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Motivations

Reinforcement Learning - 1980

Deep Learning + Reinforcement Learning = Deep Reinforcement Learning

Dota 2 with Large Scale Deep Reinforcement Learning, 2019

Mastering the game of Go without Human Knowledge, 2017
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Motivations

Learning an accurate model of an environment’s dynamics, and 
then use it to plan

Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model, 2020

● Self-driving cars – AWS deep racer
● Industry automation – Google DeepMind
● Trading and Finance – IBM 

What about 
   Hamiltonian Learning ?
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From Quantum Eigensolvers to Machine 
Learning models



  
6

Variational Quantum Eigensolver

→ Find ground state of Hamiltonian H 

A variational eigenvalue solver on a quantum processor, 2013

Cost-function: Expectation value of Hamiltonian ( energy )

Ansatz

Variational principle: 

linearity
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Ansätze

→No consideration of the target domain – Ry , RyRz 

→ Domain specific knowledge – Unitary Coupled Cluster Single Double UCCSD

Expressibility and entangling capability of parametrised quantum 
circuits for hybrid quantum-classical algorithms, 2019
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Ansätze

→2 qubit universality: two body interactions, and thus entanglement, 
must be considered.

Minimal Universal Two-Qubit CNOT-based Circuits, 2003

→Full entanglement - Highly correlated states

Layer
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Ansätze

Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical 
algorithms, 2019

- More layers / entanglement may reduce expressibility 
- Increase in depth and number of parameters → Optimization more challenging
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Universality

A visual proof that neural networks can compute any 

function, Michael Nielsen The effect of data encoding on the expressive power of 
variational quantum machine learning models, 2020
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VQC as a ML model 

→ State preparation routine
→ Objective function

input

True label
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State preparation model measurementmodel Post - process
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State preparation model measurementmodel Post - process

Circuit-centric quantum classifiers, 2018 

Strongly Entangling Layers
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Quantum Gradients 

Gradient-based optimization:

Single qubit gates → 

Pennylane.ai
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Barren PlateausLoss-function landscape

→ Classic deep networks – Gradient vanish exponentially with number of 
layers 

Barren plateaus in quantum neural network training landscapes, 2018

→ Randomly initialised VQC’s – Gradient vanish exponentially with number 
of qubits

Towards mitigation: 
- structured initial guesses – UCCSD
- pre-training segment by segment
- Local cost-functions

Cost-Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks,2020
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Deep Reinforcement Learning
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PolicyAgent

Environment MDP

RL AGENTS GOAL: find optimal policy        

Introduction to Reinforcement Learning, Sutton and Barto, 2018

MDP: Fully observable (MDP) VS Partially Observable (POMDP)

Solving the MDP for the optimal policy         :

Model-based RL:
The agent knows the dynamics of the environment (P,R)
Dynamic Programming - Value Iteration / Policy Iteration

Model-Free RL:
Unknown dynamics - Resort to Sampling techniques
Exploration-Exploitation dillema
MC Learning , TD-Learning (SARSA, Q-Learning)



  
18

- greedy

Q-Network

Policy Network
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Gradient-based optimisation
Vanilla Policy Gradient

Same score independent of the action
REINFORCE

Rank different actions
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Quantum Variational Reinforcement Learning
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Comparison with State of the art

- First quantum hybrid Policy Network algorithm

- Application to continuous state-space problems
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Problem dependent
Strongly Entangling LayersComputational basis measurements
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OpenAI Cartpole environment

State-Space:
- Position -
- Velocity - 
- Pole angle 
- Pole angular velocity - 

Action-space:
Move left – 0
Move right – 1   

Each time-step receive +1 reward

Goal: score +195 reward for 100 
consecutive episodes

It does not succeed !
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Square one 

- Change entanglement pattern – Linear, ring… 

- Change arbitrary rotation – Ry

- Correlate pole angle/velocity position/velocity ... 

- Measure all qubits 

- Learning rate / optimizer 

- Amplitude Encoding 
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Hybrid approach

Dimensionality reduction by classic NN
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Results

- On average, hybrid nn behaves similarly to the usual 128 hidden-layer 
classic network
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Measuring advantage 
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# of parameters trained
Classic:

I, input: size 4 
H, hidden – layer: 128 neurons 
O, output: size 2

Hybrid:
classic: 

Ic, input: size 4 
Oc, output: size 2

quantum:
I, input: 2
L, layers: 3 
P, parameters per layer: 3 
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Future work & open questions

- Apply Hybrid scheme to different problems

- Full quantum approach ? 

- Measuring capacity of quantum models ?
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