Efficient gate teleportation in higher dimensions

Nadish de Silva

November 23, 2022

1. Introduction

Stabiliser codes are built up from Pauli gates.

Stabiliser codes are built up from Pauli gates.

Clifford gates can be performed fault-tolerantly.

Stabiliser codes are built up from Pauli gates.

Clifford gates can be performed fault-tolerantly.

Clifford hierarchy gates can be performed fault-tolerantly via the *gate teleportation protocol*.

Stabiliser codes are built up from Pauli gates.

Clifford gates can be performed fault-tolerantly.

Clifford hierarchy gates can be performed fault-tolerantly via the *gate teleportation protocol*. This requires ancillary *magic state* resources.

Stabiliser codes are built up from Pauli gates.

Clifford gates can be performed fault-tolerantly.

Clifford hierarchy gates can be performed fault-tolerantly via the *gate teleportation protocol*. This requires ancillary *magic state* resources.

Magic state distillation is more efficient in the higher-dimensional *qudit* setting.

Question 1: What are the gates of the Clifford hierarchy?

Question 1: What are the gates of the Clifford hierarchy?

Question 2: Which Clifford hierarchy gates can be *efficiently* implemented?

2. Background & overview

The Pauli gates X, Z are defined for any prime dimension d:

$$Z |z\rangle = \omega^{z} |z\rangle$$
 $X |z\rangle = |z+1\rangle$.

where $\omega = e^{2\pi i/d}$ and $z \in \mathbb{Z}_d$.

The Pauli gates X, Z are defined for any prime dimension d:

$$Z |z\rangle = \omega^{z} |z\rangle$$
 $X |z\rangle = |z+1\rangle$.

where $\omega = e^{2\pi i/d}$ and $z \in \mathbb{Z}_d$.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \omega & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & \omega^{d-1} \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

• \

These matrices satisfy $ZX = \omega XZ$.

The Pauli group generated by X, Z is denoted C_1 .

The Pauli group generated by X, Z is denoted C_1 . For an *n*-particle, the Pauli group C_1^n is generated by the *basic Paulis* X_i, Z_i .

The Pauli group generated by X, Z is denoted C_1 . For an *n*-particle, the Pauli group C_1^n is generated by the *basic Paulis* X_i, Z_i .

The Clifford group: $C_2 = \{ U \mid UC_1U^* \subset C_1 \}.$

The Pauli group generated by X, Z is denoted C_1 . For an *n*-particle, the Pauli group C_1^n is generated by the *basic Paulis* X_i, Z_i .

The Clifford group: $C_2 = \{ U \mid UC_1U^* \subset C_1 \}.$

The Clifford hierarchy is defined inductively: $C_k = \{ U \mid UC_1U^* \subset C_{k-1} \}.$

The Pauli group generated by X, Z is denoted C_1 . For an *n*-particle, the Pauli group C_1^n is generated by the *basic Paulis* X_i, Z_i .

The Clifford group: $C_2 = \{ U \mid UC_1U^* \subset C_1 \}.$

The Clifford hierarchy is defined inductively: $C_k = \{U \mid UC_1U^* \subset C_{k-1}\}.$

The levels are nested: $\mathcal{C}_1 \subset \mathcal{C}_2 \subset \mathcal{C}_3 \subset ...$

The Pauli group generated by X, Z is denoted C_1 . For an *n*-particle, the Pauli group C_1^n is generated by the *basic Paulis* X_i, Z_i .

The Clifford group: $C_2 = \{ U \mid UC_1U^* \subset C_1 \}.$

The Clifford hierarchy is defined inductively: $C_k = \{U \mid UC_1U^* \subset C_{k-1}\}.$

The levels are nested: $\mathcal{C}_1 \subset \mathcal{C}_2 \subset \mathcal{C}_3 \subset ...$

Third-level qubit gates include: the Toffoli gate, the T-gate \sqrt{P} , and the controlled-phase gate *CP*.

The Pauli group generated by X, Z is denoted C_1 . For an *n*-particle, the Pauli group C_1^n is generated by the *basic Paulis* X_i, Z_i .

The Clifford group: $C_2 = \{ U \mid UC_1U^* \subset C_1 \}.$

The Clifford hierarchy is defined inductively: $C_k = \{U \mid UC_1U^* \subset C_{k-1}\}.$

The levels are nested: $\mathcal{C}_1 \subset \mathcal{C}_2 \subset \mathcal{C}_3 \subset ...$

Third-level qubit gates include: the Toffoli gate, the T-gate \sqrt{P} , and the controlled-phase gate *CP*.

Gates U in the Clifford hierarchy as they can be fault-tolerantly implemented via gate teleportation (Gottesman-Chuang, 1999) to achieve universality using a magic state.

Semi-Clifford gates are special Clifford hierarchy gates that can be fault-tolerantly implemented via *one-dit* gate teleportation using a magic state of half the size (Zhou-Leung-Chuang, 2000).

 $\mathcal{D}_k = \text{Diagonal gates in } \mathcal{C}_k.$

Semi-Clifford gates are special Clifford hierarchy gates that can be fault-tolerantly implemented via *one-dit* gate teleportation using a magic state of half the size (Zhou-Leung-Chuang, 2000).

 $\mathcal{D}_k = \text{Diagonal gates in } \mathcal{C}_k.$

The semi-Clifford gates are 'diagonal up to Clifford':

 $\mathcal{SC}_k = \mathcal{C}_2 \mathcal{D}_k \mathcal{C}_2.$

Suppose $G \in \mathcal{SC}_3$, i.e. $G = C_1 DC_2$ for $C_1, C_2 \in C_2, D \in D_3$

All gates and measurements are stabiliser operations. Preparing the magic state can be done fault-tolerantly.

 $H^2 \ket{z} = \ket{-z}$

 $CX \ket{z_1} \ket{z_2} = \ket{z_1} \ket{z_1 + z_2}$

Arithmetic operations are modulo p.

One-dit teleportation of C_3

 $GX^*G^* \in \mathcal{C}_2$

This works for any $G \in C_3$ that commutes with the *CX* gate, e.g. diagonal *G*.

A slight modification works for $G \in SC_3$.

Suppose $G \in \mathcal{SC}_3$, i.e. $G = C_1 DC_2$ for $C_1, C_2 \in C_2, D \in D_3$

Apply $C_1 D$ at the end of the circuit and teleport $C_2 |\psi\rangle$. Straightforwardly parallelised for *n*-qudit gates.

The Clifford group C_2 is well understood (Dehaene-De Moor, 2003).

The Clifford group C_2 is well understood (Dehaene-De Moor, 2003).

The Clifford hierarchy has not been completely classified.

The Clifford group C_2 is well understood (Dehaene-De Moor, 2003).

The Clifford hierarchy has not been completely classified.

For one or two qubit gates, all gates of the Clifford hierarchy are semi-Clifford (Zeng-Cheng-Chuang, 2008).

The Clifford group C_2 is well understood (Dehaene-De Moor, 2003).

The Clifford hierarchy has not been completely classified.

For one or two qubit gates, all gates of the Clifford hierarchy are semi-Clifford (Zeng-Cheng-Chuang, 2008).

For n > 2, k > 3 or n > 3, not all k-th level gates are semi-Clifford. (Beigi-Shor and Gottesman-Mochon, 2009)

Cui-Gottesman-Krishna (2008) gave a complete classification of qudit diagonal gates of the Clifford hierarchy.

Cui-Gottesman-Krishna (2008) gave a complete classification of qudit diagonal gates of the Clifford hierarchy.

Such gates take the form

$$D[\omega_m^{\phi}] = \sum_{\hat{z} \in \mathbb{Z}_d^n} \omega_m^{\phi(\hat{z})} \left| \hat{z} \right\rangle \left\langle \hat{z} \right|$$

where ω_m is the primitive d^m -th root of unity and $\phi : \mathbb{Z}_d^n \to \mathbb{Z}_{d^m}$ is a polynomial.

Cui-Gottesman-Krishna (2008) gave a complete classification of qudit diagonal gates of the Clifford hierarchy.

Such gates take the form

$$D[\omega_m^{\phi}] = \sum_{\hat{z} \in \mathbb{Z}_d^n} \omega_m^{\phi(\hat{z})} \left| \hat{z} \right\rangle \left\langle \hat{z} \right|$$

where ω_m is the primitive d^m -th root of unity and $\phi : \mathbb{Z}_d^n \to \mathbb{Z}_{d^m}$ is a polynomial.

The level of the Clifford hierarchy that such a gate belongs to is determined by *m* and the degree of the polynomial.

A mathematical framework for studying the Clifford hierarchy via the Stone-von Neumann theorem.

A mathematical framework for studying the Clifford hierarchy via the Stone-von Neumann theorem.

• An algorithm for generating *all* Clifford hierarchy gates of any number of qubits or qudits.

A mathematical framework for studying the Clifford hierarchy via the Stone-von Neumann theorem.

- An algorithm for generating *all* Clifford hierarchy gates of any number of qubits or qudits.
- A simple proof of the classification of diagonal gates of the Clifford hierarchy in the single-qudit case.
A mathematical framework for studying the Clifford hierarchy via the Stone-von Neumann theorem.

- An algorithm for generating *all* Clifford hierarchy gates of any number of qubits or qudits.
- A simple proof of the classification of diagonal gates of the Clifford hierarchy in the single-qudit case.
- A generalisation of the efficient gate teleportation protocol for qubit semi-Clifford gates to the qudit case.

A mathematical framework for studying the Clifford hierarchy via the Stone-von Neumann theorem.

- An algorithm for generating *all* Clifford hierarchy gates of any number of qubits or qudits.
- A simple proof of the classification of diagonal gates of the Clifford hierarchy in the single-qudit case.
- A generalisation of the efficient gate teleportation protocol for qubit semi-Clifford gates to the qudit case.
- An algorithm for recognising and diagonalising semi-Clifford gates.

A mathematical framework for studying the Clifford hierarchy via the Stone-von Neumann theorem.

- An algorithm for generating *all* Clifford hierarchy gates of any number of qubits or qudits.
- A simple proof of the classification of diagonal gates of the Clifford hierarchy in the single-qudit case.
- A generalisation of the efficient gate teleportation protocol for qubit semi-Clifford gates to the qudit case.
- An algorithm for recognising and diagonalising semi-Clifford gates.
- A proof that all third-level gates of one qudit or two qutrits admit efficient gate teleportation.

Methods

Canonical commutation relations

Recall that $ZX = \omega XZ$.

For multiple qudits, $[\Box_i, \Box_j] = 0$ when $i \neq j$.

For multiple qudits, $[\Box_i, \Box_j] = 0$ when $i \neq j$.

These are the finite-dimensional canonical commutation relations.

For multiple qudits, $[\Box_i, \Box_j] = 0$ when $i \neq j$.

These are the finite-dimensional canonical commutation relations.

They are the analogue of the more familiar [P, Q] = i. Or rather, the exponentiated Weyl form of the CCRs.

For multiple qudits, $[\Box_i, \Box_j] = 0$ when $i \neq j$.

These are the finite-dimensional canonical commutation relations.

They are the analogue of the more familiar [P, Q] = i. Or rather, the exponentiated Weyl form of the CCRs.

The Stone-von Neumann theorem: a foundational result of quantum theory originally proved to unify the matrix and wave mechanics pictures of quantum theory.

For multiple qudits, $[\Box_i, \Box_j] = 0$ when $i \neq j$.

These are the finite-dimensional *canonical commutation relations*.

They are the analogue of the more familiar [P, Q] = i. Or rather, the exponentiated Weyl form of the CCRs.

The Stone-von Neumann theorem: a foundational result of quantum theory originally proved to unify the matrix and wave mechanics pictures of quantum theory.

Roughly: any two representations of the CCRs are unitarily equivalent.

An ordered pair of unitaries (U, V) is a **conjugate pair** if

- 1. $U^d = \mathbb{I}$ and $V^d = \mathbb{I}$,
- 2. $UV = \omega VU$.

An ordered pair of unitaries (U, V) is a conjugate pair if

- 1. $U^d = \mathbb{I}$ and $V^d = \mathbb{I}$, 2. $UV = \omega VU$.
- $2. \ \mathbf{UV} = \mathbf{\omega}\mathbf{VU}$

Theorem

There is a unitary G such that $U = GZG^*$ and $V = GXG^*$ given by:

$$G|z\rangle = V^z |u_0\rangle$$

where $|u_0\rangle = G |0\rangle$ is an eigenvector of U with eigenvalue 1.

An ordered pair of unitaries (U, V) is a conjugate pair if

1. $U^d = \mathbb{I}$ and $V^d = \mathbb{I}$, 2. $UV = \omega VU$.

Theorem

There is a unitary G such that $U = GZG^*$ and $V = GXG^*$ given by:

$$G|z\rangle = V^z |u_0\rangle$$

where $|u_0\rangle = G |0\rangle$ is an eigenvector of U with eigenvalue 1.

A bijection between unitary gates (up to phase) and conjugate pairs.

An ordered pair of unitaries (U, V) is a conjugate pair if

1. $U^d = \mathbb{I}$ and $V^d = \mathbb{I}$, 2. $UV = \omega VU$.

Theorem

There is a unitary G such that $U = GZG^*$ and $V = GXG^*$ given by:

$$G|z\rangle = V^z |u_0\rangle$$

where $|u_0\rangle = G |0\rangle$ is an eigenvector of U with eigenvalue 1.

A bijection between unitary gates (up to phase) and conjugate pairs. G is a (k + 1)-th level gate $\iff U$ and V generate k-th level gates.

Suppose $U, V \in GL_d(\mathbb{C})$ satisfy $UV = \omega VU$. Then the matrices $U^a V^b$ are traceless for $(a, b) \in \mathbb{Z}_d^2 \setminus (0, 0)$.

Suppose $U, V \in GL_d(\mathbb{C})$ satisfy $UV = \omega VU$. Then the matrices $U^a V^b$ are traceless for $(a, b) \in \mathbb{Z}_d^2 \setminus (0, 0)$.

Proof. Suppose first that $b \neq 0$.

$$\operatorname{Tr}(U^{a}V^{b}) = \operatorname{Tr}(U^{a-1}UV^{b}) = \omega^{b}\operatorname{Tr}(U^{a-1}V^{b}U) = \omega^{b}\operatorname{Tr}(U^{a}V^{b})$$

Since, $\omega^b \neq 1$, the above expression vanishes. It similarly vanishes if $a \neq 0$.

Suppose $U, V \in M_d(\mathbb{C})$ form a conjugate pair. Then the matrices $\{U^i V^j \mid i, j \in \mathbb{Z}_d\}$ are orthogonal in $M_d(\mathbb{C})$ with the Hilbert-Schmidt inner product $\langle A, B \rangle_{\text{HS}} = \text{Tr}(A^*B)$ and hence form a basis of $M_d(\mathbb{C})$.

Suppose $U, V \in M_d(\mathbb{C})$ form a conjugate pair. Then the matrices $\{U^i V^j \mid i, j \in \mathbb{Z}_d\}$ are orthogonal in $M_d(\mathbb{C})$ with the Hilbert-Schmidt inner product $\langle A, B \rangle_{\text{HS}} = \text{Tr}(A^*B)$ and hence form a basis of $M_d(\mathbb{C})$.

Proof.

 $\langle U^{i}V^{j}, U^{k}V^{l} \rangle_{\text{HS}} = \text{Tr}(V^{-j}U^{-i}U^{k}V^{l})$ vanishes unless $i \equiv k$ and $j \equiv l$ (mod *d*).

Since U, V are unitary, their products are nonzero.

An orthogonal set of nonzero matrices is linearly independent.

Suppose (U, V) and (\tilde{U}, \tilde{V}) are two conjugate pairs. There is a unitary Q, unique up to phase, such that $\phi_Q(M) = QMQ^*$ maps U to \tilde{U} and V to \tilde{V} .

Suppose (U, V) and (\tilde{U}, \tilde{V}) are two conjugate pairs. There is a unitary Q, unique up to phase, such that $\phi_Q(M) = QMQ^*$ maps U to \tilde{U} and V to \tilde{V} .

Proof.

Define $\phi(U) = \tilde{U}$ and $\phi(V) = \tilde{V}$; this extends to a unique *-automorphism on $M_d(\mathbb{C})$.

The *-automorphisms of simple matrix algebras are in correspondence with unitaries up to phase (Skolem-Noether, 1927).

Theorem The unitary Q that maps (Z, X) to (U, V) is given by:

 $Q\left|z\right\rangle = V^{z}\left|u_{0}\right\rangle$

where $|u_0\rangle = Q |0\rangle$ is an eigenvector of U with eigenvalue 1.

Theorem The unitary Q that maps (Z, X) to (U, V) is given by:

 $Q\left|z\right\rangle = V^{z}\left|u_{0}\right\rangle$

where $|u_0\rangle = Q |0\rangle$ is an eigenvector of U with eigenvalue 1.

Proof. Apply *Q* to both sides of the equation $|z\rangle = X^{z} |0\rangle$.

A conjugate tuple $\{(U_1, V_1), ..., (U_n, V_n)\}$ is a set of n conjugate pairs such that any two elements of distinct pairs commute.

A conjugate tuple $\{(U_1, V_1), ..., (U_n, V_n)\}$ is a set of n conjugate pairs such that any two elements of distinct pairs commute.

Theorem

There is a unitary G such that $U_i = GZ_iG^*$ and $V = GX_iG^*$.

A conjugate tuple $\{(U_1, V_1), ..., (U_n, V_n)\}$ is a set of n conjugate pairs such that any two elements of distinct pairs commute.

Theorem

There is a unitary G such that $U_i = GZ_iG^*$ and $V = GX_iG^*$.

A bijection between unitary gates (up to phase) and conjugate tuples.

A conjugate tuple $\{(U_1, V_1), ..., (U_n, V_n)\}$ is a set of n conjugate pairs such that any two elements of distinct pairs commute.

Theorem

There is a unitary G such that $U_i = GZ_iG^*$ and $V = GX_iG^*$.

A bijection between unitary gates (up to phase) and conjugate tuples.

G is a (k + 1)-th level gate $\iff U_i$ and V_i generate *k*-th level gates.

A conjugate tuple $\{(U_1, V_1), ..., (U_n, V_n)\}$ is a set of n conjugate pairs such that any two elements of distinct pairs commute.

Theorem

There is a unitary G such that $U_i = GZ_iG^*$ and $V = GX_iG^*$.

A bijection between unitary gates (up to phase) and conjugate tuples.

G is a (k + 1)-th level gate $\iff U_i$ and V_i generate *k*-th level gates.

Key idea: Study *k*-th level gates via their conjugate tuples of (k - 1)-th level gates.

Results

1. Generate the Pauli group (k = 1)

- 1. Generate the Pauli group (k = 1)
- 2. Select the conjugate pairs from this list

- 1. Generate the Pauli group (k = 1)
- 2. Select the conjugate pairs from this list
- 3. Select the conjugate tuples

- 1. Generate the Pauli group (k = 1)
- 2. Select the conjugate pairs from this list
- 3. Select the conjugate tuples
- 4. Select the conjugate tuples that generate k-level gates*

- 1. Generate the Pauli group (k = 1)
- 2. Select the conjugate pairs from this list
- 3. Select the conjugate tuples
- 4. Select the conjugate tuples that generate k-level gates*
- 5. Generate the level k + 1 gates using the Stone-von Neumann theorem

- 1. Generate the Pauli group (k = 1)
- 2. Select the conjugate pairs from this list
- 3. Select the conjugate tuples
- 4. Select the conjugate tuples that generate k-level gates*
- 5. Generate the level k + 1 gates using the Stone-von Neumann theorem
- 6. Go to step 2

$$D[\omega_m^{\phi}] = \sum_{z \in \mathbb{Z}_d} \omega_m^{\phi(z)} |z\rangle \langle z|$$

where ω_m is the primitive d^m -th root of unity and $\phi : \mathbb{Z}_d \to \mathbb{Z}_{d^m}$ is a polynomial.

The level of the Clifford hierarchy that such a gate belongs to is determined by *m* and the degree of the polynomial.

A Lagrangian semibasis is a linearly independent set of *n* vectors $\{(\hat{p}_i, \hat{q}_i)\}_{i \in [n]} \subseteq \mathbb{Z}_d^{2n}$ satisfying $[(\hat{p}_i, \hat{q}_i), (\hat{p}_j, \hat{q}_j)] = 0$.

 $\iff Z^{\hat{p}_i} X^{\hat{q}_i}$ generate a maximal abelian subgroup of the Pauli group.
Definition

A Lagrangian semibasis is a linearly independent set of *n* vectors $\{(\hat{p}_i, \hat{q}_i)\}_{i \in [n]} \subseteq \mathbb{Z}_d^{2n}$ satisfying $[(\hat{p}_i, \hat{q}_i), (\hat{p}_j, \hat{q}_j)] = 0$.

 $\iff Z^{\hat{p}_i} X^{\hat{q}_i}$ generate a maximal abelian subgroup of the Pauli group.

Theorem

Suppose $G \in C_k^n$ and denote its conjugate tuple by $U_i = GZ_iG^*, V_i = GX_iG^*.$

G is semi-Clifford if and only if there exists a Lagrangian semibasis $\{(\hat{p}_i, \hat{q}_i)\}_{i \in [n]} \subseteq \mathbb{Z}_d^{2n}$ such that, for each $i \in [n]$, $U^{\hat{p}_i} V^{\hat{q}_i}$ is a Pauli gate.

Theorem Every third-level gate of one qudit (of any prime dimension) is semi-Clifford: $SC_3^1 = C_3^1$. **Theorem** Every third-level gate of one qudit (of any prime dimension) is semi-Clifford: $SC_3^1 = C_3^1$.

Theorem Every third-level gate of two qutrits is semi-Clifford. **Discussion**

Gates of the $k + 1^{th}$ level of the Clifford hierarchy, up to phase, are in bijective correspondence with conjugate tuples of k^{th} -level gates.

Gates of the k + 1th level of the Clifford hierarchy, up to phase, are in bijective correspondence with conjugate tuples of kth-level gates.

Conjecture

Every kth-level gate of one or two qudits (of any prime dimension) is semi-Clifford.

Gates of the $k + 1^{th}$ level of the Clifford hierarchy, up to phase, are in bijective correspondence with conjugate tuples of k^{th} -level gates.

Conjecture

Every kth-level gate of one or two qudits (of any prime dimension) is semi-Clifford.

 A complete analytic classification of the Clifford hierarchy and semi-Clifford gates

Gates of the $k + 1^{th}$ level of the Clifford hierarchy, up to phase, are in bijective correspondence with conjugate tuples of k^{th} -level gates.

Conjecture

Every kth-level gate of one or two qudits (of any prime dimension) is semi-Clifford.

- A complete analytic classification of the Clifford hierarchy and semi-Clifford gates
- Usefulness for optimising circuit and gate synthesis?