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Introduction

Building large-scale quantum computers motivates the fields of
quantum error correction and fault-tolerance.

Stabiliser codes are built up from Pauli gates.
Clifford gates can be performed fault-tolerantly.

Clifford hierarchy gates can be performed fault-tolerantly via the gate
teleportation protocol. This requires ancillary magic state resources.

Magic state distillation is more efficient in the higher-dimensional
qudit setting.
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Question 1: What are the gates of the Clifford hierarchy?

Question 2: Which Clifford hierarchy gates can be efficiently
implemented?




2. Background & overview
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Stabiliser formalism: Pauli gates

The Pauli gates X, Z are defined for any prime dimension d:

Z\|z) = w?|2) X|z)y=1|z+1).

where w = €?™/9 and z € Zg.

100 0 00 1
0w 0 o 10 0
. _ 0 1 0
0 0 : :

a1 :
0 0 w 0 0 0

These matrices satisfy ZX = wXZ.
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Stabiliser formalism: Clifford gates & the Clifford hierarchy

The Pauli group generated by X, Z is denoted Cy. For an n-particle,
the Pauli group C{ is generated by the basic Paulis X;, Z;.

The Clifford group: Co = {U | UC1U* C C1}.

The Clifford hierarchy is defined inductively:
Ckx = {U | uciU* c Ck,1}.

The levels are nested: C1 C Co C C3 C ...

Third-level qubit gates include: the Toffoli gate, the T-gate v/P, and
the controlled-phase gate CP.

Gates U in the Clifford hierarchy as they can be fault-tolerantly
implemented via gate teleportation (Gottesman-Chuang, 1999) to
achieve universality using a magic state.
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Semi-Clifford gates

Semi-Clifford gates are special Clifford hierarchy gates that can be
fault-tolerantly implemented via one-dit gate teleportation using a
magic state of half the size (Zhou-Leung-Chuang, 2000).

Dy = Diagonal gates in Cx.

The semi-Clifford gates are ‘diagonal up to Clifford’:

SCx = CoDyCs.



One-dit teleportation of SC; gates

Suppose G € 8C3,i.e. G= C{DC; for Cy,Co € Co, D € D3

o—HHoH—<+—cHHcoxpc — Gl
) H %l

All gates and measurements are stabiliser operations. Preparing the
magic state can be done fault-tolerantly.




One-dit teleportation

H? |z) = |-2)
CX|z1)|z2) = |z1) |21 + 22)

Arithmetic operations are modulo p.



One-dit teleportation of C;

MAGIC STATE: [M) = G|+)

Glv)
GX*G* € o
This works for any G € C3 that commutes with the CX gate, e.qg.
diagonal G.

A slight modification works for G € SCs.



One-dit teleportation of SC; gates

Suppose G € 8C3,i.e. G= C{DC;, for Cy,Co € Co, D € D3

— Ci [ CiDX*D*Cy" —  Glv)
) H & %

Apply C¢D at the end of the circuit and teleport C |¢).

Straightforwardly parallelised for n-qudit gates.
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Known results: qubit case

The Clifford group C» is well understood (Dehaene-De Moor, 2003).
The Clifford hierarchy has not been completely classified.

For one or two qubit gates, all gates of the Clifford hierarchy are
semi-Clifford (Zeng-Cheng-Chuang, 2008).

Forn> 2,k > 3 or n> 3, not all k-th level gates are semi-Clifford.
(Beigi-Shor and Gottesman-Mochon, 2009)

Clifford hierarchy level

Number of qubits
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Known results: qudit case

Cui-Gottesman-Krishna (2008) gave a complete classification of qudit
diagonal gates of the Clifford hierarchy.

Such gates take the form

D[Wm¢] = Z Wm(’b(%) |12) (2]

2€ez]
where wp, is the primitive d™-th root of unity and ¢ : Z] — Zgn is a
polynomial.

The level of the Clifford hierarchy that such a gate belongs to is
determined by m and the degree of the polynomial.
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A mathematical framework for studying the Clifford hierarchy via the
Stone-von Neumann theorem.

 An algorithm for generating all Clifford hierarchy gates of any
number of qubits or qudits.

» A simple proof of the classification of diagonal gates of the
Clifford hierarchy in the single-qudit case.

A generalisation of the efficient gate teleportation protocol for
qubit semi-Clifford gates to the qudit case.

 An algorithm for recognising and diagonalising semi-Clifford
gates.

* A proof that all third-level gates of one qudit or two qutrits admit
efficient gate teleportation.
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Canonical commutation relations

Recall that ZX = wXZ.
For multiple qudits, [(J;, ;] = 0 when i # j.
These are the finite-dimensional canonical commutation relations.

They are the analogue of the more familiar [P, Q] = i. Or rather, the
exponentiated Weyl form of the CCRs.

The Stone-von Neumann theorem: a foundational result of
quantum theory originally proved to unify the matrix and wave
mechanics pictures of quantum theory.

Roughly: any two representations of the CCRs are unitarily
equivalent.
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An ordered pair of unitaries (U, V) is a conjugate pair if

1. U9 =Tand V9 =1,
2. UV =wVU.

Theorem
There is a unitary G such that U = GZG* and V = GXG* given by:

G|z) = V*|w)
where |uy) = G|0) is an eigenvector of U with eigenvalue 1.

A bijection between unitary gates (up to phase) and conjugate pairs.

Gis a (k + 1)-th level gate < U and V generate k-th level gates.
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An elementary proof: |

Lemma

Suppose U, V € GLy4(C) satisfy UV = wVU. Then the matrices U2V
are traceless for (a, b) € 73\ (0,0).

Proof.
Suppose first that b # 0.

Tr(U2VP) = Tr(U3 ' UVP) = WPTr(UZ " VPU) = wPTr(U2VP)

Since, w? # 1, the above expression vanishes. It similarly vanishes if
a+#0.
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An elementary proof: Il

Lemma

Suppose U, V € My(C) form a conjugate pair. Then the matrices
{U'VI'|i,j € Zq} are orthogonal in My(C) with the Hilbert-Schmidt
inner product (A, B)us = Tr(A*B) and hence form a basis of My(C).

Proof. o
(U'VI, UKV s = Tr(V—/U~"UKV!) vanishes unless i = kand j = |
(mod d).

Since U, V are unitary, their products are nonzero.

An orthogonal set of nonzero matrices is linearly independent.
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An elementary proof: lli

Lemma L
Suppose (U, V) and (U, V) are two conjugate pairs. There is a

unitary Q, unique up to phase, such that (M) = QMQ* maps U to
UandVitoV.

Proof. B B
Define ¢(U) = U and ¢(V) = V; this extends to a unique
s-automorphism on My(C).

The x-automorphisms of simple matrix algebras are in
correspondence with unitaries up to phase (Skolem-Noether, 1927).

O
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An explicit unitary

Theorem
The unitary Q that maps (Z, X) to (U, V) is given by:

Q|z) = V*|w)

where |up) = Q|0) is an eigenvector of U with eigenvalue 1.

Proof.
Apply Q to both sides of the equation |z) = X#|0).
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Discrete Stone-von Neumann theorem (multiple qudits)

Definition . '
A conjugate tuple {(Uy, V1), ..., (Un, Vi) } is a set of n conjugate pairs
such that any two elements of distinct pairs commute.

Theorem
There is a unitary G such that U; = GZ;G* and V = GX;G*.

A bijection between unitary gates (up to phase) and conjugate tuples.
Gis a(k + 1)-th level gate <= U; and V; generate k-th level gates.

Key idea: Study k-th level gates via their conjugate tuples of
(k — 1)-th level gates.
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An algorithm for generating the Clifford hierarchy

Roughly:

Generate the Pauli group (k = 1)

Select the conjugate pairs from this list

Select the conjugate tuples

Select the conjugate tuples that generate k-level gates*

ok~ 0Dbp =

Generate the level k + 1 gates using the Stone-von Neumann
theorem

6. Go to step 2

20



A short proof of the CGK classification of D,

Dlom’] = 3 wm®® |2) (2]

ZE€Zqg

where wp, is the primitive d™-th root of unity and ¢ : Zy — Zgm is a
polynomial.

The level of the Clifford hierarchy that such a gate belongs to is
determined by m and the degree of the polynomial.

21
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Recognising and diagonalising semi-Clifford gates

Definition .
A Lagrangian semibasis is a linearly independent set of n vectors

{(B1, @) }iern C 25" satistying [(pi, &), (B}, G)] = O.
< ZPi X% generate a maximal abelian subgroup of the Pauli group.

Theorem
Suppose G € C/ and denote its conjugate tuple by

U =GZG*", V= GXG".

G is semi-Clifford if and only if there exists a Lagrangian semibasis
{(B1,G1)Yicin € 72" such that, for each i € [n], UP' V3 is a Pauli gate.

22
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Applications of the semi-Clifford criterion

Theorem
Every third-level gate of one qudit (of any prime dimension) is
semi-Clifford: SC} = CJ.

Theorem
Every third-level gate of two quitrits is semi-Clifford.

23
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Gates of the k + 11 level of the Clifford hierarchy, up to phase, are in

bijective correspondence with conjugate tuples of k''-level gates.

Conjecture
Every k'"-level gate of one or two qudits (of any prime dimension) is

semi-Clifford.

» A complete analytic classification of the Clifford hierarchy and
semi-Clifford gates

+ Usefulness for optimising circuit and gate synthesis?

24
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