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* Unitary invariants to characterize relational quantum information
* Measuring the invariants
* Nonclassicality of...

* ...overlaps: coherence and contextuality inequalities
* ...higher-order invariants: applications



Relational = unitary-invariant properties of a set of states

* Geometrical in character — they’re about the 4
relative orientation of the states B
Sy
@)

D¢

* Mathematical result: all unitary-invariant properties can be written in terms of
k-th order Bargmann invariants: [Chien, Waldron. SIAM J. Discrete Math. 30 (2), 976 (2016)]
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* We call relational quantum information any property of a set of projectors that is
unitary-invariant. Examples:
* Probabilities in prepare-and-measure scenarios
* Success rate in unambiguous state discrimination
* Dimension of spanned Hilbert space



Bargmann invariants — where they show up

* Probabilities in quantum mechanics: p,p = Tr(pP)
* Compatibility between two projectors: P, P, compatible iff Tr(P;P,) = 0.

* They determine output probabilities of linear-optical experiments with partial
photonic indistinguishability

a (0|0)=@D c'¥m
b e Example: d=3 QFT with three input photons,
o X Pu=,0-@) each with their own internal spectral functions.
Output is a function of overlaps and phase ¢ of
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[from A. J. Menssen, et al., PRL 118, 153603 (2017)]

* Geometric phases are phases of Bargmann invariants
[Simon, Mukunda, Phys. Rev. Lett. 70, 880 (1993)]

* Phase of A = Pancharatnam (geometric)
phase acquired by cyclic sequence of
—7, projective measurements




Circuits to measure Bargmann invariants

[Oszmaniec, Brod, EG, arXiv:2109.10006]

* Known result: SWAP test circuit measures simplest invariant, the two-state overlap:
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* Oszmaniec-Brod-EG: cycle test circuits measure real and imaginary parts of any

m-th order Bargmann invariant:
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* Circuits previously proposed to measure nonlinear functionals of a single state

[Ekert et al., PRL 88, 217901 (2002)]
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Complete sets of Bargmann invariants

[Oszmaniec, Brod, EG, arXiv:2109.10006]

* We call a set of unitary-invariants complete if it contains enough information to
decide any unitary-invariant question about a set of states.
* Prototypical question:

B
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Is there a unitary U that maps one set of states into the other? Such a
U exists iff values of invariants in a complete set are the same.

* For N pure states, there are constructions of complete sets using (N-7)? invariants, of
at most Nth order.

* For N mixed states you need up to Nd?+17 invariants, of order up to d?.



Gram matrix encodes all unitary-invariant properties of pure states

[Oszmaniec, Brod, EG, arXiv:2109.10006]

* Complete knowledge of unitary-invariant properties enables applications we will
describe next.

* In the generic case of non-orthogonal states, characterization is simple:
* Use all 3-invariants of a reference state with all pairs — “triangulating” the set
1 VA VA1 VA1,
G — VA9 1 VAs3e*23 /Ao, erP24
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* Information is neatly encoded in the Gram matrix: G“s = A \5>

* Phase of G,, = phase of \Emd\ 4 e

* All parameters in G are gauge-invariant and can be measured with cycle tests



“Relational information tomography” — example with pair of orthogonal states

[Oszmaniec, Brod, EG, arXiv:2109.10006]

- Vertices = states
edges = measured overlaps: they tell us which higher-order
invariants we need to measure .
A=re'?

* Pick a spanning tree = cycle-free graph containing all vertices

1, 1 A, etP1234 0 /AL,

A1234 A G = 1 NZAVE: NIAYA
1

_‘ | 4 3 A34el(p234
spanning tree higher-order invariants 1
missing edges to measure

* Construction is not unique — it's possible to choose different spanning trees:

1 A123i</)124 0 \/A_14
1 V A23 V A24

1 Nz, etP234

span.ning tree higher-order invariants 1
missing edges to measure



Event graphs: obtaining classicality inequalities for overlaps

* Basis-independent coherence witnesses

* Noncontextuality inequalities

Sy



Classicality inequalities for a set of random variables

N\
* Event graph: describes probabilistic processes and their N =
correlations: 2
* Vertex v, = probabilistic process yielding outcomes o,,
with probability p;,
* Edge weight r; = probability that v; and v; yield equal At &
outcomes
: . Vi n Vo
* Not all edge weights are possible! 2

* Boole/Bell/Pitowsky investigated Boole's “conditions of possible experience”
[Pitowsky, Br. J. Philos. Sci. 45 (1), 95 (1994)]

* Cycle-free graphs (trees) impose no constraints
on edge weights — for constraints we need cycles

* Let's have alook at the simplest scenario imposing constraints — a 3-cycle graph



3-cycle graph

A
* Simplest event graph imposing edge weight constraints is the
3-cycle graph . - .
r = (T4, Tac, Tac)
with r,z ;== p(0, = 0p), etc. B C
B¢
* Some 7T tuples are impossible, due to transitivity of e ¢ ____‘_1-.'-“

equally: - (1,1,0), (1,0,1), (0,1,1)

(0,0.1)

* The only logically allowed states are those described by
convex combinations of the 5 extremal tuples:

0,00), (1,1,1), e po|yhedmn>
(0,0,1), (0,1,0), (1,0,0)

(0,0.0)

(1,0.0)

* Now we have 3 non-trivial facets, each

describing a linear condition on the R} v ﬂ§ —_ f(K _é i

correlations (edge weights):



Coherence-free states: diagonal in some reference basis

* Qur definition of classical states = diagonal, incoherent mixtures of states in some
reference basis:

o GLOBAL N DiAGONAL
. LocAL P = T (p) : DIAGONAL

- QVeERAP ﬂid-_— T (Pi f’d) = PRoB. of FQUAL OuTwomeS oF REFERENKE GRSERVABLE

* Example:
[] L [ B
- Pu 0 0 . - O 0 0 .
p=10 p, 0L o=10 o, O0 L
% 0 0 P E % 0 0 o %
| Tr(po-) — 0.0 .. = probability of equal outcomes from measurements
PO i u \of reference observable on the two systems

I
|
* For coherence-free states, the overlap has exactly this interpretation for edge weights




Classical, coherence-free polytope of edge weights

* Vertex: reference basis measurement outcomes on quantum
state

* Edge: probability that reference basis measurements give
same result for adjacent vertices

* For coherence-free states, we can measure edge weight in

two equivalent ways: @
* Direct measurement of reference basis
* Indirect measurement via SWAP test comparisons @
* Now: quantum states may have coherences — off-diagonal
density matrix entries | P
* Coherence is witnessed by violations of facets of the
classical polytope (in indirect, SWAP test measurements)

Theory: [EG, Brod, PRA 101, 062110 (2020)]
Experiment: [Giordani et al., Phys. Rev. Res. 3, 023031 (2021)]

@ = overlap/graph weights violating classical polytope
= Basis-independent coherence withess

{0,00.0)

* Rafael Wagner, Rui Soares Barbosa, EG: general framework for obtaining new
such coherence witnesses - arXiv:2209.02670 [quant-ph]

(1,0,0)


https://arxiv.org/abs/2209.02670

Coherence and dimension withesses in photonic circuits

Experimental certification of contextuality, coherence and dimension in a programmable universal

photonic processor

Taira Giordani.'" * Rafael Wagner,”* * Chiara Esposito,' Anita Camillini,”* Francesco Hoch.'

Gonzalo Carvacho,! Ciro Pentangelo,®” Francesco Ceccarelli,’” Simone Piacentini,” Andrea (tO appearin
Crespi,** Nicolb Spagnolo.! Roberto Osellame,” Emesto F. Galvdo,>® 7 and Fabio Sciarrino'-* Science Advances)
Preparation Measurement Preparation Measurement Preparation . Measurement
b) ) o |0)
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We used on-chip state preparators/projectors for 1-photon states in m modes, for
m=2,3,4,5.

Violation of classicality inequalities from the infinite family described in our
arXiv:2209.02670 [quant-ph], withessing coherence and Hilbert space dimension:

n—2
ha(r) =101 +7102+7T03—T1,2—7T13—7T23<1 hn(r) = hp1(7) + 70,n—1 — Z Fin—1 <1
/\ /\ i=1
Only violated by states spanning Only violated by states spanning
a 3-dimensional space a (n-1)-dimensional space

Rafael Wagner + Emmanuel Cruzeiro (IST) are investigating finer coherence-
witnessing properties of certain classicality inequalities.



Classical polytope facets are noncontextuality inequalities

* General event graph: v, =
* Vertex v;: probabilistic process yielding outcomes o,
with probability p;, Ty &
* Edge weight r; = probability that v; and v; yield equal
outcomes
Vi Mg Va

* Classical model is a|g|oba| probability distribution function (pdf) |such that:
* All v; with correct single-process marginal pdfs;
* All pairs of vertices with correct two-vertex marginal pdfs => probability of equal
outcomes for neighbouring vertices must match overlap r;

* Quantum realization of classical model: diagonal density matrices, reference
observables reveal pre-existing properties

* Note that the classical model is non-contextual — existence of a global pdf is
equivalent to non-contextuality [Abramsky, Branderburger, N. J. Phys. 13 (11), 113036 (2011)]

* quantum realization with diagonal states is a way of parameterizing general non-
contextual model

» Classical overlap inequalities are noncontextuality inequalities



Classical polytope facets are noncontextuality inequalities

Rafael Wagner, Rui Soares Barbosa, E.G., arXiv:2209.02670 [quant-ph]
* We proved that

Ny V’-;
o . . V
* We recover every non-contextuality inequality obtainable ’
by the exclusivity graph approach
[Cabello, Severini, Winter, PRL112, 040401 (2014)] Ty [\
* Violations of cycle inequalities are violations of Spekkens’ y N
A rk\z- 2

preparation noncontextuality

. ngn . k-i
k-cycle inequalities: Z}_(; ~ Mk k-2 dé: : 0re :l

. \'w
ok K wihas
* We showed how to computationally obtain facets for arbitrary event graphs.
AR, AR, Example: CHSH inequality
v * Central vertex: singlet state
M na * Other vertices: projectors jointly measured by

Alice and Bob
* Settings at A and B define r,, rg
* 3-cycle inequalities yield the CHSH inequality.



Understanding constraints between
different invariants



Third-order invariant bounds

* For 3 general states, we know the non-trivial bounds that the 3 overlaps must obey:
[E. G., D. J. Brod. Phys. Rev. A 101, 062110 (2020)]

(a) (1.L1)

" - raAp +Tpc +TAC — 2\/ FraBTrpcTAC <1

/ : _ ,
| r_, ifrag+rac>1, . 2
f' rge = ' AT TAC Ty = (x,-"-"AB'rAC + /(1 —rag)(l - '-"AC‘))
0 otherwise.

* Application in characterization of photonic indistinguishability

* We do not yet have such a complete characterization for overlaps of N>3 states.
* Some partial results: [by Carlos Fernandes]

* We know the boundary:

2
1 — 3r3 4+ 2rcos(¢)=0

0.25

A123 = Teid)
r = \/A12A13A23

IM(Aq33) oot

=0.25

* |t grows towards the unit circleas N — oo

-0.50 i i i L J
—0.25 0.00 0.25 0.50 0.75 1.00

Re(Aq,5 * Key to obtaining bounds on invariants: G = 0




Higher-order unitary invariants, and applications

* Testing for linear independence

* Witnessing basis-independent imaginarity

* Nonclassicality of Kirkwood-Dirac quasi-probabilities
* Conditions for weak-value anomaly

* Estimating spectra of density matrices

* Qut-of-time-ordered correlators (OTOCs)

* Characterization of photonic indistinguishability

* Cycle tests for measuring the scalar spin chirality



Application: testing for linear independence

[Brod, Oszmaniec, Galvao, arXiv:2109.10006]

* Volume of parallelepiped created by a set of vectorsis V = \/ det(G) 4
B
* N states are linearly independent iff det(G)>0 &
O,
Example with N=3 =Je
1 |<E..‘1|L.'g}| |<1.‘1|L.‘3>‘ 1 v ._\12 wllq
G = | [(¥1|Y2)] 1 § (U2|¥3) | = | VA2 1 vV Agget?2s
(Un|¥3)| (V2|ts) 1 VA3 /Agze 92 1

A= |(wilw;)|”
Aljk: <lp1|¢]><¢]|¢k><l/)k|¢1> = \/A1jAjkAk1€¢fk

d&‘f((;) >0<1— (Alg + _\13 -+ Agg) + 2\/A12A13A23 {.‘{}H(ﬂgg) > ().

* Possibly useful for dimensionality reduction in machine learning.



Application: withessing basis-independent imaginarity

[Brod, Oszmaniec, Galvao, arXiv:2109.10006]

* Imaginarity: resource provided by complex numbers in quantum theory

* Recent results show imaginarity is necessary for maximal violation of certain Bell
nonlocality scenarios
[M.-O. Renou et al., Nature 600, 625 (2021); M.-C. Chen et al., Phys. Rev. Lett. 128, 040403 (2022)]

* Cycle test can be used to witness basis-independent imaginarity:

P

—

H

—D p(0) =

0) —H !
‘ ﬂfl) C
[%2) y
. C

|

wﬂt} <

1+ Im(Ag. ) = imaginarity that doesn't
2 “go away” by any choice of
basis.

* Rafael Wagner and Felix Ahnefeld (Ulm) are working on a resource theory of basis-
independent imaginarity, towards a resource theory of basis-independent coherence
(or “set coherence”).



Application: Kirkwood-Dirac quasi-probabilities

R. Wagner et al., arXiv:2302.00705[quant-ph]

* The Kirkwood-Dirac (KD) quasi-probability distribution represents a d-dimensional
guantum state - it is normalized but can take negative or complex values.

See e.g. D. R M Arvidsson-Shukur et al., J.
Phys. A: Math. Theor. 54 284001 (2021).

* By definition, the value at each phase-space point is a 39-order Bargmann invariant of
p + one basis state from each of two bases a and f:

P

. ¢(a, flp) == Tr(ll11sp)

g f

* Cycle test circuits directly measure the KD distribution, with no need for previously
proposed weak measurement schemes.



Application: Kirkwood-Dirac quasi-probabilities

R. Wagner et al., arXiv:2302.00705[quant-ph]

* Results on nonclassicality of KD distribution: ,0
&(a, flp) := Tr(IL1I;p) -
O O
a f
* New observations on non-classicality of value of a single KD phase space point:
* Nonclassicality may arise out of positive third-30rder :12 t[))>> :+‘)\/§1> 1

iInvariants, as in the this example with A;,; = 5 \m“)‘ 1)
o|0) +

‘ 'i_.-f:,’g > =

e

L

* Examples show that only overlaps cannot always decide whether A,,5 is a) real
or complex; b) positive or negative.

* Using additional assumptions, it's possible to decide negativity/positivity using
overlaps only, e.g. when A;,; is both real-valued, and corresponds to one-qubit
states.



Application: conditions for weak value anomaly

R. Wagner et al., arXiv:2302.00705[quant-ph]

HWP QWP

)

* Weak values of an observable A are measurable quantities associated with: «

Preparation of a pre-selected state |¢);

“Small” unitary evolution generated by A: U=exp(iAt);
Projective measurement onto post-selected state |y); (b)
Weak measurement schemes allow estimate of the weak value

_(glaly)
(@)

* Anomalous weak values A, are those outside of the range of A —
useful in metrology.

Ay

[See J. Dressel et al., Rev. Mod. Phys. 86, 307 (2014)] From Dressel et al., Rev. Mod.
Phys. 86, 307 (2014)



Application: conditions for weak value anomaly

R. Wagner, E.G., PRA 108, L0402
R. Wagner et al., arXiv:2302.00705[quant-ph]

_(lAlp)
(@)

* \Weak values of an observable A: AW

* Weak values are unitary-invariant quantities among pre and post-selected states and eigenvectors
of A — measurable using cycle circuits

3 {ela)(aly) _ _(Bla)alv)(vld) _ ACICRD
Au= 2 (plv) 2 {g|)]2 2 Ao (9, 9)

aco(A) aco(A) aco(A)

A3(pes @i, py)
Az(pgs py)

* Weak values of A are an average over eigenvalues a,, 9(ps, pylai) =
weighted by normalized quasi-probabilities g:

anomalous quasi-probabilities are necessary
for the appearance of anomalous weak values

* We also showed that anomalous quasi-probabilities require coherence of both p,,p, in A’s basis.

anomalous weak values require coherence of
both p,.p, in A’s basis




Application: measuring Out-of-Time-Ordered Correlators (OTOCSs)
R. Wagner et al., arXiv:2302.00705[quant-ph]

* Qut-Of-Time-Ordered Correlators (OTOCs) measure the scrambling of quantum
information by tracking how expectation values of initially commuting observables
V,W change under unitary dynamics.

OTOC(t) := Te(WT()VIW (t)V p)

* We noted OTOCs are a function of 5th-order invariants, measurable without the need
for inverse U, as proposed previously.

______

0y —H i . Ps— H A

(w3, Aws)
V9, Ay, ) — U
"H»-‘z_«. sz) Cs
v1, Apy) 1 U
P —U -




Application: estimating spectra of density matrices

R. Wagner et al., arXiv:2302.00705[quant-ph]

* Cycle test circuit with input of n identical ,?— I s
d-dimensional states p estimates Tr(o") )
n p
* Newton’s identities then give us the spectrum of g b
as a function of Tr(p™) forn =1 ..d )

Newton’s identities
(Tr (03, Tr(0%), .., Tr(@D}] < > | Spectrum of o

* Despite numerical instabilities, method works 4
well for small d. Error in eigenvalue estimation 10 i e E g—-
. . . . e T L
as a function of Gaussian noise € in Tr(p") T e o
L - o | :
U r
S 1073 (] A d=2
o u . _ d=3
Figure 4. Average root-mean-squared error (RMSE) 9 - ® A o d=a
of the estimate for the real part of the eigenvalues of © B
random mixed states, under Gaussian noise e. Y}ff start lg_;' 5 o o A ¢ d=5
from a data set of exact values of A, := Tr(p"), {An}ﬁzg, < 10 ; & d=6
introduce Gaussian noise with standard deviation £, and plot o A . *od=7
the average root-mean-squared error (RMSE) of the estimated ? _ d=8
eigenvalues under noise. The spectrum reconstruction uses A d=9
the Faddeev-LeVerrier algorithm based on Newton’s identi- 1077 " d=10
ties, and the average RMSE is over 5000 samples, each used & d=11
to generate 1000 noisy samples. We use the Ginibre random e
ensemble of mixed states of rank larger than one, employing 1078 1077 10-6 10~ 107* 10-3 102

the algorithm introduced in Ref. [70]. £



Conclusion

* Unitary invariants give a concise description of all the relational information about a set of projectors

* Helpful for unified discussion of various notions of nonclassicality: basis-independent coherence and
imaginarity, contextuality, nonlocality, negativity of quasi-probabilities, anomalous weak values

* Check out our theory papers:

* E.G,, D.J.Brod. Quantum and classical bounds for two-state overlaps. Phys. Rev. A 101, 062110 (2020).
* M. Oszmaniec, D. J. Brod, E. G. Measuring relational information between quantum states, and applications.

ArXiv:2109.10006 [quant-ph].
* R. Wagner, R. Soares Barbosa, E. G. Inequalities witnessing coherence, nonlocality, and contextuality.

ArXiv:2209.02670 [quant-ph].
* R. Wagner, Z. Schwartzman-Nowik, |. L. Paiva, A. Te'eni, A. Ruiz-Molero, R. Soares Barbosa, E. Cohen, E.G.

Quantum circuits measuring weak values and Kirkwood-Dirac quasiprobability distributions, with applications.

ArXiv:2302.00705 [quant-ph].
* R. Wagner, E.G. Simple proof that anomalous weak values require coherence. PRA 108, L040202 (2023).

* And experiments:
* T. Giordani, C. Esposito, F. Hoch, G. Carvacho, D. J. Brod, E. G., N. Spagnolo , and F. Sciarrino. Witnesses
of coherence and dimension from multiphoton indistinguishability tests. Phys. Rev. Res. 3, 023031 (2021).
* T. Giordani et al. Experimental certification of contextuality, coherence and dimension in a

programmable universal photonic processor. Science Advances (in press).
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Conclusion

* Unitary invariants give a concise description of all the relational information about a set of projectors

Helpful for unified discussion of various notions of nonclassicality: basis-independent coherence and
imaginarity, contextuality, nonlocality, negativity of quasi-probabilities, anomalous weak values
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* And experiments:
* T. Giordani, C. Esposito, F. Hoch, G. Carvacho, D. J. Brod, E. G., N. Spagnolo , and F. Sciarrino. Witnesses
of coherence and dimension from multiphoton indistinguishability tests. Phys. Rev. Res. 3, 023031 (2021).

* T. Giordani et al. Experimental certification of contextuality, coherence and dimension in a
programmable universal photonic processor. Science Advances (in press).
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Extra slides



Application: characterizing multi-
photon indistinguishability



Application: characterizing multi-photon indistinguishability

[Brod, Oszmaniec, Galvao, arXiv:2109.10006]
* Previously: overlaps for multi-photon indistinguishability tests
Brod et al., Witnessing genuine multiphoton Giordani et al., Experimental quantification of genuine four-

indistinguishability. Phys. Rev. Lett. 122, 063602 (2019)  photon indistinguishability. N. J. Phys. 22 043001 (2020)

\ /) 5 1+\<A|B>\2 HOM tests measure overlap between spectral
Py = 2 wavefunctions, independently of dimension and
encoding (polarization,time, colour...)

/7

* Higher-order invariant measurements provide AABQ = ARXBICX A
lower bounds for multiple two-photon A%

1 r'oa
overlaps: %Ahb 2 IAAec\ ) 207 ) Ac
B

* Higher-order invariants can be directly measured using multimode interferometers, e.g.
3-mode balanced tritters (QFT):

1 _ , .
O 1 1 1 1 Pi2g = FPoi12 = Poo1 = 9 (1 — 2ry2re3r3; cos(p +7/3))
- o - 2o hy
O X U = —3 1 '3 e'5
; y =0 ; A . — . — 0= — (1 — D9y araat in — /2
O 1 el ei3 FPo21 = Pa10 = Pip2 5 (1 — 2ryare3rs; cos(p — 7/3))

[Menssen et al., PRL 118, 153603 (2017)]



Measuring invariants using photonics — CNR/Rome/CNRS approach

* The output probabilities of any interferometer can be written in terms of invariants only
— S0 generic interferometers will enable estimation of the invariants
Shchesnovich, Bezerra arXiv:1707.03893 [quant-ph]

* Some designs, however, may enable more accurate estimation. An interesting design

was recently demonstrated by CNRS/CNR/Rome:
Pont et al, arXiv:2201.13333 [quant-ph]

* Single photons pre- and post-selected on See also Wu, Sanders, Phys. Rev. Research
odd modes 4 (2), 023134 (2022)
* Only two paths to this: either all remain in Voltage
input, or all move in a cycle — exactly the L 4 ;‘2 T\ Yt
superposition of possibilities for the cycle B\ s <N
test \ BS6 \ / . L
* Enables measurement of invariants of Cls sy /%\BSS 5 |-
any order, at high postselection cost 6 i o] 6 -
Y P LR < /0
See also Wu, Sanders, . " <P 8 5 8 -
Phys. Rev. Research 4, § ——>¢ —» .
023134 (2022): ss| |as 3 N = 8 mode interferometer
1I—<=
BS BS »
A — <
] BS BS  »




Application: “relational tomography”

* Some preliminary results — collaboration with Michal Oszmaniec, Carlos Fernandes
(INL):
* For Re(Delta_ ABC), two BS are sufficient
* |Im(Delta)|*2 can be deduced from that, plus overlaps

1 1
6
2 2
9/’
3 3

* Complete “relational tomography” protocol:

* Use multiple reconfigurable interferometers to determine all overlaps
* Pick spanning tree that most decreases the order of the required higher-order

iInvariants
* Use improved interferometer designs to measure those (e.g. the two BS

construction above, for 3 order invariants)



Explicit cycle circuits



Cycle test circuits

[Brod, Oszmaniec, Galvao, arXiv:2109.10006]

0) H ! 1HD * Controlled-cycle can be decomposed into
141) c Fredkin (C-SWAP) gates
|12) y
: : C
: : |
[Pm)———_
* The cycle test circuit can have linear ... or log-depth with long-range C-SWAPs:

depth (with local C-SWAPs):

A
Q
T
I

3
il

S
X
-

|§E|3| |é|}|”|é|3| L
l
|
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Coherence does not imply weak value anomaly

R. Wagner, E.G., arXiv:2303.08700

* Here’s a simple counter-example showing that coherence of py, p,, does not guarantee anomalous
weak values for A. 0)

) = 2(10) ~ v31) ¥) = 5(0) + VL)

FIG. 2. Example of anomalous weak wvalues. The
weak value A, for the projector A = |0)(0|, with |¢), [¢)
chosen as in the figure, results in the anomalous A, =
77 (010)(0[) (¥|¢) = 77 (5)-(5)-(—=3) = —3 < 0. Asimilar
calculation gives anomalous B, = 3/2 > 1. The weak value
of the identity operator is non-anomalous: I, = Aw+ Bw = 1.

mm) |COherence of py, py
Anomalous AW‘ @ |in A’s basis




