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1. Introduction



Introduction

Building large-scale quantum computers motivates the fields of
quantum error correction and fault-tolerance.

Stabiliser codes are built up from Pauli gates.

Clifford gates can be performed fault-tolerantly.

Clifford hierarchy gates can be performed fault-tolerantly via the gate
teleportation protocol. This requires ancillary magic state resources.

Magic state distillation is more efficient in the higher-dimensional
qudit setting.
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Natural questions

Question 1: What are the gates of the Clifford hierarchy?

Question 2: Which Clifford hierarchy gates can be efficiently
implemented?
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2. Background & overview



Stabiliser formalism: Pauli gates

The Pauli gates X ,Z are defined for any prime dimension d :

Z |z⟩ = ωz |z⟩ X |z⟩ = |z + 1⟩ .

where ω = e2πi/d and z ∈ Zd .


1 0 0 0
0 ω 0 0

0 0
. . .

...
0 0 . . . ωd−1




0 0 . . . 1
1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 0


These matrices satisfy ZX = ωXZ .
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Stabiliser formalism: Clifford gates & the Clifford hierarchy

The Pauli group generated by X ,Z is denoted C1.

For an n-particle,
the Pauli group Cn

1 is generated by the basic Paulis Xi ,Zi .

The Clifford group: C2 = {U | UC1U∗ ⊂ C1}.

The Clifford hierarchy is defined inductively:
Ck = {U | UC1U∗ ⊂ Ck−1}.

The levels are nested: C1 ⊂ C2 ⊂ C3 ⊂ ...

Third-level qubit gates include: the Toffoli gate, the T-gate
√

P, and
the controlled-phase gate CP.

Gates U in the Clifford hierarchy as they can be fault-tolerantly
implemented via gate teleportation (Gottesman-Chuang, 1999) to
achieve universality using a magic state.
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Semi-Clifford gates

Semi-Clifford gates are special Clifford hierarchy gates that can be
fault-tolerantly implemented via one-dit gate teleportation using a
magic state of half the size (Zhou-Leung-Chuang, 2000).

Dk = Diagonal gates in Ck .

The semi-Clifford gates are ‘diagonal up to Clifford’:

SCk = C2DkC2.
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One-dit teleportation of SC3 gates

Suppose G ∈ SC3, i.e. G = C1DC2 for C1,C2 ∈ C2, D ∈ D3

|0⟩ G |ψ⟩

|ψ⟩

H D C1 C1DX ∗D∗C1
∗

C2 H2

MAGIC STATE: |M⟩ = D |+⟩

All gates and measurements are stabiliser operations. Preparing the
magic state can be done fault-tolerantly.
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One-dit teleportation

|0⟩ |ψ⟩

|ψ⟩

H X ∗

H2

H2 |z⟩ = |−z⟩

CX |z1⟩ |z2⟩ = |z1⟩ |z1 + z2⟩

Arithmetic operations are modulo p.
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One-dit teleportation of C3

|0⟩ G |ψ⟩

|ψ⟩

H G GX ∗G∗

H2

MAGIC STATE: |M⟩ = G |+⟩

GX ∗G∗ ∈ C2

This works for any G ∈ C3 that commutes with the CX gate, e.g.
diagonal G.

A slight modification works for G ∈ SC3.
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One-dit teleportation of SC3 gates

Suppose G ∈ SC3, i.e. G = C1DC2 for C1,C2 ∈ C2, D ∈ D3

|0⟩ G |ψ⟩

|ψ⟩

H D C1 C1DX ∗D∗C1
∗

C2 H2

MAGIC STATE: |M⟩ = D |+⟩

Apply C1D at the end of the circuit and teleport C2 |ψ⟩.

Straightforwardly parallelised for n-qudit gates.
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Known results: qubit case

The Clifford group C2 is well understood (Dehaene-De Moor, 2003).

The Clifford hierarchy has not been completely classified.

For one or two qubit gates, all gates of the Clifford hierarchy are
semi-Clifford (Zeng-Cheng-Chuang, 2008).

For n > 2, k > 3 or n > 3, not all k -th level gates are semi-Clifford.
(Beigi-Shor and Gottesman-Mochon, 2009)
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Known results: qudit case

Cui-Gottesman-Krishna (2008) gave a complete classification of qudit
diagonal gates of the Clifford hierarchy.

Such gates take the form

D[ωm
ϕ] =

∑
ẑ ∈Zn

d

ωm
ϕ(ẑ) |ẑ⟩ ⟨ẑ|

where ωm is the primitive dm-th root of unity and ϕ : Zn
d → Zdm is a

polynomial.

The level of the Clifford hierarchy that such a gate belongs to is
determined by m and the degree of the polynomial.
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New results

A mathematical framework for studying the Clifford hierarchy via the
Stone-von Neumann theorem.

• An algorithm for generating all Clifford hierarchy gates of any
number of qubits or qudits.

• A simple proof of the classification of diagonal gates of the
Clifford hierarchy in the single-qudit case.

• A generalisation of the efficient gate teleportation protocol for
qubit semi-Clifford gates to the qudit case.

• An algorithm for recognising and diagonalising semi-Clifford
gates.

• A proof that all third-level gates of one qudit or two qutrits admit
efficient gate teleportation.
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Methods



Canonical commutation relations

Recall that ZX = ωXZ .

For multiple qudits, [□i ,□j ] = 0 when i ̸= j .

These are the finite-dimensional canonical commutation relations.

They are the analogue of the more familiar [P,Q] = i. Or rather, the
exponentiated Weyl form of the CCRs.

The Stone-von Neumann theorem: a foundational result of
quantum theory originally proved to unify the matrix and wave
mechanics pictures of quantum theory.

Roughly: any two representations of the CCRs are unitarily
equivalent.
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Discrete Stone-von Neumann theorem (one qudit)

Definition
An ordered pair of unitaries (U,V ) is a conjugate pair if

1. Ud = I and V d = I,
2. UV = ωVU.

Theorem
There is a unitary G such that U = GZG∗ and V = GXG∗ given by:

G |z⟩ = V z |u0⟩

where |u0⟩ = G |0⟩ is an eigenvector of U with eigenvalue 1.

A bijection between unitary gates (up to phase) and conjugate pairs.

G is a (k + 1)-th level gate ⇐⇒ U and V generate k -th level gates.
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An elementary proof: I

Lemma

Suppose U,V ∈ GLd (C) satisfy UV = ωVU. Then the matrices UaV b

are traceless for (a,b) ∈ Z2
d \ (0,0).

Proof.
Suppose first that b ̸= 0.

Tr(UaV b) = Tr(Ua−1UV b) = ωbTr(Ua−1V bU) = ωbTr(UaV b)

Since, ωb ̸= 1, the above expression vanishes. It similarly vanishes if
a ̸= 0.

□

15
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An elementary proof: II

Lemma

Suppose U,V ∈ Md (C) form a conjugate pair. Then the matrices
{U iV j | i , j ∈ Zd} are orthogonal in Md (C) with the Hilbert-Schmidt
inner product ⟨A,B⟩HS = Tr(A∗B) and hence form a basis of Md (C).

Proof.
⟨U iV j ,Uk V l⟩HS = Tr(V−jU−iUk V l) vanishes unless i ≡ k and j ≡ l
(mod d).

Since U, V are unitary, their products are nonzero.

An orthogonal set of nonzero matrices is linearly independent.

□
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An elementary proof: III

Lemma
Suppose (U,V ) and (Ũ, Ṽ ) are two conjugate pairs. There is a
unitary Q, unique up to phase, such that ϕQ(M) = QMQ∗ maps U to
Ũ and V to Ṽ .

Proof.
Define ϕ(U) = Ũ and ϕ(V ) = Ṽ ; this extends to a unique
∗-automorphism on Md (C).

The ∗-automorphisms of simple matrix algebras are in
correspondence with unitaries up to phase (Skolem-Noether, 1927).

□
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An explicit unitary

Theorem
The unitary Q that maps (Z ,X ) to (U,V ) is given by:

Q |z⟩ = V z |u0⟩

where |u0⟩ = Q |0⟩ is an eigenvector of U with eigenvalue 1.

Proof.
Apply Q to both sides of the equation |z⟩ = X z |0⟩.

□
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Discrete Stone-von Neumann theorem (multiple qudits)

Definition
A conjugate tuple {(U1,V1), ..., (Un,Vn)} is a set of n conjugate pairs
such that any two elements of distinct pairs commute.

Theorem
There is a unitary G such that Ui = GZiG∗ and V = GXiG∗.

A bijection between unitary gates (up to phase) and conjugate tuples.

G is a (k + 1)-th level gate ⇐⇒ Ui and Vi generate k -th level gates.

Key idea: Study k -th level gates via their conjugate tuples of
(k − 1)-th level gates.
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Results



An algorithm for generating the Clifford hierarchy

Roughly:

1. Generate the Pauli group (k = 1)

2. Select the conjugate pairs from this list

3. Select the conjugate tuples

4. Select the conjugate tuples that generate k -level gates*

5. Generate the level k + 1 gates using the Stone-von Neumann
theorem

6. Go to step 2
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A short proof of the CGK classification of Dk

D[ωm
ϕ] =

∑
z ∈Zd

ωm
ϕ(z) |z⟩ ⟨z|

where ωm is the primitive dm-th root of unity and ϕ : Zd → Zdm is a
polynomial.

The level of the Clifford hierarchy that such a gate belongs to is
determined by m and the degree of the polynomial.
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Recognising and diagonalising semi-Clifford gates

Definition
A Lagrangian semibasis is a linearly independent set of n vectors
{(p̂i , q̂i)}i∈[n] ⊆ Z2n

d satisfying [(p̂i , q̂i), (p̂j , q̂j)] = 0.

⇐⇒ Z p̂i X q̂i generate a maximal abelian subgroup of the Pauli group.

Theorem
Suppose G ∈ Cn

k and denote its conjugate tuple by
Ui = GZiG∗,Vi = GXiG∗.

G is semi-Clifford if and only if there exists a Lagrangian semibasis
{(p̂i , q̂i)}i∈[n] ⊆ Z2n

d such that, for each i ∈ [n], U p̂i V q̂i is a Pauli gate.
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Applications of the semi-Clifford criterion

Theorem
Every third-level gate of one qudit (of any prime dimension) is
semi-Clifford: SC1

3 = C1
3 .

Theorem
Every third-level gate of two qutrits is semi-Clifford.
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Discussion



Open questions & future directions

Conjecture
Gates of the k + 1th level of the Clifford hierarchy, up to phase, are in
bijective correspondence with conjugate tuples of k th-level gates.

Conjecture
Every k th-level gate of one or two qudits (of any prime dimension) is
semi-Clifford.

• A complete analytic classification of the Clifford hierarchy and
semi-Clifford gates

• Usefulness for optimising circuit and gate synthesis?
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