Classical simulation complexity of extended Clifford circuits

Quantum and Linear Optical Computation (QLOC) | Journal Club

F. C. R. Peres | 24th of March 2021

Presentation overview

- 1. Introductory concepts
 - Strong vs. Weak simulation
 - The Pauli group
 - The Clifford group and stabiliser circuits
 - The stabiliser formalism and the Gottesman-Knill theorem

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Presentation overview

- - The extra ingredients
 - The extended classes
 - Theorems and proofs

^[*] R. Jozsa and M. V. den Nest, Quantum Information and Computation **14** (2013), arXiv:1305.6190.

2. Classical simulation complexity of extended Clifford circuit - paper review^[*]

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Strong vs. Weak simulation

computation.

• Weak simulation \rightarrow sample from the output distribution of the circuit.

• Strong simulation \rightarrow calculate the probability of any desired outcome of the

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Strong vs. Weak simulation

computation.

• Weak simulation \rightarrow sample from the output distribution of the circuit.

• Lemma 1: If a given circuit can be efficiently classically simulated in the sense.

• Strong simulation \rightarrow calculate the probability of any desired outcome of the

strong sense, then it can also be efficiently classically simulated in the weak

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Strong vs. Weak simulation

computation.

• Weak simulation \rightarrow sample from the output distribution of the circuit.

• Lemma 1: If a given circuit can be efficiently classically simulated in the sense.

• Strong simulation \rightarrow calculate the probability of any desired outcome of the

strong sense, then it can also be efficiently classically simulated in the weak

The Pauli group

• **Definition 1:** [PAULI GROUP]

with the multiplicative factors ± 1 and $\pm i$.

• Example: $(X \otimes I), (X \otimes X), -i(Y \otimes Z) \in \mathscr{P}_{2}$

The Pauli group on N qubits \mathscr{P}_N is the group whose elements are N-fold tensor products of the single-qubit Pauli operators I, X, Y and Z, together

• Number of elements : 4^{N+1} ; $N = 1 \Rightarrow 16$ elements; $N = 2 \Rightarrow 64$ elements.

Quantum and Linear-Optical Computation (QLOC) Journal Club

Introductory concepts The Pauli group

• \mathscr{P}_N can be completely described by 2N generators:

$$\mathscr{P}_N = \langle X_1, \ldots$$

Example: $X_1 = (X \otimes I \otimes \ldots \otimes I) = (X_{(1)} \otimes I_{(2)} \otimes \ldots \otimes I_{(N)})$.

 $., X_N, Z_1, \ldots, Z_N \rangle$.

• Notation: X_i denotes the operator such that the single-qubit Pauli X acts on the i-th qubit of the system and the identity is applied to all other qubits.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

The Pauli group

• **Example:** \mathscr{P}_2 has 64 elements but only 4 generators:

• **Example:** \mathcal{P}_3 has 256 elements but only 6 generators: $\mathscr{P}_3 = \langle X_1, X_2 \rangle$

7

$\mathscr{P}_{2} = \langle X \otimes I, I \otimes X, Z \otimes I, I \otimes Z \rangle = \langle X_{1}, X_{2}, Z_{1}, Z_{2} \rangle.$

$$X_2, X_3, Z_1, Z_2, Z_3 \rangle$$
.

Introductory concepts The Clifford group and stabiliser circuits

• **Definition 2:** [CLIFFORD GROUP]

An operation is said to be a Clifford unitary C if it maps the Pauli group onto itself under conjugation, that is, if

 $C\mathcal{P}_N C^\dagger = \mathcal{G}$

where $P_i, P_i \in \mathscr{P}_N$.

the Hadamard (H), phase (S) and controlled-NOT (CX) gates.

$$\mathcal{P}_N \Leftrightarrow CP_i C^{\dagger} = P_j,$$

Clifford unitaries form a group known as the Clifford group and generated by

Quantum and Linear-Optical Computation (QLOC) Journal Club

Introductory concepts The Clifford group and stabiliser circuits

- Action of the generators of the Clifford group on the Pauli group generators: $HXH^{\dagger} = Z; HZH^{\dagger} = X;$
 - $SXS^{\dagger} = Y; SZS^{\dagger} = Z;$

 $CX(X \otimes I)CX^{\dagger} = (X \otimes X); CX(I \otimes X)CX^{\dagger} = (I \otimes X);$ $CX(Z \otimes I)CX^{\dagger} = (Z \otimes I); CX(I \otimes Z)CX^{\dagger} = (Z \otimes Z).$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Introductory concepts The Clifford group and stabiliser circuits

- Definition 3: [STABILISER CIRCUIT]
 - A circuit is said to be a stabiliser circuit if the following conditions are met:
 - its inputs are computational basis states; (1)
 - each operation is either a Clifford unitary or a measurement in the (11) computational basis.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

The stabiliser formalism and the Gottesman-Knill theorem

 Definition 4: [STABILISING OPERATION] An operator *S* is said to stabilise $|\psi\rangle$ if: $S[\psi]$

hermitian Pauli operators.

$$\rangle = |\psi\rangle.$$

The stabiliser formalism is a particularly powerful framework for describing stabiliser circuits \rightarrow in this case the stabiliser operators are always

The stabiliser formalism and the Gottesman-Knill theorem

• **Definition 5:** [STABILISER]

known as the stabiliser:

$$\mathcal{S} = \{ P_i : P_i | \psi \rangle = | \psi \rangle \; \forall P_i \in \mathcal{P}_N \} \,.$$

• The stabiliser is uniquely determined by N generators.

12

The set of operators P_i which stabilise an N-qubit state $|\psi\rangle$ form a group

- The stabiliser formalism and the Gottesman-Knill theorem
- **Example:** $|00\rangle$
 - $N = 2 \Rightarrow 2$ generators for the stabiliser: $\mathcal{S} = \langle Z \otimes I, I \otimes Z \rangle$.

• Example: Consider the Bell state

 \mathscr{B}_{0}

$N = 2 \Rightarrow 2$ generators for the stable

13

$$\left| \begin{array}{c} |00\rangle + |11\rangle \\ \sqrt{2} \end{array} \right|$$

oiliser: $\mathcal{S} = \langle X \otimes X, Z \otimes Z \rangle$

The stabiliser formalism and the Gottesman-Knill theorem

Schrödinger's picture of quantum m

- Alternatively, we can use Heisenberg's picture.
- of its stabiliser:

14

nechanics:
$$|\psi\rangle \rightarrow |\psi'\rangle = U |\psi\rangle$$
.

In that case, we can describe the evolution of the state through the evolution

 $\mathcal{S} \to \mathcal{S}' = U \mathcal{S} U^{\dagger}$

The stabiliser formalism and the Gottesman-Knill theorem

The tableau representation

$$\begin{pmatrix} x_{11} & \dots & x_{1N} \\ x_{21} & \dots & x_{2N} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{NN} \end{pmatrix}$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

The stabiliser formalism and the Gottesman-Knill theorem

• Example: Bell state $|00\rangle$ has stabiliser $\mathcal{S} = \langle Z \otimes I, I \otimes Z \rangle$.

•Example: Bell state $|\mathscr{B}_{00}\rangle$ has stabiliser $\mathcal{S} = \langle X \otimes X, Z \otimes Z \rangle$.

(11)

 $\begin{pmatrix} 0 & 0 & | 1 & 0 & | 0 \\ 0 & 0 & | 0 & 1 & | 0 \end{pmatrix}.$

$$\begin{array}{c|cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array}$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

The stabiliser formalism and the Gottesman-Knill theorem

$\begin{pmatrix} 0 & 0 & | 1 & 0 & | 0 \\ 0 & 0 & | 0 & 1 & | 0 \end{pmatrix} \rightarrow$

F. C. R. Peres

17

The stabiliser formalism and the Gottesman-Knill theorem

F. C. R. Peres

17

The stabiliser formalism and the Gottesman-Knill theorem

F. C. R. Peres

17

The stabiliser formalism and the Gottesman-Knill theorem

$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow$

F. C. R. Peres

17

The stabiliser formalism and the Gottesman-Knill theorem

$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

17

The stabiliser formalism and the Gottesman-Knill theorem

$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

17

The stabiliser formalism and the Gottesman-Knill theorem

$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$

17

The stabiliser formalism and the Gottesman-Knill theorem

the state in a stabiliser circuit.

efficiently through the application of the conjugation rules.

This formalism provides us with an <u>efficient</u> way of tracking the evolution of

• At each step, the Pauli operators that generate the stabiliser can be updated

Quantum and Linear-Optical Computation (QLOC) | Journal Club

The stabiliser formalism and the Gottesman-Knill theorem

the state in a stabiliser circuit.

efficiently through the application of the conjugation rules.

Efficient way of simulating stabiliser circuits!

This formalism provides us with an <u>efficient</u> way of tracking the evolution of

• At each step, the Pauli operators that generate the stabiliser can be updated

Quantum and Linear-Optical Computation (QLOC) | Journal Club

The stabiliser formalism and the Gottesman-Knill theorem

the state in a stabiliser circuit.

efficiently through the application of the conjugation rules.

Efficient way of simulating stabiliser circuits!

This formalism provides us with an <u>efficient</u> way of tracking the evolution of

• At each step, the Pauli operators that generate the stabiliser can be updated

Quantum and Linear-Optical Computation (QLOC) | Journal Club

The stabiliser formalism and the Gottesman-Knill theorem

the state in a stabiliser circuit.

efficiently through the application of the conjugation rules.

F. C. R. Peres

This formalism provides us with an <u>efficient</u> way of tracking the evolution of

• At each step, the Pauli operators that generate the stabiliser can be updated

Quantum and Linear-Optical Computation (QLOC) Journal Club

The stabiliser formalism and the Gottesman-Knill theorem

Stabiliser circuits are not universal for quantum computation.

Nevertheless, the Clifford +T set is universal for quantum computation,

 $T = \operatorname{diag}(1, e^{i\pi/4}).$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review

The extra ingredients

3 different binary classes are considered:

- Adaptivity (ADAPT) vs. Non-adaptivity (NON-ADAPT)
- Single output bit (OUT(1)) vs. Many output bits (OUT(MANY))

and weak notions.

Additionally, the classical simulation complexity is considered for both strong

• Stabiliser state inputs (IN(BITS)) vs. More general product states (IN(PROD))

Paper review				
	The extended classes			
	NON-ADAPT			PT
			WEAK	STRONG
-)UT(IN(BITS)		
O		IN(PROD)		
		[
OUT(MANY)			WEAK	STRONG
		IN(BITS)		
		IN(PROD)		

F. C. R. Peres

ADAPT

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

Quantum and Linear-Optical Computation (QLOC) | Journal Club

F. C. R. Peres

GOAL: Determine what is the complexity of classically simulating each of these classes of quantum circuits.

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

Quantum and Linear-Optical Computation (QLOC) | Journal Club

of

Paper review				
The extended classes				
	NON-ADAPT			
			WEAK	STRONG
	IN(BITS)		
	IN(F	PROD)		
OUT(MANY)			WEAK	STRONG
	IN(BITS)		
	IN(F	PROD)		

F. C. R. Peres

ADAPT

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

Let \mathcal{T} be a set of computational tasks defined by non-adaptive Clifford circuits, with computational basis input states and measurements on multiple output qubits. Then, \mathcal{T} can be <u>classically efficiently simulable</u> in the strong sense.

• Input:
$$|\mathbf{x}\rangle = |0\rangle^{\otimes N} = |0^N\rangle$$

- Circuit: C
- Output state: $|\psi\rangle = C |0^N\rangle$
- Desired probability: $p = p(\mathbf{y})$; $\mathbf{y} = 0^M$; $M \le N$

23

Paper review

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

Let \mathcal{T} be a set of computational tasks defined by non-adaptive Clifford circuits, with computational basis input states and measurements on multiple output qubits. Then, \mathcal{T} can be <u>classically efficiently simulable</u> in the strong sense.

• Input:
$$|\mathbf{x}\rangle = |0\rangle^{\otimes N} = |0^N\rangle$$

- Circuit: C
- Output state: $|\psi\rangle = C |0^N\rangle$

• Desired probability: $p = p(\mathbf{y}); \ \mathbf{y} = 0^M; \ M \leq N$

23

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

Let \mathcal{T} be a set of computational tasks defined by non-adaptive Clifford circuits, with computational basis input states and measurements on multiple output qubits. Then, \mathcal{T} can be <u>classically efficiently simulable</u> in the strong sense.

• Input:
$$|\mathbf{x}\rangle = |0\rangle^{\otimes N} = |0^N\rangle$$

- Circuit: C
- Output state: $|\psi\rangle = C |0^N\rangle$

• Desired probability: $p = p(\mathbf{y})$; $\mathbf{y} = 0^M$; $M \le N$

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

 $p = \langle \psi | \left(\left| 0^{M} \right\rangle \left\langle 0^{M} \right| \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} \right) | \psi \rangle$ = $\langle \psi | \left(\frac{I+Z}{2} \right)^{\otimes M} \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} | \psi \rangle$ = $\frac{1}{2^{M}} \langle 0^{N} | C^{\dagger} \left[\left(I_{(1)} + Z_{(1)} \right) \otimes \left(I_{(2)} + Z_{(2)} \right) \otimes \ldots \otimes \left(I_{(M)} + Z_{(M)} \right) \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} \right] C | 0^{N} \rangle$

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

 $p = \langle \psi | \left(\left| 0^{M} \right\rangle \left\langle 0^{M} \right| \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} \right) | \psi \rangle$ = $\langle \psi | \left(\frac{I+Z}{2} \right)^{\otimes M} \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} | \psi \rangle$ = $\frac{1}{2^{M}} \langle 0^{N} | C^{\dagger} | \left(I_{(1)} + Z_{(1)} \right) \otimes \left(I_{(2)} + Z_{(2)} \right) \otimes \ldots \otimes \left(I_{(M)} + Z_{(M)} \right) \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)}] C | 0^{N} \rangle$

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

 $p = \langle \psi | \left(\left| 0^{M} \right\rangle \left\langle 0^{M} \right| \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} \right) | \psi \rangle$ = $\langle \psi | \left(\frac{I+Z}{2} \right)^{\otimes M} \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} | \psi \rangle$ = $\frac{1}{2^{M}} \langle 0^{N} | C^{\dagger} | \left(I_{(1)} + Z_{(1)} \right) \otimes \left(I_{(2)} + Z_{(2)} \right) \otimes \ldots \otimes \left(I_{(M)} + Z_{(M)} \right) \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)}] C | 0^{N} \rangle$

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

 $p = \langle \psi | \left(\left| 0^{M} \right\rangle \langle 0^{M} \right| \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} \right) | \psi \rangle$ = $\langle \psi | \left(\frac{I+Z}{2} \right)^{\otimes M} \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} | \psi \rangle$ = $\frac{1}{2^{M}} \langle 0^{N} | C^{\dagger} \left[\left(I_{(1)} + Z_{(1)} \right) \otimes \left(I_{(2)} + Z_{(2)} \right) \otimes \ldots \otimes \left(I_{(M)} + Z_{(M)} \right) \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} \right] C | 0^{N} \rangle$ $\left(I_{(1)} + Z_{(1)}\right) \otimes \left(I_{(2)} + Z_{(2)}\right) \otimes \ldots \otimes \left(I_{(M)} + Z_{(M)}\right) = \sum_{i=1}^{M} Z(\mathbf{t})$ $\mathbf{t} \in \mathbb{Z}_2^M$

$$p = \frac{1}{2^{M}} \left\langle 0^{N} \right| C^{\dagger} \left[\left(I_{(1)} + Z_{(1)} \right) \otimes \left(I_{(2)} + Z_{(2)} \right) \otimes \ldots \otimes \left(I_{(M)} + Z_{(M)} \right) \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} \right] C \left| 0^{N} \right| \right]$$

 $\left(I_{(1)} + Z_{(1)}\right) \otimes \left(I_{(2)} + Z_{(2)}\right) \otimes$

$$\otimes \ldots \otimes \left(I_{(M)} + Z_{(M)} \right) = \sum_{\mathbf{t} \in \mathbb{Z}_2^M} Z(\mathbf{t})$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$$p = \frac{1}{2^{M}} \left\langle 0^{N} \right| C^{\dagger} \left[\left(I_{(1)} + Z_{(1)} \right) \otimes \left(I_{(2)} + Z_{(2)} \right) \otimes \ldots \otimes \left(I_{(M)} + Z_{(M)} \right) \otimes I_{(M+1)} \otimes \ldots \otimes I_{(N)} \right] C \left| 0^{N} \right| \right]$$

 $(I_{(1)} + Z_{(1)}) \otimes (I_{(2)} + Z_{(2)}) \otimes$

 $Z(\mathbf{t}) \equiv Z_{(1)}^{\iota_1} \otimes$

F. C. R. Peres

$$\otimes \ldots \otimes \left(I_{(M)} + Z_{(M)} \right) = \sum_{\mathbf{t} \in \mathbb{Z}_2^M} Z(\mathbf{t})$$

$$X_{(2)}^{t_2} \otimes \ldots \otimes Z_{(M)}^{t_M}$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$p = \frac{1}{2^M} \sum_{\mathbf{t} \in \mathbb{Z}_2^M} \left\langle 0^N \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^N \right\rangle$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$p = \frac{1}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \rightarrow 2^{M} \text{ terms}$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$p = \frac{\mathbf{I}}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \rightarrow 2^{M} \text{ terms}$

$P(\mathbf{t}) = C^{\dagger} Z(\mathbf{t}) C \Rightarrow P(\mathbf{t})^2 = I$

F. C. R. Peres

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$p = \frac{\mathbf{I}}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \rightarrow 2^{M} \text{ terms}$

$P(\mathbf{t}) = C^{\dagger}Z(\mathbf{t})C \Rightarrow P(\mathbf{t})^2 = I$ $P(\mathbf{t}) = \gamma(\mathbf{t}) \left(X_{(1)}^{a_1(\mathbf{t})} Z_{(1)}^{b_1(\mathbf{t})} \otimes X_{(2)}^{a_2(\mathbf{t})} Z_{(2)}^{b_2(\mathbf{t})} \otimes \dots \otimes X_{(N)}^{a_N(\mathbf{t})} Z_{(N)}^{b_N(\mathbf{t})} \right)$

F. C. R. Peres

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$p = \frac{\mathbf{I}}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \rightarrow 2^{M} \text{ terms}$

$P(\mathbf{t}) = C^{\dagger}Z(\mathbf{t})C \Rightarrow P(\mathbf{t})^2 = I$ $P(\mathbf{t}) = \gamma(\mathbf{t}) \left(X_{(1)}^{a_1(\mathbf{t})} Z_{(1)}^{b_1(\mathbf{t})} \otimes X_{(2)}^{a_2(\mathbf{t})} Z_{(2)}^{b_2(\mathbf{t})} \otimes \dots \otimes X_{(N)}^{a_N(\mathbf{t})} Z_{(N)}^{b_N(\mathbf{t})} \right)$ $= \gamma(\mathbf{t}) X \left(\boldsymbol{a}(\mathbf{t}) \right) Z \left(\boldsymbol{b}(\mathbf{t}) \right)$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$p = \frac{\mathbf{I}}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \rightarrow 2^{M} \text{ terms}$

$P(\mathbf{t}) = C^{\dagger}Z(\mathbf{t})C \Rightarrow P(\mathbf{t})^2 = I$ $P(\mathbf{t}) = \gamma(\mathbf{t}) \left(X_{(1)}^{a_1(\mathbf{t})} Z_{(1)}^{b_1(\mathbf{t})} \otimes X_{(2)}^{a_2(\mathbf{t})} Z_{(2)}^{b_2(\mathbf{t})} \otimes \dots \otimes X_{(N)}^{a_N(\mathbf{t})} Z_{(N)}^{b_N(\mathbf{t})} \right)$ $= \gamma(\mathbf{t}) X \left(\boldsymbol{a}(\mathbf{t}) \right) Z \left(\boldsymbol{b}(\mathbf{t}) \right)$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$p = \frac{\mathbf{I}}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \rightarrow 2^{M} \text{ terms}$

$P(\mathbf{t}) = C^{\dagger}Z(\mathbf{t})C \Rightarrow P(\mathbf{t})^2 = I$ $P(\mathbf{t}) = \gamma(\mathbf{t}) \left(X_{(1)}^{a_1(\mathbf{t})} Z_{(1)}^{b_1(\mathbf{t})} \otimes X_{(2)}^{a_2(\mathbf{t})} Z_{(2)}^{b_2(\mathbf{t})} \otimes \dots \otimes X_{(N)}^{a_N(\mathbf{t})} Z_{(N)}^{b_N(\mathbf{t})} \right)$ $= \gamma(\mathbf{t}) X \left(\boldsymbol{a}(\mathbf{t}) \right) Z \left(\boldsymbol{b}(\mathbf{t}) \right)$

 $\gamma(\mathbf{t}):\mathbb{Z}_2^M\to\{\pm 1,\pm i\}$

F. C. R. Peres

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$p = \frac{\mathbf{I}}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \rightarrow 2^{M} \text{ terms}$

$P(\mathbf{t}) = C^{\dagger}Z(\mathbf{t})C \Rightarrow P(\mathbf{t})^2 = I$ $P(\mathbf{t}) = \gamma(\mathbf{t}) \left(X_{(1)}^{a_1(\mathbf{t})} Z_{(1)}^{b_1(\mathbf{t})} \otimes X_{(2)}^{a_2(\mathbf{t})} Z_{(2)}^{b_2(\mathbf{t})} \otimes \dots \otimes X_{(N)}^{a_N(\mathbf{t})} Z_{(N)}^{b_N(\mathbf{t})} \right)$ $= \gamma(\mathbf{t}) X \left(\boldsymbol{a}(\mathbf{t}) \right) Z \left(\boldsymbol{b}(\mathbf{t}) \right)$

 $a,b:\mathbb{Z}_2^M\to\mathbb{Z}_2^N$ $\gamma(\mathbf{t}): \mathbb{Z}_2^M \to \{\pm 1, \pm i\}$

F. C. R. Peres

Quantum and Linear-Optical Computation (QLOC) Journal Club

$p = \frac{1}{2^M} \sum_{\mathbf{t} \in \mathbb{Z}_2^M} \left\langle 0^N \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^N \right\rangle \longrightarrow 2^M \text{ terms}$

27

$p = \frac{1}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \longrightarrow 2^{M} \text{ terms}$

$= \frac{\mathbf{I}}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \gamma(\mathbf{t}) \left\langle 0^{N} \right| X \left(\mathbf{a}(\mathbf{t}) \right) Z \left(\mathbf{b}(\mathbf{t}) \right) \left| 0^{N} \right\rangle$

27

 $p = \frac{1}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \longrightarrow 2^{M} \text{ terms}$

 $= \frac{1}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \gamma(\mathbf{t}) \left\langle 0^{N} \right| X \left(\boldsymbol{a}(\mathbf{t}) \right) Z \left(\boldsymbol{b}(\mathbf{t}) \right) \left| 0^{N} \right\rangle$

 $Z |0\rangle = |0\rangle; \langle 0| X |0\rangle = 0 \Rightarrow X(a(\mathbf{t})) = I \Rightarrow a(\mathbf{t}) = 0^N$

27

 $p = \frac{1}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \left\langle 0^{N} \right| C^{\dagger} \tilde{Z}(\mathbf{t}) C \left| 0^{N} \right\rangle \longrightarrow 2^{M} \text{ terms}$

 $= \frac{1}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \gamma(\mathbf{t}) \left\langle 0^{N} \right| X \left(\boldsymbol{a}(\mathbf{t}) \right) Z \left(\boldsymbol{b}(\mathbf{t}) \right) \left| 0^{N} \right\rangle$

 $Z |0\rangle = |0\rangle; \langle 0| X |0\rangle = 0 \Rightarrow X(a(\mathbf{t})) = I \Rightarrow a(\mathbf{t}) = 0^N$

27

 $= \frac{1}{2^{M}} \sum_{\mathbf{t} \in \mathbb{Z}_{2}^{M}} \gamma(\mathbf{t}) \left\langle 0^{N} \right| X \left(\boldsymbol{a}(\mathbf{t}) \right) Z \left(\boldsymbol{b}(\mathbf{t}) \right) \left| 0^{N} \right\rangle$

 $Z |0\rangle = |0\rangle; \langle 0| X |0\rangle = 0 \Rightarrow X(a(\mathbf{t})) = I \Rightarrow a(\mathbf{t}) = 0^N$

$$p = \frac{1}{2^M} \sum_{\mathbf{t} \in T_0} \gamma(\mathbf{t}); \ T_0 = \{\mathbf{t} : \mathbf{a}(\mathbf{t}) = 0^N\}$$

F. C. R. Peres

27

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

Recalling that $P(\mathbf{t})^2 = I \Rightarrow \gamma(\mathbf{t}) = \pm 1 \equiv (-1)^{u(\mathbf{t})}$

$p = \frac{1}{2^{M}} \sum_{n=1}^{\infty} (-1)^{u(\mathbf{t})}; \ T_{0} = \{\mathbf{t} : \mathbf{a}(\mathbf{t}) = 0^{N}\}$ $\mathbf{t} \in T_0$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

Recalling that $P(\mathbf{t})^2 = I \Rightarrow \gamma(\mathbf{t}) = \pm 1 \equiv (-1)^{u(\mathbf{t})}$

$p = \frac{1}{2^M} \sum (-1)^{u(\mathbf{t})}; \ T_0 = \{\mathbf{t} : \mathbf{a}(\mathbf{t}) = 0^N\}$ $\mathbf{t} \in T_0$

Prove that:

F. C. R. Peres

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

Recalling that $P(\mathbf{t})^2 = I \Rightarrow \gamma(\mathbf{t}) = \pm 1 \equiv (-1)^{u(\mathbf{t})}$ $p = \frac{1}{2^M} \sum_{n=1}^{M} (-1)^{u(\mathbf{t})}; \ T_0 = \{\mathbf{t} : \mathbf{a}(\mathbf{t}) = 0^N\}$ $\mathbf{t} \in T_0$

Prove that:

(i) T_0 can be classically determined in polynomial time;

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

Recalling that $P(\mathbf{t})^2 = I \Rightarrow \gamma(\mathbf{t}) = \pm 1 \equiv (-1)^{u(\mathbf{t})}$ $p = \frac{1}{2^M} \sum_{n=1}^{M} (-1)^{u(\mathbf{t})}; \ T_0 = \{\mathbf{t} : \mathbf{a}(\mathbf{t}) = 0^N\}$ $\mathbf{t} \in T_0$

Prove that:

(i) T_0 can be classically determined in polynomial time; (ii) The sum can be classically efficiently computed.

Quantum and Linear-Optical Computation (QLOC) Journal Club

(i) T_0 can be classically determined in polynomial time:

Define a basis of \mathbb{Z}_{2}^{M} , $\{e_{i}, i = 1, ..., M\}$: $e_{i} = 0_{1}0_{2}...1_{i}...0_{M}$

29

(i) T_0 can be classically determined in polynomial time:

Define a basis of \mathbb{Z}_2^M , $\{e_i, i = 1,...,M\}$

Then, any bit string can be written as: \mathbf{t} =

29

$$: \boldsymbol{e}_i = \boldsymbol{0}_1 \boldsymbol{0}_2 \dots \boldsymbol{1}_i \dots \boldsymbol{0}_M$$
$$= \sum_{k=1}^M t_k \boldsymbol{e}_k$$

(i) T_0 can be classically determined in polynomial time:

Define a basis of \mathbb{Z}_2^M , $\{e_i, i = 1,...,M\}$

Then, any bit string can be written as: \mathbf{t} =

29

$$: \boldsymbol{e}_i = \boldsymbol{0}_1 \boldsymbol{0}_2 \dots \boldsymbol{1}_i \dots \boldsymbol{0}_M$$
$$= \sum_{k=1}^M t_k \boldsymbol{e}_k$$

(i) T_0 can be classically determined in polynomial time:

Define a basis of \mathbb{Z}_2^M , $\{e_i, i = 1,...,M\}$

Then, any bit string can be written as: \mathbf{t} =

And it is also possible to write: $a(\mathbf{t}) = \sum_{k=1}^{N}$

29

$$: \boldsymbol{e}_i = \boldsymbol{0}_1 \boldsymbol{0}_2 \dots \boldsymbol{1}_i \dots \boldsymbol{0}_M$$
$$= \sum_{k=1}^M t_k \boldsymbol{e}_k$$

$$\sum_{k=1}^{M} t_k a(e_k)$$

(i) T_0 can be classically determined in polynomial time (cont.):

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(i) T_0 can be classically determined in polynomial time (cont.):

The labels $a(e_i)$ can be efficiently computed from the Clifford conjugation rules.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(i) T_0 can be classically determined in polynomial time (cont.):

The labels $a(e_i)$ can be efficiently computed from the Clifford conjugation rules.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(i) T_0 can be classically determined in polynomial time (cont.):

 $T_0 = \{\mathbf{t} : A\mathbf{t} = 0^N\} \equiv \ker(A).$

The labels $a(e_i)$ can be efficiently computed from the Clifford conjugation rules.

They can be used to construct the columns of an $N \times M$ matrix A such that:

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(i) T_0 can be classically determined in polynomial time (cont.):

 $T_0 = \{\mathbf{t} : A\mathbf{t} = 0^N\} \equiv \ker(A).$

Denote the basis of the kernel of A as

The labels $a(e_i)$ can be efficiently computed from the Clifford conjugation rules.

They can be used to construct the columns of an $N \times M$ matrix A such that:

s {
$$c_i$$
, $i = 1,...,L \le M$ }.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(i) T_0 can be classically determined in polynomial time (cont.):

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(i) T_0 can be classically determined in polynomial time (cont.):

There are classical algorithms which allow the efficient determination of the basis of the kernel of a matrix, so the first statement is proved.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(ii) The sum can be classically efficiently computed:

Note that $\mathbf{t} \in T_0$ iff $A\mathbf{t} = 0^N \Leftrightarrow \mathbf{t} \in \mathbf{t}$

32

$$\in T_0$$
 iff $\mathbf{t} = \sum_{k=1}^L s_k c_k$.
(ii) The sum can be classically efficiently computed:

Note that $\mathbf{t} \in T_0$ iff $A\mathbf{t} = 0^N \Leftrightarrow \mathbf{t} \in \mathbf{t}$

Therefore,
$$u(\mathbf{t}) = u\left(\sum_{k=1}^{L} s_k c_k\right) = \sum_{k=1}^{L} s_k u\left(c_k\right)$$
.

F. C. R. Peres

32

$$\equiv T_0 \text{ iff } \mathbf{t} = \sum_{k=1}^L s_k \mathbf{c}_k.$$

(ii) The sum can be classically efficiently computed:

Note that $\mathbf{t} \in T_0$ iff $A\mathbf{t} = 0^N \Leftrightarrow \mathbf{t} \in \mathbf{t}$

Therefore,
$$u(\mathbf{t}) = u\left(\sum_{k=1}^{L} s_k c_k\right) = \sum_{k=1}^{L} s_k u\left(c_k\right)$$
.
Let $u(c_k) = q_k \rightarrow u(\mathbf{t}) = \mathbf{s} \cdot \mathbf{q}$

F. C. R. Peres

32

$$\equiv T_0 \text{ iff } \mathbf{t} = \sum_{k=1}^L s_k \mathbf{c}_k.$$

Paper review Theorem 4.1 STRONGLAION

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

$$p = \frac{1}{2^M} \sum_{\mathbf{t} \in T_0} (-1)^{u(\mathbf{t})} = \frac{1}{2^M} \sum_{s \in \mathbb{Z}_2^L} (-1)^s$$

)^{*s*·*q*}; $T_0 = \{\mathbf{t} : A\mathbf{t} = 0^N\}$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review Theorem 4.1 STRONGLAION

Theorem 4 : STRONG/NON-ADAPT/IN(BITS)/OUT(MANY)

(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

$$p = \frac{1}{2^M} \sum_{\mathbf{t} \in T_0} (-1)^{u(\mathbf{t})} = \frac{1}{2^M} \sum_{s \in \mathbb{Z}_2^L} (-1)^s$$

)^{*s*·*q*}; $T_0 = \{\mathbf{t} : A\mathbf{t} = 0^N\}$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

$$p = \frac{1}{2^M} \sum_{\mathbf{t} \in T_0} (-1)^{u(\mathbf{t})} = \frac{1}{2^M} \sum_{s \in \mathbb{Z}_2^L} (-1)^s$$

$$p = \begin{cases} (1/2)^{M-L}, & \text{if } \boldsymbol{q} = 0^L \\ 0, & \text{if } \boldsymbol{q} \neq 0^L \end{cases}$$

)^{*s*·*q*}; $T_0 = \{\mathbf{t} : A\mathbf{t} = 0^N\}$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

$$p = \frac{1}{2^M} \sum_{\mathbf{t} \in T_0} (-1)^{u(\mathbf{t})} = \frac{1}{2^M} \sum_{s \in \mathbb{Z}_2^L} (-1)^s$$

$$p = \begin{cases} (1/2)^{M-L}, & \text{if } \boldsymbol{q} = 0^L \\ 0, & \text{if } \boldsymbol{q} \neq 0^L \end{cases}$$

)^{*s*·*q*}; $T_0 = \{\mathbf{t} : A\mathbf{t} = 0^N\}$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

$$p = \frac{1}{2^M} \sum_{\mathbf{t} \in T_0} (-1)^{u(\mathbf{t})} = \frac{1}{2^M} \sum_{s \in \mathbb{Z}_2^L} (-1)^s$$

$$p = \begin{cases} (1/2)^{M-L}, & \text{if } \boldsymbol{q} = 0^L \\ 0, & \text{if } \boldsymbol{q} \neq 0^L \end{cases}$$

F. C. R. Peres

)^{*s*·*q*}; $T_0 = \{\mathbf{t} : A\mathbf{t} = 0^N\}$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

$$p = \frac{1}{2^M} \sum_{\mathbf{t} \in T_0} (-1)^{u(\mathbf{t})} = \frac{1}{2^M} \sum_{s \in \mathbb{Z}_2^L} (-1)^s$$

$$p = \begin{cases} (1/2)^{M-L}, & \text{if } \boldsymbol{q} = 0^L \\ 0, & \text{if } \boldsymbol{q} \neq 0^L \end{cases}$$

F. C. R. Peres

)^{*s*·*q*}; $T_0 = \{\mathbf{t} : A\mathbf{t} = 0^N\}$

Strong simulation of this family of circuits can be carried out efficiently

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Summary | Procedure for the efficient strong classical simulation:

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Summary Procedure for the efficient strong classical simulation:

- 1. determine the $M a(e_k)$ labels efficiently from the Clifford update rules;

Quantum and Linear-Optical Computation (QLOC) | Journal Club

- **Summary** | Procedure for the efficient strong classical simulation:
- 1. determine the $M a(e_k)$ labels efficiently from the Clifford update rules;
- 2. construct the $N \times M$ matrix A;

Quantum and Linear-Optical Computation (QLOC) | Journal Club

- **Summary** | Procedure for the efficient strong classical simulation:
- 1. determine the $Ma(e_k)$ labels efficiently from the Clifford update rules;
- 2. construct the $N \times M$ matrix A;
- 3. determine the ker(A) and its basis $\{c_k\}$ (classically efficient);

Quantum and Linear-Optical Computation (QLOC) | Journal Club

- **Summary** | Procedure for the efficient strong classical simulation:
- 1. determine the $Ma(e_k)$ labels efficiently from the Clifford update rules;
- 2. construct the $N \times M$ matrix A;
- 3. determine the ker(A) and its basis $\{c_k\}$ (classically efficient);
- 4. for each c_k compute: $q_k = u(c_k)$ using the Clifford update rules;

Quantum and Linear-Optical Computation (QLOC) | Journal Club

- **Summary** | Procedure for the efficient strong classical simulation:
- 1. determine the $Ma(e_k)$ labels efficiently from the Clifford update rules;
- 2. construct the $N \times M$ matrix A;
- 3. determine the ker(A) and its basis $\{c_k\}$ (classically efficient);
- 4. for each c_k compute: $q_k = u(c_k)$ using the Clifford update rules;

5. If
$$\boldsymbol{q} = 0^L$$
, $p = (1/2)^{M-L}$, while $\boldsymbol{q} \neq 0^L \Rightarrow p = 0$.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review						
	Theorem 4 : STRONG/NON-					
		N	ON-ADA	PT		
\frown			WEAK	STRONG		
-)TU		IN(BITS)				
O		IN(PROD)				
OUT(MANY)			WEAK	STRONG		
		IN(BITS)		Clas. Effic. (Theorem 4)		
		IN(PROD)				

ADAPT/IN(BITS)/OUT(MANY) ADAPT

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review					
	Theorem 4 : STRONG/NON-				
		Ν	ON-ADA	PT	
			WEAK	STRONG	
DUT(1		IN(BITS)		Clas. Effic.	
0		IN(PROD)			
N			WEAK	STRONG	
T(MA		IN(BITS)		Clas. Effic. (Theorem 4)	
OU ⁻		IN(PROD)			

ADAPT/IN(BITS)/OUT(MANY) ADAPT

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review						
	Theorem 4 : STRONG/NON-					
		Ν	ION-ADAF	P T		
			WEAK	STRONG		
DUT(1		IN(BITS)	Clas. Effic.	- Clas. Effic.		
0		IN(PROD)				
T(MANY)			WEAK	STRONG		
		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)		
OU ⁻		IN(PROD)				

ADAPT/IN(BITS)/OUT(MANY) ADAPT

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

Paper review

• Input:
$$|\psi_0\rangle = |\alpha_1\rangle |\alpha_2\rangle \dots |\alpha_N\rangle$$

- Circuit: C
- Output state: $|\psi_f\rangle = C |\psi_0\rangle = C |\alpha_1\rangle |\alpha_2\rangle \dots |\alpha_N\rangle$
- Output: b = 0 or b = 1, with probabilities p_0 and p_1 .

Theorem 1 : STRONG/NON-ADAPT/IN(PROD)/OUT(1)

Let \mathcal{T} be a set of computational tasks defined by non-adaptive Clifford circuits, with general product state input and measurement of a single output qubit. Then, \mathcal{T} can be <u>classically efficiently simulable</u> in the strong sense.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review

Theorem 1 : STRONG/NON-ADAPT/IN(PROD)/OUT(1)

Let \mathcal{T} be a set of computational tasks defined by non-adaptive Clifford circuits, with general product state input and measurement of a single output qubit. Then, \mathcal{T} can be <u>classically efficiently simulable</u> in the strong sense.

• Input:
$$|\psi_0\rangle = |\alpha_1\rangle |\alpha_2\rangle \dots |\alpha_N\rangle$$

- Circuit: C
- Output state: $|\psi_f\rangle = C |\psi_0\rangle = C |\alpha_1\rangle |\alpha_2\rangle \dots |\alpha_N\rangle$
- Output: b = 0 or b = 1, with probabilities p_0 and p_1 .

$|\alpha_1\rangle |\alpha_2\rangle \dots |\alpha_N\rangle$ consistence of p_0 and p_1 .

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review

Theorem 1 : STRONG/NON-ADAPT/IN(PROD)/OUT(1)

Let \mathcal{T} be a set of computational tasks defined by non-adaptive Clifford circuits, with general product state input and measurement of a single output qubit. Then, \mathcal{T} can be <u>classically efficiently simulable</u> in the strong sense.

• Input:
$$|\psi_0\rangle = |\alpha_1\rangle |\alpha_2\rangle \dots |\alpha_N\rangle$$

- Circuit: C
- Output state: $|\psi_f\rangle = C |\psi_0\rangle = C |\alpha_1\rangle |\alpha_2\rangle \dots |\alpha_N\rangle$
- Output: b = 0 or b = 1, with probabilities p_0 and p_1 .

The two probabilities can be written as:

$$p_{0} = \left\langle \psi_{0} \right| C^{\dagger} \left(\frac{I+Z}{2} \otimes I \otimes \ldots \otimes I \right) C \left| \psi_{0} \right\rangle$$
$$p_{1} = \left\langle \psi_{0} \right| C^{\dagger} \left(\frac{I-Z}{2} \otimes I \otimes \ldots \otimes I \right) C \left| \psi_{0} \right\rangle$$

And therefore the difference between them reads: $p_0 - p_1 = \langle \psi_0 | C^{\dagger} (Z \otimes \ldots \otimes I) C$

39

$$C \left| \psi_0 \right\rangle$$

The two probabilities can be written as:

$$p_{0} = \left\langle \psi_{0} \right| C^{\dagger} \left(\frac{I+Z}{2} \otimes I \otimes \ldots \otimes I \right) C \left| \psi_{0} \right\rangle$$
$$p_{1} = \left\langle \psi_{0} \right| C^{\dagger} \left(\frac{I-Z}{2} \otimes I \otimes \ldots \otimes I \right) C \left| \psi_{0} \right\rangle$$

And therefore the difference between them reads:

$$p_0 - p_1 = \left\langle \psi_0 \right| C^{\dagger} (Z \otimes \ldots \otimes I)$$

39

The two probabilities can be written as:

$$p_{0} = \left\langle \psi_{0} \right| C^{\dagger} \left(\frac{I+Z}{2} \otimes I \otimes \ldots \otimes I \right) C \left| \psi_{0} \right\rangle$$
$$p_{1} = \left\langle \psi_{0} \right| C^{\dagger} \left(\frac{I-Z}{2} \otimes I \otimes \ldots \otimes I \right) C \left| \psi_{0} \right\rangle$$

And therefore the difference between them reads:

$$p_0 - p_1 = \left\langle \psi_0 \right| C^{\dagger} (Z \otimes \ldots \otimes I) C$$

39

 Ψ_0

Pauli operator

$C^{\dagger}(Z \otimes \ldots \otimes I) C = \pm P_{(1)} \otimes P_{(2)} \otimes \ldots \otimes P_{(N)}$ (efficiently determined from the Clifford update rules)

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$C^{\dagger}(Z \otimes \ldots \otimes I) C = \pm P_{(1)} \otimes P_{(2)} \otimes \ldots \otimes P_{(N)}$ (efficiently determined from the Clifford update rules)

Therefore the difference between the two probabilities is simply:

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$C^{\dagger}(Z \otimes \ldots \otimes I) C = \pm P_{(1)} \otimes P_{(2)} \otimes \ldots \otimes P_{(N)}$ (efficiently determined from the Clifford update rules)

Therefore the difference between the two probabilities is simply:

$p_0 - p_1 = \pm 1$

$$\Pi_{k=1}^N \left\langle \alpha_k \right| P_{(k)} \left| \alpha_k \right\rangle.$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

$C^{\dagger}(Z \otimes \ldots \otimes I) C = \pm P_{(1)} \otimes P_{(2)} \otimes \ldots \otimes P_{(N)}$ (efficiently determined from the Clifford update rules)

Therefore the difference between the two probabilities is simply:

$p_0 - p_1 = \pm 1$

$$\Pi_{k=1}^N \left\langle \alpha_k \right| P_{(k)} \left| \alpha_k \right\rangle.$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

from the Clifford update rules)

Therefore the difference between the two probabilities is simply: $p_0 - p_1 = \pm I$

can be done classically in poly(N) time.

 $C^{\dagger}(Z \otimes \ldots \otimes I) C = \pm P_{(1)} \otimes P_{(2)} \otimes \ldots \otimes P_{(N)}$ (efficiently determined

$$\Pi_{k=1}^N \left\langle \alpha_k \right| P_{(k)} \left| \alpha_k \right\rangle.$$

We need only calculate N expectation values of 2×2 Pauli matrices, which

Quantum and Linear-Optical Computation (QLOC) Journal Club

	Paper review					
	Theorem 1 : STRONG/NON-					
		N	ION-ADA	PT		
			WEAK	STRONG		
UT(1		IN(BITS)	Clas. Effic.	Clas. Effic.		
0	IN(PROD)		Clas. Effic. (Theorem 1)			
Z			WEAK	STRONG		
T(MA		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)		
OU ⁻		IN(PROD)				

ADAPT/IN(PROD)/OUT(1) ADAPT

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

Paper review							
Theorem 1 : STRONG/NON-							
	NON-ADAPT						
OUT(1)			WEAK	STRONG			
		IN(BITS)	Clas. Effic.	Clas. Effic.			
		IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)			
OUT(MANY)			WEAK	STRONG			
		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)			
		IN(PROD)					

ADAPT/IN(PROD)/OUT(1) ADAPT

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

Paper review Theorem 5: WEAK/ADAPT/IN(BITS)/OUT(MANY)

Let \mathcal{T} be a set of computational tasks defined by **adaptive** Clifford circuits, with computational basis input states and measurements on multiple output qubits. Then, \mathcal{T} can be <u>classically efficiently simulable</u> in the weak sense.

• Input:
$$|\mathbf{x}\rangle = |x_1x_2\dots x_N\rangle$$

- Circuit: C
- K intermediate measurements + M output measurements
- Output distribution: $p = p(\mathbf{y}) = p(\mathbf{y})$

$$y_1, y_2, \ldots, y_{K+M})$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review → Theorem 5: WEAK/ADAPT/IN(BITS)/OUT(MANY)

• Consider a circuit *C* such as:

F. C. R. Peres

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review Theorem 5: WEAK/ADAPT/IN(BITS)/OUT(MANY)

• Consider a circuit C' on N + K qubits so that:

F. C. R. Peres

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review Theorem 5: WEAK ADAPT IN (BITS) OUT (MANY)

• C and C' are equivalent and for C' we have: (i) input state $0_1 \dots 0_K x_{K+1} \dots x_{K+1}$

(ii) output measurements are carried out on qubits K + 1 to K + M;

(iii) intermediate measurements are carried out on the first K qubits, and those are not used thereafter.

$$|N\rangle = |0_1 \dots 0_K\rangle |\mathbf{x}\rangle;$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review Theorem 5: WEAK ADAPT IN (BITS) OUT (MANY)

• A full run of C' samples an associated probability distribution $p(y_1 \dots y_K y_{K+1} \dots y_{K+M}).$

Suppose that all intermediate measurements have been carried out.

47

• Then, the sequence $y_1 \dots y_K$ is fixed and the circuit C' becomes non-adaptive.

ADAPT

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

	WEAK	STRONG
IN(BITS)		
IN(PROD)		

Paper review → Theorem 5: WEAK/ADAPT/IN(BITS)/OUT(MANY)

• Then we can efficiently compute the marginal probabilities $p(y_1 \dots y_K)$ and $p(y_1 \dots y_K y_{K+1} \dots y_{K+N})$.

 This means that we know the probability of occurrence of each possible nonadaptive circuit C'; and for each of those we know the probability of each string.

• Therefore, we can sample from this distribution and weakly simulate the adaptive circuit C' and, thus, C.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

	Paper review								
	⇒ The	eorem 5	: WEAK	ADAP7	" IN(E	BITS)/	OUT(M)	4 <i>NY)</i>	LABORAT
		Ν	ION-ADAI	PT				ADAPT	
			WEAK	STRONG				WEAK	STRONG
OUT(1		IN(BITS)	Clas. Effic.	Clas. Effic.			IN(BITS)		
		IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)			IN(PROD)		
]				
N			WEAK	STRONG				WEAK	STRONG
T(MA		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)			IN(BITS)	Clas. Effic. (Theorem 5)	
OU ⁻		IN(PROD)					IN(PROD)		

	Paper review								
	⇒ The	eorem 5	: WEAK	ADAP7	/ <i>IN(BIT</i>	TS)/ (OUT(M/	4 <i>NY</i>)	LABORA
		Ν	ION-ADA	PT				ADAPT	
			WEAK	STRONG				WEAK	STRONG
OUT(1		IN(BITS)	Clas. Effic.	Clas. Effic.			IN(BITS)	Clas. Effic.	
		IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)			IN(PROD)		
Z			WEAK	STRONG				WEAK	STRONG
r(MAI		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)			IN(BITS)	Clas. Effic. (Theorem 5)	
-UO		IN(PROD)					IN(PROD)		

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Remarks on the Gottesman-Knill theorem

• GOTTESMAN-KNILL THEOREM (GK): (version 1)

classical computer.

[1] D. Gottesman, in Group22: Proceedings of the XXII International arXiv:quant-ph/9807006v1.

- Any quantum computation carried out on a (potentially adaptive) stabiliser circuit can be perfectly weakly simulated in polynomial time on a probabilistic

Colloquium on Group Theoretical Methods in Physics (1998) pp. 32–43,

Remarks on the Gottesman-Knill theorem

• GOTTESMAN-KNILL THEOREM (GK): (version 2)

For any (non-adaptive) stabiliser circuit with a single output qubit, the probability p that the output qubit is 1, can be efficiently classically computed.

[2] S. Aaronson and D. Gottesman, Phys. Rev. A **70**, 052328 (2004), arXiv:quant-ph/0406196v5.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

	Paper review								
	⇒ The	eorem 5	: WEAK	ADAP7	-/ IN(B	SITS)/	OUT(M	ANY)	LABORAT
		Ν	ION-ADA	PT				ADAPT	
			WEAK	STRONG				WEAK	STRONG
UT(1		IN(BITS)	Clas. Effic.	Clas. Effic.			IN(BITS)	Clas. Effic.	
O		IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)			IN(PROD)		
N N			WEAK	STRONG				WEAK	STRONG
T(MAI		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)			IN(BITS)	<i>Clas. Effic.</i> (Theorem 5)	
OU ⁻		IN(PROD)					IN(PROD)		

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Theorem 3: WEAK/ADAPT/IN(PROD)/OUT(1)

Let \mathcal{T} be a set of computational tasks defined by **adaptive** Clifford circuits with general product state inputs and output measurement on a single qubit. Then, the weak classical simulation of \mathcal{T} is **QC**-hard.

QC-hard means that universal quantum computation is possible.

 To prove this it suffices to show that the resources available allow to implement the T gate: $T = \text{diag}(1, e^{i\pi/4})$.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review Theorem 3: WEAK/ADAPT/IN(PROD)/OUT(1)

 $|\psi_{out}\rangle \qquad |A\rangle = \frac{1}{\sqrt{2}} \left(\left| 0 \right\rangle + e^{i\pi/4} \left| 1 \right\rangle \right)$

$$\left|\psi_{out}\right\rangle = T \left|\psi_{in}\right\rangle$$

Paper review							
Theorem 3: WEAK/ADAPT/I							
		N	ION-ADA	PT			
			WEAK	STRONG			
UT(1		IN(BITS)	Clas. Effic.	Clas. Effic.			
		IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)			
X			WEAK	STRONG			
T(MA		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)			
- O O		IN(PROD)					

N(PROD)/OUT(1) ADAPT WEAK STRONG IN(BITS) Clas. Effic. Univ. QC IN(PROD) (Theorem 3) STRONG WEAK Clas. Effic. IN(BITS) (Theorem 5) IN(PROD)

Paper review							
Theorem 3: WEAK/ADAPT/I							
		N	ION-ADA	PT			
			WEAK	STRONG			
UT(1		IN(BITS)	Clas. Effic.	Clas. Effic.			
		IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)			
X			WEAK	STRONG			
T(MA		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)			
- O O		IN(PROD)					

N(PROD)/OUT(1) ADAPT WEAK STRONG IN(BITS) Clas. Effic. Univ. QC IN(PROD) (Theorem 3) WEAK STRONG Clas. Effic. IN(BITS) (Theorem 5) IN(PROD) Univ. QC

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review							
Theorem 3: WEAK/ADAPT/I							
		N	ION-ADA	PT			
			WEAK	STRONG			
UT(1		IN(BITS)	Clas. Effic.	Clas. Effic.			
		IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)			
X			WEAK	STRONG			
T(MA		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)			
- O O		IN(PROD)					

N(PROD)/OUT(1) ADAPT WEAK STRONG IN(BITS) Clas. Effic. Univ. QC IN(PROD) (Theorem 3) STRONG WEAK Clas. Effic. IN(BITS) (Theorem 5) IN(PROD) Univ. QC

Quantum and Linear-Optical Computation (QLOC) | Journal Club

 The available ingredients can be used to realize the Toffoli gate. $TOFF | a \rangle | b \rangle | c$ $a = 0 \Rightarrow TOFF | 0 \rangle | b \rangle | c \rangle$ $a = 1 \Rightarrow TOFF |1\rangle |b\rangle |c\rangle =$

Consider a set of computational tasks \mathcal{T} defined by **adaptive** Clifford circuits such that input states are computational basis states and only a single output measurement is performed. Then, strong simulation of tasks in \mathcal{T} is #*P*-hard.

$$\begin{aligned} c \rangle &= |a\rangle |b\rangle |c \oplus (ab)\rangle \\ &= |0\rangle |b\rangle |c\rangle \equiv |0\rangle I(|b\rangle |c\rangle) \\ &|1\rangle |b\rangle |c \oplus b\rangle \equiv |1\rangle CX(|b\rangle |c\rangle) \end{aligned}$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

 If the *i*-th line is promised to be in a computational basis state we can implement the Toffoli gate as;

 This sort of implementation does not allow the application of Toffoli gates coherently on general quantum states, because the adaptation requires a measurement on the *i*-th line.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

The Toffoli gate can perform universal classical computation.

 Therefore, the defined family of circuits can perform universal classical computation. \Rightarrow They can compute any Boolean function with an N bit input and a single bit output: $f(x) \in \mathbb{Z}_2, x \in \mathbb{Z}_2^N$.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

- Procedure to implement a circuit $C \in \mathcal{T}$ on N+1 qubits:
 - 1. Every qubit is initialised in $|0\rangle$;
 - 2. First N qubits are transformed by a Hadamard gate and then measured generating a random bit-string $x \equiv x_1 x_2 \dots x_N$;
 - 3. Perform the following mapping $U \in \mathcal{T} : U |x\rangle |0\rangle = |x\rangle |f(x)\rangle$;
 - 4. Measure the last qubit, registering the value of the function.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

#*P*-hard problem.

$$1) = \frac{\#f}{2^N}$$

p(

• If it is possible to determine the probability p = p(1), then it is possible to know #f.

• If it were possible to determine p(1) then it would be possible to count the number of solutions to an NP-hard satisfiability problem, i.e., it would be possible to solve a

Quantum and Linear-Optical Computation (QLOC) | Journal Club

	Paper review								
	→ The	eorem 2	e: Strol	NG/ADA	PT/ 11	N(BIT	S)/ <i>OUT</i>	(1)	LABORAT
		Ν	JON-ADA	PT				ADAPT	
			WEAK	STRONG				WEAK	STRONG
OUT(I		IN(BITS)	Clas. Effic.	Clas. Effic.			IN(BITS)	Clas. Effic.	# P -hard (Theorem 2)
		IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)			IN(PROD)	Univ. QC (Theorem 3)	
]				
N N			WEAK	STRONG				WEAK	STRONG
T(MA		IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)			IN(BITS)	Clas. Effic. (Theorem 5)	
-UO		IN(PROD)					IN(PROD)	Univ. QC	

Quantum and Linear-Optical Computation (QLOC) | Journal Club

	Pap	er re	view							NAL I
	⇒ The	eorem 2	: STROI	NG/ADA	PT/ //	N(BIT	S)/ <i>OUT</i>	(1)	LABORATORY	
		Ν	ION-ADA	PT				ADAPT		
			WEAK	STRONG				WEAK	STRONG	
UTU TU		IN(BITS)	Clas. Effic.	Clas. Effic.			IN(BITS)	Clas. Effic.	# P -hard (Theorem 2)	
O		IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)			IN(PROD)	Univ. QC (Theorem 3)	#P-hard	
					1					
N			WEAK	STRONG				WEAK	STRONG	
T(MA	IN(BITS)	Clas. Effic.	Clas. Effic. (Theorem 4)			IN(BITS)	<i>Clas. Effic.</i> (Theorem 5)	#P-hard		
OU ⁻		IN(PROD)					IN(PROD)	Univ. QC	#P-hard	

Theorem 6: STRONG/ NON-ADAPT/IN(PROD)/OUT(MANY)

Consider a set of computational tasks \mathcal{T} defined by non-adaptive Clifford circuits, with any general product state input and multiple bit output. Then, strong simulation of \mathcal{T} is #*P*-hard.

• Consider a universal quantum circuit C, which has KT gates.

gate in a line *i* by CX_{ia} , *a* an ancillary magic state qubit.

• We can turn this into a Clifford circuit C' on N + K qubits, replacing each T

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review ➡ Theorem 6: STRONG/ NON-ADAPT/IN(PROD)/OUT(MANY)

• Recall the T gadget:

 $|\psi_{in}\rangle$

A

• But now we implement instead:

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review ➡ Theorem 6: STRONG/ NON-ADAPT/IN(PROD)/OUT(MANY)

• C and C' only coincide if all K intermediate measurements yield 0 in which case we can write:

 $p_C(\mathbf{y}) = p_{C'}(\mathbf{y} \mid \mathbf{0}_1)$

• $p_C(y)$ could be used to encode #f of any Boolean function, and solve #P-hard problems.

$$..0_{K}) = \frac{p_{C'}(y0_{1}...0_{K})}{p_{C'}(0_{1}...0_{K})}.$$

Quantum and Linear-Optical Computation (QLOC) | Journal Club

P	Paper review						
	➡ Theorem 6						
	Ν	ON-ADAI	PT				
		WEAK	STRONG				
DT(IN(BITS)	Clas. Effic.	Clas. Effic.				
	IN(PROD)	Clas. Effic.	Clas. Effic. (Theorem 1)				
X		WEAK	STRONG				
T(MA	IN(BITS)	Clas. Effic.	<i>Clas. Effic.</i> (Theorem 4)				
- O O	IN(PROD)		# P -hard (Theorem 6)				

ADAPT

	WEAK	STRONG
IN(BITS)	Clas. Effic.	# P -hard (Theorem 2)
IN(PROD)	Univ. QC (Theorem 3)	# P -hard

	WEAK	STRONG
IN(BITS)	Clas. Effic. (Theorem 5)	# P -hard
IN(PROD)	Univ. QC	# P -hard

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Theorem 7: WEAK/ NON-ADAPT/IN(PROD)/OUT(MANY)

Let \mathcal{T} be the set of computational tasks defined (as in theorem 6) by nonadaptive Clifford circuits, general product state inputs and multiple bit outputs. If \mathcal{T} could be weakly efficiently classically simulated, then the polynomial hierarchy **PH** would collapse to its third level.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Thank you for your attention!

F. C. R. Peres

Quantum and Linear-Optical Computation (QLOC) | Journal Club

Introductory concepts The Clifford group and stabiliser circuits

$$H_a X_a H_a^{\dagger} = Z_a; \quad H_a Z_a H_a^{\dagger} = X_a; \rightarrow \text{swap } x_{ia} \text{ and } z_{ia}; s_i' = s_i \bigoplus x_{ia} z_{ia}$$

 $S_{\alpha}X_{\alpha}S_{\alpha}^{\dagger} = Y_{\alpha}; \quad S_{\alpha}Z_{\alpha}S_{\alpha}^{\dagger} = Z_{\alpha}; \quad \rightarrow x_{i\alpha}' = x_{i\alpha}; z_{i\alpha}' = z_{i\alpha} \oplus x_{i\alpha}; s_{i}' = s_{i} \oplus x_{i\alpha}z_{i\alpha}$

• Action of the generators of the Clifford group on the Pauli group generators:

Quantum and Linear-Optical Computation (QLOC) | Journal Club

A1

Introductory concepts The Clifford group and stabiliser circuits

Action of the generators of the Clifford group on the Pauli group generators:

$$CX_{ab}(X_{(a)} \otimes I_{(b)})CX_{ab}^{\dagger} = (X_{(a)} \otimes X_{(b)}); \quad CX_{ab}(I_{(a)} \otimes X_{(b)})CX_{ab}^{\dagger} = (I_{(a)} \otimes X_{(b)});$$
$$CX_{ab}(Z_{(a)} \otimes I_{(b)})CX_{ab}^{\dagger} = (Z_{(a)} \otimes I_{(b)}); \quad CX_{ab}(I_{(a)} \otimes Z_{(b)})CX_{ab}^{\dagger} = (Z_{(a)} \otimes Z_{(b)});$$

$$\rightarrow x_{ia}' = x_{ia}; \ x_{ib}' = x_{ia} \oplus x_{ib}; \ z_{ia}' = z_{ia}$$
$$s_i' = s_i \oplus x_{ia} z_{ib} \left(x_{ib} z_{ia} \oplus 1 \right)$$

A2

$_{ia} \bigoplus z_{ib}; z'_{ib} = z_{ib};$

Theorem 7: WEAK/ NON-ADAPT/IN(PROD)/OUT(MANY)

Let \mathcal{T} be the set of computational tasks defined (as in theorem 6) by nonadaptive Clifford circuits, general product state inputs and multiple bit outputs. If \mathcal{T} could be weakly efficiently classically simulated, then the polynomial hierarchy PH would collapse to its third level.

• Again consider a universal quantum circuit C, with KT gates.

• To implement each T gate we use the same gadget as in the previous theorem, post-selecting the value 0 for all of the ancillas.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

A3

Paper review → Theorem 7: WEAK/ NON-ADAPT/IN(PROD)/OUT(MANY)

• \mathcal{T} + post-selection **contains** university selection.

• postBQP = PP

- Therefore, $post \mathcal{T}$ contains PP.

F. C. R. Peres

A4

• \mathcal{T} + post-selection contains universal quantum computation with post-

Paper review Theorem 7: WEAK/ NON-ADAPT/IN(PROD)/OUT(MANY)

PP.

postBPP \subset PP \Rightarrow PH would collapse to its third level.

• \mathscr{X} any class of bounded-error quantum circuits such that post \mathscr{X} contains

• Weak efficient classical simulation of $\mathscr{K} \Rightarrow \text{post}\mathscr{K}$ is contained in post**BPP**.

Quantum and Linear-Optical Computation (QLOC) | Journal Club

A5