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• Unitary invariants to characterize relational quantum information

• Measuring the invariants

• Nonclassicality of…

• …overlaps: coherence and contextuality inequalities

• …higher-order invariants: applications

Outline



Relational = unitary-invariant properties of a set of states

• Geometrical in character – they’re about the 

relative orientation of the states

[Chien, Waldron. SIAM J. Discrete Math. 30 (2), 976 (2016)]

• Mathematical result: all unitary-invariant properties can be written in terms of 

k-th order Bargmann invariants: 

∆𝐴𝐵𝐶…𝐾= 𝑇𝑟(𝜌𝐴𝜌𝐵𝜌𝐶 ⋯𝜌𝐾)

• We call relational quantum information any property of a set of projectors that is 

unitary-invariant. Examples:

• Probabilities in prepare-and-measure scenarios

• Success rate in unambiguous state discrimination

• Dimension of spanned Hilbert space



Bargmann invariants – where they show up

• They determine output probabilities of linear-optical experiments with partial 

photonic indistinguishability

[Simon, Mukunda, Phys. Rev. Lett. 70, 880 (1993)]

[from A. J. Menssen, et al., PRL 118, 153603 (2017)]

• Phase of ∆ = Pancharatnam (geometric) 

phase acquired by cyclic sequence of 

projective measurements

• Geometric phases are phases of Bargmann invariants

• Example: d=3 QFT with three input photons, 

each with their own internal spectral functions. 

Output is a function of overlaps and phase 𝜑 of 

3rd-order invariant of the 3 spectral functions

• Probabilities in quantum mechanics: 𝑝𝜌𝑃 = 𝑇𝑟(𝜌𝑃)

• Compatibility between two projectors: 𝑃1, 𝑃2 compatible iff Tr 𝑃1𝑃2 = 0.
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• Known result: SWAP test circuit measures simplest invariant, the two-state overlap:

• Oszmaniec-Brod-EG: cycle test circuits measure real and imaginary parts of any 

m-th order Bargmann invariant:

• Circuits previously proposed to measure nonlinear functionals of a single state
[Ekert et al., PRL 88, 217901 (2002)]

[Oszmaniec, Brod, EG, arXiv:2109.10006]

Circuits to measure Bargmann invariants



Complete sets of Bargmann invariants

• We call a set of unitary-invariants complete if it contains enough information to 

decide any unitary-invariant question about a set of states.

• Prototypical question:

[Oszmaniec, Brod, EG, arXiv:2109.10006]

Is there a unitary U that maps one set of states into the other? Such a 

U exists iff values of invariants in a complete set are the same.

U?

A
B

C

A’

B’

C’

• For N pure states, there are constructions of complete sets using (N-1)2 invariants, of 

at most Nth order. 

• For N mixed states you need up to Nd2+1 invariants, of order up to d2.



Gram matrix encodes all unitary-invariant properties of pure states

• Complete knowledge of unitary-invariant properties enables applications we will 

describe next.

• In the generic case of non-orthogonal states, characterization is simple:

• Information is neatly encoded in the Gram matrix:

• Phase of Gkl = phase of 

• Use all 3-invariants of a reference state with all pairs – “triangulating” the set

• All parameters in G are gauge-invariant and can be measured with cycle tests

[Oszmaniec, Brod, EG, arXiv:2109.10006]

∆𝑖𝑗= 𝜓𝑖|𝜓𝑗
2

∆1𝑗𝑘= 𝜓1|𝜓𝑗 𝜓𝑗|𝜓𝑘 𝜓𝑘|𝜓1 = ∆1𝑗∆𝑗𝑘∆𝑘1𝑒
𝜙𝑗𝑘

Where:



Vertices = states

edges = measured overlaps: they tell us which higher-order 

invariants we need to measure

• Pick a spanning tree = cycle-free graph containing all vertices

1 ∆12𝑒
𝑖𝜑1234 0 ∆14

1 ∆23 ∆24

1 ∆34𝑒
𝑖𝜑234

1spanning tree

missing edges

higher-order invariants 

to measure

G =

• Construction is not unique – it’s possible to choose different spanning trees:

1 ∆12𝑒
𝑖𝜑124 0 ∆14

1 ∆23 ∆24

1 ∆34𝑒
𝑖𝜑234

1

G =

spanning tree

missing edges
higher-order invariants 

to measure

∆=r𝑒𝑖𝜑

[Oszmaniec, Brod, EG, arXiv:2109.10006]

“Relational information tomography” – example with pair of orthogonal states



Event graphs: obtaining classicality inequalities for overlaps

• Basis-independent coherence witnesses

• Noncontextuality inequalities



Classicality inequalities for a set of random variables

• Event graph: describes probabilistic processes and their 

correlations:

• Vertex vi = probabilistic process yielding outcomes oik

with probability pik

• Edge weight rij = probability that vi and vj yield equal 

outcomes

• Not all edge weights are possible!

• Boole/Bell/Pitowsky investigated Boole’s “conditions of possible experience”

• Let’s have a look at the simplest scenario imposing constraints – a 3-cycle graph

[Pitowsky, Br. J. Philos. Sci. 45 (1), 95 (1994)]

• Cycle-free graphs (trees) impose no constraints 

on edge weights – for constraints we need cycles



3-cycle graph

• Simplest event graph imposing edge weight constraints is the 

3-cycle graph

• Some      tuples are impossible, due to transitivity of 

equality:
 𝑟

• The only logically allowed states are those described by 

convex combinations of the 5 extremal tuples:

i.e. this polyhedron:

• Now we have 3 non-trivial facets, each 

describing a linear condition on the 

correlations (edge weights):

 𝑟 = 𝑟𝐴𝐵 , 𝑟𝐴𝐶 , 𝑟𝐵𝐶

(0,0,0), (1,1,1),

(0,0,1), (0,1,0), (1,0,0)

(1,1,0), (1,0,1), (0,1,1)

with rAB := p(oA = oB), etc.



Coherence-free states: diagonal in some reference basis
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å s ii = probability of equal outcomes from measurements 

of reference observable on the two systems

• Our definition of classical states = diagonal, incoherent mixtures of states in some 

reference basis:

• Example:

• For coherence-free states, the overlap has exactly this interpretation for edge weights



• Vertex: reference basis measurement outcomes on quantum 

state

• Edge: probability that reference basis measurements give 

same result for adjacent vertices

Classical, coherence-free polytope of edge weights

• For coherence-free states, we can measure edge weight in 

two equivalent ways:

• Direct measurement of reference basis

• Indirect measurement via SWAP test comparisons

= overlap/graph weights violating classical polytope

= Basis-independent coherence witness

Experiment: [Giordani et al., Phys. Rev. Res. 3, 023031 (2021)] 

Theory: [EG, Brod, PRA 101, 062110 (2020)] 

• Rafael Wagner, Rui Soares Barbosa, EG: general framework for obtaining new 

such coherence witnesses - arXiv:2209.02670 [quant-ph]

• Now: quantum states may have coherences – off-diagonal 

density matrix entries 

• Coherence is witnessed by violations of facets of the 

classical polytope (in indirect, SWAP test measurements)

https://arxiv.org/abs/2209.02670


(to appear in 

Science Advances)

Coherence and dimension witnesses in photonic circuits

• We used on-chip state preparators/projectors for 1-photon states in m modes, for 

m=2,3,4,5.

• Violation of classicality inequalities from the infinite family described in our 

arXiv:2209.02670 [quant-ph], witnessing coherence and Hilbert space dimension:

Only violated by states spanning 

a 3-dimensional space 

Only violated by states spanning 

a (n-1)-dimensional space 

• Rafael Wagner + Emmanuel Cruzeiro (IST) are investigating finer coherence-

witnessing properties of certain classicality inequalities.



• General event graph:

• Vertex vi: probabilistic process yielding outcomes oik

with probability pik

• Edge weight rij = probability that vi and vj yield equal 

outcomes

• Classical model is a global probability distribution function (pdf) such that:

• All vi with correct single-process marginal pdfs;

• All pairs of vertices with correct two-vertex marginal pdfs => probability of equal 

outcomes for neighbouring vertices must match overlap rij

• Quantum realization of classical model: diagonal density matrices, reference 

observables reveal pre-existing properties

• Note that the classical model is non-contextual – existence of a global pdf is 

equivalent to non-contextuality

• quantum realization with diagonal states is a way of parameterizing general non-

contextual model

[Abramsky, Branderburger, N. J. Phys. 13 (11), 113036 (2011)]

Classical overlap inequalities are noncontextuality inequalities

Classical polytope facets are noncontextuality inequalities



k-cycle inequalities:

• We proved that

• We recover every non-contextuality inequality obtainable 

by the exclusivity graph approach

[Cabello, Severini, Winter, PRL112, 040401 (2014)]

• Violations of cycle inequalities are violations of Spekkens’ 

preparation noncontextuality

Rafael Wagner, Rui Soares Barbosa, E.G., arXiv:2209.02670 [quant-ph]

• We showed how to computationally obtain facets for arbitrary event graphs.

Example: CHSH inequality

• Central vertex: singlet state

• Other vertices: projectors jointly measured by 

Alice and Bob

• Settings at A and B define rA, rB

• 3-cycle inequalities yield the CHSH inequality. 

Classical polytope facets are noncontextuality inequalities



Understanding constraints between 

different invariants



Third-order invariant bounds

• For 3 general states, we know the non-trivial bounds that the 3 overlaps must obey:

[E. G., D. J. Brod. Phys. Rev. A 101, 062110 (2020)]

• We do not yet have such a complete characterization for overlaps of N>3 states.

• Some partial results: [by Carlos Fernandes]

Im(Δ123)

Re(Δ123)

1 − 3𝑟
2

3 + 2𝑟cos(𝜙)=0

Δ123 = 𝑟𝑒𝑖𝜙

𝑟 = Δ12Δ13Δ23

• We know the boundary:

• It grows towards the unit circle as 𝑁 → ∞

• Application in characterization of photonic indistinguishability

• Key to obtaining bounds on invariants: 𝐺 ≥ 0



Higher-order unitary invariants, and applications

• Testing for linear independence

• Witnessing basis-independent imaginarity

• Nonclassicality of Kirkwood-Dirac quasi-probabilities

• Conditions for weak-value anomaly

• Estimating spectra of density matrices

• Out-of-time-ordered correlators (OTOCs)

• Characterization of photonic indistinguishability

• Cycle tests for measuring the scalar spin chirality



Application: testing for linear independence

• Volume of parallelepiped created by a set of vectors is 𝑉 = det(𝐺)

• N states are linearly independent iff det(G)>0

[Brod, Oszmaniec, Galvão, arXiv:2109.10006]

Example with N=3: 

• Possibly useful for dimensionality reduction in machine learning.

∆𝑖𝑗= 𝜓𝑖|𝜓𝑗
2

∆1𝑗𝑘= 𝜓1|𝜓𝑗 𝜓𝑗|𝜓𝑘 𝜓𝑘|𝜓1 = ∆1𝑗∆𝑗𝑘∆𝑘1𝑒
𝜙𝑗𝑘



Application: witnessing basis-independent imaginarity

• Imaginarity: resource provided by complex numbers in quantum theory

• Recent results show imaginarity is necessary for maximal violation of certain Bell 

nonlocality scenarios

[M.-O. Renou et al., Nature 600, 625 (2021); M.-C. Chen et al., Phys. Rev. Lett. 128, 040403 (2022)]

• Cycle test can be used to witness basis-independent imaginarity:

[Brod, Oszmaniec, Galvão, arXiv:2109.10006]

= imaginarity that doesn’t 

“go away” by any choice of 

basis. 

• Rafael Wagner and Felix Ahnefeld (Ulm) are working on a resource theory of basis-

independent imaginarity, towards a resource theory of basis-independent coherence 

(or “set coherence”).



Application: Kirkwood-Dirac quasi-probabilities

See e.g. D. R M Arvidsson-Shukur et al., J. 

Phys. A: Math. Theor. 54 284001 (2021).

• The Kirkwood-Dirac (KD) quasi-probability distribution represents a d-dimensional 

quantum state  - it is normalized but can take negative or complex values.

• By definition, the value at each phase-space point is a 3rd-order Bargmann invariant of 

𝜌 + one basis state from each of two bases a and f:

𝜌

a f
• Cycle test circuits directly measure the KD distribution, with no need for previously 

proposed weak measurement schemes.

R. Wagner et al., arXiv:2302.00705[quant-ph]



Application: Kirkwood-Dirac quasi-probabilities

• Results on nonclassicality of KD distribution: 𝜌

a f

• New observations on non-classicality of value of a single KD phase space point:

R. Wagner et al., arXiv:2302.00705[quant-ph]

• Nonclassicality may arise out of positive third-order 

invariants, as in the this example with Δ123 =
3

8
∶

• Examples show that only overlaps cannot always decide whether Δ123 is a) real 

or complex; b) positive or negative.

• Using additional assumptions, it’s possible to decide negativity/positivity using 

overlaps only, e.g. when Δ123 is both real-valued, and corresponds to one-qubit 

states.

60o60o



Application: conditions for weak value anomaly

• Weak values of an observable A are measurable quantities associated with:

• Preparation of a pre-selected state  |𝜙 ;

• “Small” unitary evolution generated by A: U=exp(iAt);

• Projective measurement onto post-selected state  |𝜓 ;

• Weak measurement schemes allow estimate of the weak value 

𝐴𝑤 =
𝜙 𝐴 𝜓

𝜙 𝜓

From Dressel et al., Rev. Mod. 

Phys. 86, 307 (2014)

• Anomalous weak values Aw are those outside of the range of A –

useful in metrology.

[See J. Dressel et al., Rev. Mod. Phys. 86, 307 (2014)]

R. Wagner et al., arXiv:2302.00705[quant-ph]



• Weak values of an observable A:

• Weak values are unitary-invariant quantities among pre and post-selected states and eigenvectors 

of A – measurable using cycle circuits

anomalous quasi-probabilities are necessary

for the appearance of anomalous weak values

R. Wagner, E.G., PRA 108, L040202 (2023)

• Weak values of A are an average over eigenvalues ai, 

weighted by normalized quasi-probabilities g:

• We also showed that anomalous quasi-probabilities require coherence of both 𝜌𝜓,𝜌𝜙 in A’s basis.

anomalous weak values require coherence of 

both 𝜌𝜓,𝜌𝜙 in A’s basis

𝐴𝑤 =
𝜙 𝐴 𝜓

𝜙 𝜓

R. Wagner et al., arXiv:2302.00705[quant-ph]

Application: conditions for weak value anomaly



• Out-Of-Time-Ordered Correlators (OTOCs) measure the scrambling of quantum 

information by tracking how expectation values of initially commuting observables 

V,W change under unitary dynamics.

R. Wagner et al., arXiv:2302.00705[quant-ph]

Application: measuring Out-of-Time-Ordered Correlators (OTOCs)

• We noted OTOCs are a function of 5th-order invariants, measurable without the need 

for inverse U, as proposed previously.



• Cycle test circuit with input of n identical 

d-dimensional states 𝜌 estimates 𝑇𝑟(𝜚𝑛)

• Newton’s identities then give us the spectrum of 𝜚
as a function of 𝑇𝑟(𝜚𝑛) for 𝑛 = 1…𝑑

{𝑇𝑟 𝜚2 , 𝑇𝑟 𝜚3 , … , 𝑇𝑟(𝜚𝑑)} Spectrum of 𝜚
Newton’s identities

• Despite numerical instabilities, method works 

well for small d. Error in eigenvalue estimation 

as a function of Gaussian noise 𝜀 in 𝑇𝑟(𝜚𝑛)

R. Wagner et al., arXiv:2302.00705[quant-ph]

Application: estimating spectra of density matrices



Conclusion

• Unitary invariants give a concise description of all the relational information about a set of projectors

• Helpful for unified discussion of various notions of nonclassicality: basis-independent coherence and 

imaginarity, contextuality, nonlocality, negativity of quasi-probabilities, anomalous weak values

• Check out our theory papers:

• E. G., D. J. Brod. Quantum and classical bounds for two-state overlaps. Phys. Rev. A 101, 062110 (2020).

• M. Oszmaniec, D. J. Brod, E. G. Measuring relational information between quantum states, and applications. 

ArXiv:2109.10006 [quant-ph].

• R. Wagner, R. Soares Barbosa, E. G. Inequalities witnessing coherence, nonlocality, and contextuality. 

ArXiv:2209.02670 [quant-ph].

• R. Wagner, Z. Schwartzman-Nowik, I. L. Paiva, A. Te'eni, A. Ruiz-Molero, R. Soares Barbosa, E. Cohen, E.G. 

Quantum circuits measuring weak values and Kirkwood-Dirac quasiprobability distributions, with applications. 

ArXiv:2302.00705 [quant-ph].

• R. Wagner, E.G. Simple proof that anomalous weak values require coherence. PRA 108, L040202 (2023).

• And experiments:
• T. Giordani , C. Esposito, F. Hoch, G. Carvacho, D. J. Brod, E. G., N. Spagnolo , and F. Sciarrino. Witnesses 

of coherence and dimension from multiphoton indistinguishability tests. Phys. Rev. Res. 3, 023031 (2021).

• T. Giordani et al. Experimental certification of contextuality, coherence and dimension in a 

programmable universal photonic processor. Science Advances (in press).

• Funding:
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Thank you for your attention!



Extra slides



Application: characterizing multi-

photon indistinguishability



Application: characterizing multi-photon indistinguishability

• Previously: overlaps for multi-photon indistinguishability tests

Giordani et al., Experimental quantification of genuine four-

photon indistinguishability.  N. J. Phys. 22 043001 (2020)

Brod et al., Witnessing genuine multiphoton 

indistinguishability. Phys. Rev. Lett. 122, 063602 (2019)

• Higher-order invariants can be directly measured using multimode interferometers, e.g. 

3-mode balanced tritters (QFT):

[Menssen et al., PRL 118, 153603 (2017)]

pb
AB =

1+ A B
2

2

[Brod, Oszmaniec, Galvão, arXiv:2109.10006]

HOM tests measure overlap between spectral 

wavefunctions, independently of dimension and 

encoding (polarization,time, colour…)

• Higher-order invariant measurements provide 

lower bounds for multiple two-photon 

overlaps:



Measuring invariants using photonics – CNR/Rome/CNRS approach

• The output probabilities of any interferometer can be written in terms of invariants only 

– so generic interferometers will enable estimation of the invariants

Shchesnovich, Bezerra arXiv:1707.03893 [quant-ph]

• Some designs, however, may enable more accurate estimation. An interesting design 

was recently demonstrated by CNRS/CNR/Rome:
Pont et al, arXiv:2201.13333 [quant-ph]

See also Wu, Sanders, Phys. Rev. Research 

4 (2), 023134 (2022)
• Single photons pre- and post-selected on 

odd modes

• Only two paths to this: either all remain in 

input, or all move in a cycle – exactly the 

superposition of possibilities for the cycle 

test

• Enables measurement of invariants of 

any order, at high postselection cost

See also Wu, Sanders, 

Phys. Rev. Research 4, 

023134 (2022):



Application: “relational tomography”

• Some preliminary results – collaboration with Michal Oszmaniec, Carlos Fernandes 

(INL):

• For Re(Delta_ABC), two BS are sufficient

• |Im(Delta)|^2 can be deduced from that, plus overlaps

• Complete “relational tomography” protocol:

• Use multiple reconfigurable interferometers to determine all overlaps

• Pick spanning tree that most decreases the order of the required higher-order 

invariants

• Use improved interferometer designs to measure those (e.g. the two BS 

construction above, for 3rd order invariants)



Explicit cycle circuits



Cycle test circuits

• The cycle test circuit can have linear 

depth (with local C-SWAPs):

… or log-depth with long-range C-SWAPs:

[Brod, Oszmaniec, Galvão, arXiv:2109.10006]

• Controlled-cycle can be decomposed into 

Fredkin (C-SWAP) gates



Coherence does not imply weak value anomaly

• Here’s a simple counter-example showing that coherence of 𝜌𝜙, 𝜌𝜓 does not guarantee anomalous 

weak values for A.  

Anomalous Aw

Coherence of 𝜌𝜙, 𝜌𝜓

in A’s basis X

R. Wagner, E.G., arXiv:2303.08700


