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Outline

• Simulation techniques

• Qubit-by-qubit sampling

• Gate-by-gate sampling

• Computational performance of simulation techniques

• Efficient simulation of surface code states on MBQC
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Quantum simulation

• In a simulation process, the objective is to replicate with some precision the quantum system to 
gain some insight into the object.

• Simulation techniques have provided significant advances, as they allow physicists to keep 
extending their computations and, therefore, learn more about the physical systems being 
simulated.
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Quantum simulation
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Generally, when the simulation object is quantum computation, the goal is to acquire information 
about the output state  (|𝜓𝑜𝑢𝑡 ).

Strong simulation

• Computes the precise probability associated 
with a measurement outcome.

• Provides more information as the quantum 
computation/experiment. 

Weak simulation

• Samples from the output distribution 

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 .

• Provides the same information as 
measurements to the final quantum state. 
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Quantum simulation

Research in simulation techniques increases the understanding of which elements/parameters make quantum 
computation difficult to simulate on a classical device. 

Entanglement Superposition Contextuality
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(Jozsa, Richard; Linden, 2003)

(Grover, 1998)
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Qubit-by-qubit approach

This weak simulation method is composed of two steps:

• A process computing the probabilities of each qubit based on the previous 

sampling results.

• Sampling process for the state of a qubit based on the computed probability 

distributions.

𝑃(𝑋1)
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Qubit-by-qubit approach

This weak simulation method is composed of two steps:

• A process computing the probabilities of each qubit based on the previous 

sampling results.

• Sampling process for the state of a qubit based on the computed probability 

distributions.

𝑃(𝑋1) 𝑃 𝑋2 𝑥1 𝑃 𝑋3 𝑥2, 𝑥1

…
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Qubit-by-qubit approach
This process delivers each sample based on the correct probability distribution : 

𝑥 𝜓 2, 𝑥 ∈ {0,1}𝑛
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(Bravyi et al., 2021)



Qubit-by-qubit approach
This process delivers each sample based on the correct probability distribution : 

𝑥 𝜓 2, 𝑥 ∈ {0,1}𝑛

However, each of the marginal probabilities can be very computational expensive as the marginalization process has to be 
performed for all remaining variables: 

𝑃 𝑋𝑗 = 
{1,2,…,𝑛}\j

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛)

For some circuits, computing the marginals can be a #P-hard problem in the worst cases.
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Gate-by-gate approach
This approach takes advantage of the quantum circuit that generates the quantum state intended to be measured. 

0
0
0
…
0
0
0
0

𝑈1

𝑥1
𝑥2
𝑥3
…
𝑥𝑛−3
𝑥𝑛−2
𝑥𝑛−1
𝑥𝑛

It computes the probability distribution for the bit-string after each operation and samples a new 
instance for the bit-string, so each step starts from a fixed bit-string. 

t=0 t=1
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…

It computes the probability distribution for the bit-string after each operation and samples a new 
instance for the bit-string, so each step starts from a fixed bit-string. 

𝑈2 𝑈𝑡

t=0 t=1 t=2 t=n
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Gate-by-gate approach
This method was proven to generate a bit-string with by correct probability distribution, obtaining the same results 
as the qubit-by-qubit simulation. 

𝑥 𝜓 2, 𝑥 ∈ {0,1}𝑛
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Gate-by-gate approach
This method was proven to generate a bit-string with by correct probability distribution, obtaining the same results 
as the qubit-by-qubit simulation. 

During the computation of the probability distribution, some small tricks can simplify this process. However, it can 

be necessary to compute𝑚 ∗ 2𝑘 operations to recover the amplitudes . 

𝑥 𝜓 2, 𝑥 ∈ {0,1}𝑛

#Gates #Interacting 
qubits
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Gate-by-gate approach
This method was proven to generate a bit-string with by correct probability distribution, obtaining the same results 
as the qubit-by-qubit simulation. 

During the computation of the probability distribution, some small tricks can simplify this process. However, it can 

be necessary to compute𝑚 ∗ 2𝑘 operations to recover the amplitudes . 

𝑥 𝜓 2, 𝑥 ∈ {0,1}𝑛

#Gates #Interacting 
qubits

“In other words we give alternative efficient reductions from weak to strong 
simulation for these families of states” , Bravyi et al., 2021
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(Bravyi et al., 2021)



Gate-by-gate approach (Robustness to error)

The authors have proven that errors do not scale with a multiplications rule! 

The errors from each iteration are proportional to their sum by a small constant, supporting with this some 
imprecision from the computing device. 
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Gate-by-gate approach (Robustness to error)

The authors have proven that errors do not scale with a multiplications rule! 

The errors from each iteration are proportional to their sum by a small constant, supporting with this some 
imprecision from the computing device. 

Important for practical 
implementations!

19



Computation performance
The computational cost of computing the amplitudes, in a strong simulation method, of a 𝑛-qubit circuit of 
depth 𝑑 has a cost parametrized by those values equal to some 𝑓(𝑛, 𝑑).
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Computation performance
The computational cost of computing the amplitudes, in a strong simulation method, of a 𝑛-qubit circuit of 
depth 𝑑 has a cost parametrized by those values equal to some 𝑓(𝑛, 𝑑).

Notice that computing the marginals:

 0𝑛|𝑈∗(  |𝑦  𝑦 ⊗ 𝐼 𝑈  |0𝑛

Does relate to a computational cost with the double of the depth, 𝑓(𝑛, 2𝑑). 21



Computation performance
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Computation performance

Qubit-by-qubit algorithm 𝑓(𝑛, 2𝑑)

Gate-by-gate algorithm 𝑓(𝑛, 𝑑)

By this description of the relation between the parameters of the strong simulation technique 
and each one of the methods, we obtain that:
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Computation performance

𝑓(𝑛, 2𝑑)

𝑓(𝑛, 𝑑)

This creates the intuitive notion that there can be a significant advantage from the gate-by-gate to 
the qubit-by-qubit method related to the difference on the depth parameter 𝑑:

Qubit-by-qubit algorithm 𝑓(𝑛, 2𝑑)

Gate-by-gate algorithm 𝑓(𝑛, 𝑑)

By this description of the relation between the parameters of the strong simulation technique 
and each one of the methods, we obtain that:

*

*Ratio is completely dependent on the strong simulation method.  
24



Computation performance (Schrodinger)
If a Schrodinger simulation technique is used, the amplitudes are stored in memory with a 𝟐𝒏 size 
vector, and a sparse matrix multiplication process updates these vectors. 

𝑐1
𝑐2
⋯
𝑐2𝑛−1
𝑐2𝑛

*

𝑢1,1
𝑢1,1

⋯
𝑢1,2𝑛
𝑢2,2𝑛

⋮ ⋱ ⋮
𝑢2𝑛−1,1
𝑢2𝑛,1

⋯
𝑢2𝑛−1,2𝑛
𝑢2𝑛,2𝑛

=

𝑐1′

𝑐2′
⋯
𝑐2𝑛−1′

𝑐2𝑛′

25



Computation performance (Schrodinger)
If a Schrodinger simulation technique is used, the amplitudes are stored in memory with a 𝟐𝒏 size 
vector, and a sparse matrix multiplication process updates these vectors. 

In those cases, the difference in the depth 𝑑 between the qubit-by-qubit algorithm and gate-by-gate 
algorithm only translates to a difference of constant size on the computational effort. 

𝑓(𝑛, 2𝑑)

𝑓(𝑛, 𝑑)
=
𝑂(𝑛2𝑑2𝑛)

𝑂(𝑛𝑑2𝑛)
≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑐1
𝑐2
⋯
𝑐2𝑛−1
𝑐2𝑛
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=
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Computation performance (Feynman sum-
over-paths)

If a computational method as the Feynman-sum-over-paths method  is used, which has 
polynomial access to a memory resource, then:

• This reduced memory access does increase the computational run-times with an 

exponential relation to the parameter 𝑑.

27
(Malgieri et al., 2014)

*
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Computation performance (Feynman sum-
over-paths)

If a computational method as the Feynman-sum-over-paths method  is used, which has 
polynomial access to a memory resource, then:

• This reduced memory access does increase the computational run-times with an 

exponential relation to the parameter 𝑑.

• Then the distinction between the qubit-by-qubit and the gate-by-gate approach presents 

an exponential difference in the computational workload.

𝑓(𝑛, 2𝑑)

𝑓(𝑛, 𝑑)
=
𝑂(𝑛(4𝑑)𝑛+1)

𝑂(𝑛(2𝑑)𝑛+1)
≈ 2𝑛+1

28
(Malgieri et al., 2014)

*

*



Computation performance (Experimental 
results)

• These results are based on asymptotical growth rates; 
however, in practical examples, these divergences can be 
smaller due to:

• The specific characteristics of the circuits

• Application of efficient heuristics

29



Computation performance (Experimental 
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• These results are based on asymptotical growth rates; 
however, in practical examples, these divergences can be 
smaller due to:

• The specific characteristics of the circuits

• Application of efficient heuristics

• The conducted experiments verified that for various memory 
restrictions the gate-by-gate approach displays an authentic 
advantage!

30

(Bravyi et al., 2021)



Computation performance (Experimental 
results)

• These results are based on asymptotical growth rates; 
however, in practical examples, these divergences can be 
smaller due to:

• The specific characteristics of the circuits

• Application of efficient heuristics

• The conducted experiments verified that for various memory 
restrictions the gate-by-gate approach displays an authentic 
advantage!

The authors used various memory restrictions to test the hypothesis. 

*

* 31
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Applications
Additional to the discussion about the efficiency of the gate-by-gate approach, the authors identified two 
direct simulation tasks for which the approach provides notable advantages.

32



Applications
Additional to the discussion about the efficiency of the gate-by-gate approach, the authors identified two 
direct simulation tasks for which the approach provides notable advantages.

Measurement-based Quantum computing with 
surface code states
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Specific Hamiltonian ground state 
simulations

34

(L, 2007) (Raghunandan et al., 2020)



Applications
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Measurement-based Quantum computing with 
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Specific Hamiltonian ground state 
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MBQC with surface code states

36

Remember that in an MBQC protocol, a sequence of measurements is applied to the resource state, and these 
measurements can depend on previous measurement results.

(Gross et al., 2009)
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Remember that in an MBQC protocol, a sequence of measurements is applied to the resource state, and these 
measurements can depend on previous measurement results.

𝑃𝑡 𝑥 =  𝑥| (𝑈1⊗𝑈2(𝑥1) ⊗⋯⊗𝑈𝑡(𝑥1, … , 𝑥𝑡−1))  |𝜓𝐺
2

Therefore the probability of sampling a certain bit-string relates to the following expression,

(Gross et al., 2009)
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Remember that in an MBQC protocol, a sequence of measurements is applied to the resource state, and these 
measurements can depend on previous measurement results.

𝑃𝑡 𝑥 =  𝑥| (𝑈1⊗𝑈2(𝑥1) ⊗⋯⊗𝑈𝑡(𝑥1, … , 𝑥𝑡−1))  |𝜓𝐺
2

Therefore the probability of sampling a certain bit-string relates to the following expression,

This set of operations is not previously defined, such that the first algorithm presented for the gate-by-gate 
simulation technique does not work. 

(Gross et al., 2009)



MBQC with surface code states (Gate-by-gate)

The gate-by-gate simulation approach can be adjusted for an MBQC protocol to handle the adaptive selection 
process of measurement operators. 

39

The algorithm does not start 
from the 0𝑛 string, but with a 
sample of the resource state.

(Bravyi et al., 2021)
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The algorithm does not start 
from the 0𝑛 string, but with a 
sample of the resource state.

Each measurement operator 
will be simulated sequentially. 

Since the values for the previous measurements are 
permanently fixed, the measurement operators are 
regular (non-adaptive) single-qubit gates.

(Bravyi et al., 2021)
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The algorithm does not start 
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MBQC with surface code states (Gate-by-gate)
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Why has this algorithm fixed the surface code states as the resource state?

𝐴𝑠 = 

𝑒∈𝛿𝑠

𝑍𝑒 𝐵𝑝 =  

𝑒∈𝜕𝑝

𝑋𝑒

2D square lattice surface stateEdges incident to 
vertex 𝑠

Edges of the boundary 
of the plaquette 𝑝 (Bravyi & Raussendorf, 2007)
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Why has this algorithm fixed the surface code states as the resource state?

𝐴𝑠 = 

𝑒∈𝛿𝑠

𝑍𝑒

And not 2D cluster states, which are universal, 

𝐵𝑝 =  

𝑒∈𝜕𝑝

𝑋𝑒

2D square lattice surface stateEdges incident to 
vertex 𝑠

Edges of the boundary 
of the plaquette 𝑝

2D cluster state

𝐾𝑎 = 𝑋𝑎⨂𝑏|(𝑎,𝑏)∈𝐸 𝐶 𝑍𝑏 , ∀𝑎∈ 𝑉(𝐶𝐿)

(Bravyi & Raussendorf, 2007)

(Briegel et al., 2009)
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Why has this algorithm fixed the surface code states as the resource state?

𝐴𝑠 = 

𝑒∈𝛿𝑠

𝑍𝑒

And not 2D cluster states, which are universal, 

𝐵𝑝 =  

𝑒∈𝜕𝑝

𝑋𝑒

2D square lattice surface stateEdges incident to 
vertex 𝑠

Edges of the boundary 
of the plaquette 𝑝

2D cluster state

𝐾𝑎 = 𝑋𝑎⨂𝑏|(𝑎,𝑏)∈𝐸 𝐶 𝑍𝑏 , ∀𝑎∈ 𝑉(𝐶𝐿)

Non-universal 
resource for MBQC

(Bravyi & Raussendorf, 2007)

(Briegel et al., 2009)



MBQC with surface code states (Gate-by-gate)
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The process associated with computing the probability of each sampling process:

𝑃 𝑥𝑖 = Φ 𝜓𝐺
2  , 𝑤𝑖𝑡ℎ |Φ = ⨂𝑗∈𝐸  |𝜙𝑗 Single-qubit states

 , 𝑎𝑛𝑑 |𝜓𝐺 =
1

𝑍(𝐺)
 

𝑥∈ 𝑍(𝐺)

 |𝑥

Cycles in G
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The process associated with computing the probability of each sampling process:

𝑃 𝑥𝑖 = Φ 𝜓𝐺
2  , 𝑤𝑖𝑡ℎ |Φ = ⨂𝑗∈𝐸  |𝜙𝑗 Single-qubit states

 , 𝑎𝑛𝑑 |𝜓𝐺 =
1

𝑍(𝐺)
 

𝑥∈ 𝑍(𝐺)

 |𝑥

Cycles in G

• If the resource state of the type of a surface code state, then it was proven in (Bravyi
& Raussendorf, 2007) that this amplitude could be computed with an equivalent
process to computing the partition function of an Ising model.

(Wald, 2017)
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The process associated with computing the probability of each sampling process:

𝑃 𝑥𝑖 = Φ 𝜓𝐺
2  , 𝑤𝑖𝑡ℎ |Φ = ⨂𝑗∈𝐸  |𝜙𝑗 Single-qubit states

• If the resource state of the type of a surface code state, then it was proven in (Bravyi
& Raussendorf, 2007) that this amplitude could be computed with an equivalent
process to computing the partition function of an Ising model.

• Additional to this equivalence, it was proven that the overlaps of the measurements 
and surface state with planar graphs are instances of these partition functions, which 
are computed in O(n^3) time (Barahona, 1982).

 , 𝑎𝑛𝑑 |𝜓𝐺 =
1

𝑍(𝐺)
 

𝑥∈ 𝑍(𝐺)

 |𝑥

Cycles in G

(Wald, 2017)



MBQC with surface code states (Gate-by-gate)
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𝑂(𝑛)

𝑂(𝑛3)

The computation associated with selecting the measurement operator is limited to be polynomial by 
the MBQC protocol. 

The number of 
faces 𝑓 in the 
graph is smaller 
then 𝑛.

(Bravyi et al., 2021)
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𝑂(𝑛)

𝑂(𝑛3)

The computation associated with selecting the measurement operator is limited to be polynomial by 
the MBQC protocol. 

The number of 
faces 𝑓 in the 
graph is smaller 
then 𝑛.

(Bravyi et al., 2021)



MBQC with surface code states (Gate-by-gate)
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𝑂(𝑛)

𝑂(𝑛3)

Therefore the gate-by-gate technique can simulate any surface code state with a planar graph in 
time 𝑶(𝒕𝒏𝟒)

The computation associated with selecting the measurement operator is limited to be polynomial by 
the MBQC protocol. 

The number of 
faces 𝑓 in the 
graph is smaller 
then 𝑛.

(Bravyi et al., 2021)



MBQC with surface code states (Qubit-by-qubit)
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For the qubit-by qubit technique, the probabilities of each qubit are associated with: 

 Φ|𝜌𝑀  |Φ
2

, 𝑎𝑛𝑑 𝜌𝑀= 𝑇𝑟𝑗∉𝑀  |𝜓𝐺  𝜓𝐺|

 , 𝑤𝑖𝑡ℎ |Φ = ⨂𝑗∈𝑀  |𝜙𝑗

Subset of qubits 
to be measured
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For the qubit-by qubit technique, the probabilities of each qubit are associated with: 

 Φ|𝜌𝑀  |Φ
2

, 𝑎𝑛𝑑 𝜌𝑀= 𝑇𝑟𝑗∉𝑀  |𝜓𝐺  𝜓𝐺|

If the set of edges 𝑀, of the graph associated with the resource state  |𝜓𝐺 , are connected, and 𝐸/𝑀 is 
connected. Then this probability can be computed in 𝑂(𝑛3) time (Bravyi & Raussendorf, 2007). 

 , 𝑤𝑖𝑡ℎ |Φ = ⨂𝑗∈𝑀  |𝜙𝑗

Subset of qubits 
to be measured

Complete set of edges
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For the qubit-by qubit technique, the probabilities of each qubit are associated with: 

 Φ|𝜌𝑀  |Φ
2

, 𝑎𝑛𝑑 𝜌𝑀= 𝑇𝑟𝑗∉𝑀  |𝜓𝐺  𝜓𝐺|

If the set of edges 𝑀, of the graph associated with the resource state  |𝜓𝐺 , are connected, and 𝐸/𝑀 is 
connected. Then this probability can be computed in 𝑂(𝑛3) time (Bravyi & Raussendorf, 2007). 

 , 𝑤𝑖𝑡ℎ |Φ = ⨂𝑗∈𝑀  |𝜙𝑗

Subset of qubits 
to be measured

Example:

−𝑀

−𝐸/𝑀

This edge division represents an 
efficiently computable overlap

Complete set of edges
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Although some measurement patterns are efficient to simulate in the qubit-by-qubit approach, it was 
proven in (Bravyi et al., 2021) that there are some instances that computing   Φ|𝜌𝑀  |Φ

2 can be #𝑃-
ℎ𝑎𝑟𝑑.
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Although some measurement patterns are efficient to simulate in the qubit-by-qubit approach, it was 
proven in (Bravyi et al., 2021) that there are some instances that computing   Φ|𝜌𝑀  |Φ

2 can be #𝑃-
ℎ𝑎𝑟𝑑.

First, the authors reference a previous work proving that  counting perfect matchings in a 3-regular 
graph is #𝑃-ℎ𝑎𝑟𝑑

Wolfram MathWorld

𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑠
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Although some measurement patterns are efficient to simulate in the qubit-by-qubit approach, it was 
proven in (Bravyi et al., 2021) that there are some instances that computing   Φ|𝜌𝑀  |Φ

2 can be #𝑃-
ℎ𝑎𝑟𝑑.

First, the authors reference a previous work proving that  counting perfect matchings in a 3-regular 
graph is #𝑃-ℎ𝑎𝑟𝑑

Wolfram MathWorld (Heggernes & Telle, 2001)

3-𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑔𝑟𝑎𝑝ℎ𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑠
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Then they prove that there is polynomial time algorithm that translates some 3-regular graph to a 
possible  Φ|𝜌𝑀  |Φ

2 instance. 

(Bravyi et al., 2021)



MBQC with surface code states (Qubit-by-qubit)

60

Then they prove that there is polynomial time algorithm that translates some 3-regular graph to a 
possible  Φ|𝜌𝑀  |Φ

2 instance. 

(Bravyi et al., 2021)

This implies that those instances are at least as difficult as the graph problem.  

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔  Φ|𝜌𝑀  |Φ
2 𝑐𝑎𝑛 𝑏𝑒 #𝑃-ℎ𝑎𝑟𝑑
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Resource/Measurements Gate-by-gate Qubit-by-qubit

Surface code state with 
measurement restrictions

𝑂(𝑡𝑛4) 𝑂(𝑡𝑛4) ***

**

*

(Bravyi & Raussendorf, 2007)

(Bravyi et al., 2021)
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Resource/Measurements Gate-by-gate Qubit-by-qubit

Surface code state with 
measurement restrictions

𝑂(𝑡𝑛4) 𝑂(𝑡𝑛4)

Surface code state 𝑂(𝑡𝑛4) #P-hard

***

* *

**

*

(Bravyi & Raussendorf, 2007)

(Bravyi et al., 2021)
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Resource/Measurements Gate-by-gate Qubit-by-qubit

Surface code state with 
measurement restrictions

𝑂(𝑡𝑛4) 𝑂(𝑡𝑛4)

Surface code state 𝑂(𝑡𝑛4) #P-hard

2D cluster states #P-hard #P-hard

***

* *

**

*

(Bravyi & Raussendorf, 2007)

(Bravyi et al., 2021)
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state intended to be measured.
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• The Gate-by-gate approach takes advantage of the quantum circuit creating the quantum 
state intended to be measured.

• This approach can be exponentially more efficient in memory restricted simulation 
processes.

• Applied to the MBQC protocol, it can simulate in polynomial time any algorithm that uses 
as a resource a surface code state with a planar graph. 

• The same technique can simulate efficiently specific ground states of Hamiltonians. 



References I

Barahona, F. (1982). On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 
15(10), 3241–3253. https://doi.org/10.1088/0305-4470/15/10/028

Bermejo-Vega, J., Delfosse, N., Browne, D. E., Okay, C., & Raussendorf, R. (2017). Contextuality as a Resource for Models of Quantum 
Computation with Qubits. \prl, 119(12), 120505. https://doi.org/10.1103/PhysRevLett.119.120505

Bravyi, S., Gosset, D., & Liu, Y. (2021). How to simulate quantum measurement without computing marginals. ArXiv E-Prints, 
arXiv:2112.08499.

Bravyi, S., & Raussendorf, R. (2007). Measurement-based quantum computation with the toric code states. Pra, 76(2), 22304. 
https://doi.org/10.1103/PhysRevA.76.022304

Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R., & Van den Nest, M. (2009). Measurement-based quantum computation. Nature 
Physics, 5(1), 19–26. https://doi.org/10.1038/nphys1157

Gross, D., Flammia, S. T., & Eisert, J. (2009). Most Quantum States Are Too Entangled To Be Useful As Computational Resources. Phys. 
Rev. Lett., 102(19), 190501. https://doi.org/10.1103/PhysRevLett.102.190501

68

https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1103/PhysRevLett.119.120505
https://doi.org/10.1103/PhysRevA.76.022304
https://doi.org/10.1038/nphys1157
https://doi.org/10.1103/PhysRevLett.102.190501


References II

Grover, L. K. (1998). The advantages of superposition. Science, 280, 228. 
https://link.gale.com/apps/doc/A20520603/AONE?u=anon~b09b35ea&sid=googleScholar&xid=8bbec3a9

Jozsa, Richard; Linden, N. (2003). On the role of entanglement in quantum-computational speed-up. Proc.R.Soc.Lond.A., 459.

L, Ob. J. (2007). Optical Quantum Computing. Science, 318(5856), 1567–1570. https://doi.org/10.1126/science.1142892

Malgieri, M., Onorato, P., & Ambrosis, A. De. (2014). Teaching quantum physics by the sum over paths approach and {GeoGebra} 
simulations. European Journal of Physics, 35(5), 55024. https://doi.org/10.1088/0143-0807/35/5/055024

Raghunandan, M., Wolf, F., Ospelkaus, C., Schmidt, P. O., & Weimer, H. (2020). Initialization of quantum simulators by sympathetic 
cooling. Science Advances, 6(10), eaaw9268. https://doi.org/10.1126/sciadv.aaw9268

van den Nest, M., Miyake, A., Dür, W., & Briegel, H. J. (2006). Universal Resources for Measurement-Based Quantum Computation. \prl, 
97(15), 150504. https://doi.org/10.1103/PhysRevLett.97.150504

Wald, S. (2017). Thermalisation and Relaxation of Quantum Systems. https://doi.org/10.13140/RG.2.2.25169.63842

69

https://link.gale.com/apps/doc/A20520603/AONE?u=anon~b09b35ea&sid=googleScholar&xid=8bbec3a9
https://doi.org/10.1126/science.1142892
https://doi.org/10.1088/0143-0807/35/5/055024
https://doi.org/10.1126/sciadv.aaw9268
https://doi.org/10.1103/PhysRevLett.97.150504
https://doi.org/10.13140/RG.2.2.25169.63842

