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This subtheory/fragment is noncontextual

Real 
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representation

There is a 

noncontextual

model for that 

subtheory

Negative/imaginary 

KD  

representations

Inconclusive

There exists some real nonnegative 

(probabilistic) representation 



SUMMARY

KD distributions are 

useful

New KD representations 

beyond states

Negativity/imaginarity of a 

KD is not equivalent to 

contextuality
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Frame

Frame operator

• Frame operators are selfadjoint and invertible

• The inverse of the frame operator defines a way of finding the 

canonical dual frame
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Frame

There is a unique set such that
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Post-selected QFI cannot be 

higher than the optimal QFI 

without post-selection in a 

classical set up [F,A]=0

Whenever this happens it 

must be due to negativity!!
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ROBUSTNESS ISSUE It is often hard to distinguish between scrambling and decoherence
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Average heat flow

The system A receives heat

The system B receives heat
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Not possible because of noncommutativity

The initial energy is not really well define (and measuring it leads to the TPM)
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If we start with the energies


