inferred, hence . 


2. Obtain Probability Distributions over assignments to  and Parametrise them in such a 
way that they correspond to Eigenstates of . 


3. Minimise over this parametrised Probability Distribution and obtain the ground 
state energy & from the optimal parameters one can then construct the Quantum State.

S S

R S R S
S̄ R̄ = S̄

R
H

< H >
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More details* describing each of 
these steps

60

* Rough picture
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       Step 1: Obtaining the independent set  R

S = T ∪ Z

where    with   and  .  T = ⋃
i

Ci Ci = {Ci1, Ci2, . . . , Ci|Ci|} Z = S∖T

Construct a set, , of some Casimirs Inferable from S G′ 

here  will, in general, be a dependent set, so need to obtain an independent set  from  G′ G G′ 
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here  will, in general, be a dependent set, so need to obtain an independent set  from it G′ G
This can be done by a technique called Multiplicative variant of Gaussian Elimination* 

* Only applies to Completely Commuting set

S = T ∪ Z

Since  generates , therefore it generates  and each element ,  also each element of  is 
of the form  which can be obtainable my multiplying  with  from .

G G′ Z Aij T
Cij Aij Ci1 R

 
Thus proving that each observable in set  can be obtained as product of commuting 

elements in , hence values assigned to  lead to value assignments in .  
 

S
R R S

where    with   and  .  T = ⋃
i

Ci Ci = {Ci1, Ci2, . . . , Ci|Ci|} Z = S∖T
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Step 2 : Obtain Probability Distributions over assignments to  + ParametrisationR

vi ∈ {±1}|R|

   These Value assignments will be called the Ontic states

     

P(c1, c2, . . . , cN, g1, g2, . . . )

Probability distributions (PDs) over the ontic states will define the Epistemic states 

A parametrisation that reproduces the expectation value for eigenstates of Hamiltonian 
is sufficient to simulate VQE.

   | ⃗r | = 1s.t.
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Step 3 : Minimizing over the PDs< H >

Each  and  are product of operators from G and hence belong to Aij B Ḡ

where



This is in general a non-convex function whose global minima gives the ground state energy.



In general finding the ground state energy of a Hamiltonian is QMA-hard but the noncontextual 
Hamiltonian problem is only NP-complete. 

 
At worst Classically Hard
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Kirby et al., 2020, arXiv:2011.10027 [quant-ph]
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A Quantum-Classical hybrid algorithm which computes approximations to ground state energy 

of an n-qubit Hamiltonian as a sum of two contributions: 

(i) Non-Contextual Contribution (Classical). 
(ii) Quantum Correction over (i) using VQE on less than n Qubits.  

Note: No Intention to prepare the ground state  

Contextual Subspace VQE



           Motivation for Contextual subspace VQE
In a usual VQE scenario, at the end of each iteration over the Quantum Circuit, large number of 

measurements are needed to be done to compute expectation value of the Complete Hamiltonian.
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So is it possible to delegate as much Computation as 
possible to the Classical Computer and still achieve 

good approximations to ground state energy??

71

Maybe Contextual Subspace VQE could help since it reduces overload from 
the noisy QC.



 

        

H = ∑
i

hiPi

S ≡ {Pi}

72

Given a general n-qubit hamiltonian H

Divide  into a Non-Contextual set  and its Complement* S Snc Sc

* doesn’t neccessarily make  contextual Sc

H = Hnc + Hc

1. Run the Classical simulation of the noncontextual ( ) VQE and obtain the first 
part of the approximation. 

2. Compute correction to the Classical result by running VQE on the remaining part  
 of  on an ansatze that corresponds to the ground state of the noncontextual 

part.

Hnc

Hc H



Step-1: The Non-Contextual Simulation

73

Snc

vi ∈ {±1}|R|  Ontic States≡

Minimize this to get  
the ground state energy

 Epistemic States≡
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Define   A = ∑
i

riCi1 where ,  | ⃗r | = 1 qj ∈ {±1}

= 1  < A > ⃗q , ⃗r & < Gj > ⃗q , ⃗r = qj

This means that each ( ) represents a joint eigenspace of the Observables  
    Epistemic states  JointEigenspace of 

⃗q , ⃗r G ∪ {A}
≡ G ∪ {A}

Meaning of Epistemic states (quasi-quantised states) 
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Before getting to step 2, we need to check if we really require it

Minimize this

 ⃗q0, ⃗r0 Non contextual ground statespace

 represents joint Eigenspace of ⃗q0, ⃗r0 G ∪ {A}

If the non contextual states of  uniquely identify quantum states, then for any non contextual  
state the expectation value of every term in  is zero i.e. No Quantum Correction is Possible.

Hnc
Hc

Non-degeneracy of  eigenspace  No Quantum Correction needed⃗q0, ⃗r0 ⟹

H = Hnc + Hc
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Minimize this

 ⃗q0, ⃗r0

Step-2 : Compute Quantum correction to the classical simulation

Non contextual ground statespace

This Eigenspace is called the Contextual Subspace

Run a VQE for  on the Contextual subspace to calculate the quantum correction Hc

Turns out that this can be done on less than n-qubits by restricting  to a subset of n-qubitsHc
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For any Unitary , If we map an Observable  then: 
 

 
Eigenvalues and hence statistics of  are preserved under Unitary Transformation.

U A → UAU†

< A >|Ψ> = < UAU† >U|Ψ>

A

Restricting  to a subset of n-qubitsHc

Restriction can be done by mapping the Contextual Subspace to a Stabilizer subspace  

H = Hnc + Hc
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Restricting  to a subset of n-qubitsHc

It is possible to construct a Unitary  that takes    such that D H → DHD†

H = Hnc + Hc

Gj → Zk = DGjD†

i.e. each of the operators in  get mapped to some single Qubit Pauli .G Zk = I1 ⊗ . . . ⊗ Zk . . . ⊗ In

Since  is an independent set of operators with  being a set of independent Casimirs  
and  also forms an Independent Commuting set, Therefore  

(Because n-qubit system can only have n Independent Commuting Operators at max.)   
  

R G
G ∪ {Ci1} |G | ≤ n − 1.

Therefore under Unitary , set  gets mapped to Single Qubit Pauli’s which require atmost  qubits. D G |G |
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  Under Unitary , =  
 

Therefore   

where  

D Hc → DHcD† H′ 

c

H′ 

c = ∑
P

hpP

P = P1 ⊗ P2 = (P1 ⊗ I)(I ⊗ P2)

Let  denote the Hilbert space of  qubits acted on by single-qubit Pauli  operators, 
and let  denote the Hilbert space of remaining  qubits s.t.  with .

ℋ1 |G | = n1 Z
ℋ2 n2 n = n1 + n2 ℋn = ℋ1 ⊗ ℋ2

Restricting  to a subset of n-qubitsHc

Further it can be shown that  
 

 
Hence, effectively  acts only on the  qubits. 

P |Ψ( ⃗q0, ⃗r0) > = p1hP(I ⊗ P2) |Ψ( ⃗q0, ⃗r0) >
p1 = ± 1

H′ 

c n2
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Perform VQE for  on  qubits to attain the quantum correction. 
 
 
             This would complete the CS-VQE implementation!!! 

H′ 

c n2 < n



    Summary

• What are VQAs? Why we need them? (Dis)Advantages? Open Problems?


• What Constitutes a test of Contextuality for VQEs?


• Classical Simulation for Hamiltonians failing this test.


• Combining the Classical simulation with VQE to produce another hybrid-
algorithm.
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Thank you!!! 
 
 

Any Questions??? 


