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Linear optics

® An interferometer consists of a network of beam splitters and phase
shifters connected by waveguides

X —

® Photons can exist in different spatial modes one for each of the possible
waveguide tracks
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Linear optics

® Beam splitters and phase shifters are described by unitary matrices acting
on the modes
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Linear optics

® An interferometer is described by an mxm unitary matrix
-
® The unitary acts of the set of creation operators
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Linear optics comparison to quantum circuits

® Quantum circuit -> Interferometer

® Qubit -> Single mode Fock state

® Qubits -> Multi mode Fock state




Permanents

® To simulate the behaviour of the optical circuit we need to calculate
transition amplitudes
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® These can be related to the permanent of some matrix constructed from
matrix elements in the unitary

N
perm(A) = Z HAZ-U(i)
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S. Scheel,“Permanents in linear optical networks,”2004. [Online]. Available:http://arxiv.org/abs/quant-ph/0406127



Permanents

® The constructed matrix depends on the input and output state

U[(1%,2%,3Y)|(1%,2%,3%)] =

® A consequence is that the permanent of U is related to the transition
amplitude

perm(U) = (11,19,.., 10| U |11, 19, ..., 1ps)




Permanents

® The complexity of simulating linear optics is then the complexity of
calculating permanents

® The Best known algorithm is given by Ryser
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perm(4) = (-1)V >~ (-)IIT]Y 4

SC{1,....,N} i=1j€S8

Run time = O(N2V 1) Memory = O (N2)

A. Nijenhuis and W. Herbert,Combinatorial Algorithms, 1978



Feynman path integral approach

® Similar to the qubit case we break down our optical circuit into layers

layer | layer 2 layer 3
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Feynman path integral approach

® For three layers the transition amplitude is expressed as the sum over paths
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Feynman path integral approach

® For a general circuit the transition amplitude would be given by
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® Wherez =xandzp=y



Feynman path integral approach

® The photon number N, must be conserved at each stage in the optical
circuit

® The number of paths in the sum is then given by the number of N photon
states across M modes to the power of D-1
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Feynman path integral approach

® Each path in the sum contributes a product of transition amplitudes
(Y| Us |zi) (zi| U2 |z;) (25| Uy |@)

® So we need a method to calculate the transition amplitude for a single layer

® This would be given by some permanent




Permanents of layers

® We could use Rysers formula, although this would not be efficient

® Since the transition amplitudes are for single layers we can exploit their
structure to calculate their permanents more efficiently




Permanents of layers

® Fora layerin the interferometer in the worst case we would have around m/
2 beam splitters

® Following a result from V. S. Shchesnovich using a modified Glyns formula
the time complexity for calculating the permanent for a beam splitter with
n input photons, m, and m, photons in the output modes

(’111‘1 -1- 1)(”’”2 + 1)
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® Maximising this complexity for the worst case gives
O(TLQ) ’

V. Shchesnovich, “On the classical complexity of sampling from quantum interference of in-distinguishable bosons,” pp. 1-15, 2019.
[Online]. Available: http://arxiv.org/abs/1904.02013



Permanents of layers

® For m/2 beam splitters the complexity would become

O(n3 + ... + 7127) |

® Which if we maximise for the worst case we get



Feynman path integral complexity

® In total we have to perform D of these permanent calculations for each
path in the sum

® The time complexity for calculating the path integral is then given by

2
@, (DNV X #paths)




Feynman path integral complexity

® For the memory complexity we consider what needs to be stored at any
point in the algorithm

1. Apath

2. Term phase
3. Total phase
/4. Working phase

® A path consists of D+1 lists of M numbers whose size is a most N

Memory = O (log (N)M (D + 1))



Special cases

® Consider the case for a depth two optical circuit in the Clements scheme

® The unitary for a layer will take the from of a block diagonal matrix with
block sizes of at most two

° The full unitary will be band diagonal with bandwidth at most four

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and |. A. Walsmley,“Optimal design for universal multiport
interferometers,”Optica, vol. 3, no. 12, p. 1460, 2016.



Special cases

® If we wanted to use FPI to calculate the permanent of such a unitary we
would need to know which paths to consider in the sum

® For depth two we only need to consider one state in the path
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Special cases

® So for depth two there is only one path that can give a contribution
® Since we have a photon in each mode the complexity comes out as
M

O(DNQ) — O (2N) = O (N)

® Which is linear in the number of photons



Special cases

® We can perform a similar calculation for depth three circuits in the
Clements scheme

® This time however the number of paths is not constant and it can be shown
that it depends on N

N
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#paths(D = 3) = 3 '

N

Run time = O (N37)



Python implementation

Feynman path integral algorithm Path generation algorithm
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Comparison with Ryser

FPI Depth 2 runtime

Ryser Depth 2 runtime
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Run time = O(N)

Run time = O(N2V 1)




Future work

® Extending the method to calculate permanents of arbitrary matrices
® Beam splitter elements would be replaced with arbitrary 2x2 matrices

® Beam splitters elements can act on non adjacent modes

® There is no specification in the FPI protocol or the method form V. S.
Shchesnovich that requires the matrices to be unitary

® Non local beam splitter layers can be viewed as local layers together with
some permutation |
Run time = O (Nj%)




Future work

® There exist efficient algorithms for calculating permanents of block
factorizable and band diagonal matrices

A=F\F,--F

Block run time = O <N23L2) Banded run time = O (N2%) '

Block memory = O (N22L2)

D. Cifuentes and P. A. Parrilo, “An efficient tree decomposition method for permanents and mixed discriminants,” pp. 1-32, 2018.

K. Temme and P. Wocjan, “Efficient Computation of the Permanent of Block Factorizable Matrices,” pp. 1-16, 2012. [Online].
Available: http://arxiv.org/abs/1208.6589



Summary

® Demonstrated how Feynman path integrals give a physically motivated
method to simulating linear optics

® Feynman path integrals can be used to calculate permanents of certain
sparse matrices that outperform Rysers’ algorithm

® These results are comparable to other methods for calculating permanents
of spare matrices that correspond to optical circuits of short depth




