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Presentation overview

1. Introductory concepts
= Strong vs. Weak simulation
= The Pauli group
= The Clifford group and stabilliser circuits

= The stabiliser formalism and the Gottesman-Knill theorem
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2. Classical simulation complexity of extended Clifford circuit - paper review!’]
= [he extra ingredients
= The extended classes

= Theorems and proofs

"I R. Jozsa and M. V. den Nest, Quantum Information and Computation 14
(2013), arXiv:1305.6190.
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= Strong vs. Weak simulation

e Strong simulation — calculate the probability of any desired outcome of the
computation.

 \Weak simulation — sample from the output distribution of the circuit.
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= Strong vs. Weak simulation

e Strong simulation — calculate the probability of any desired outcome of the
computation.

 \Weak simulation — sample from the output distribution of the circuit.

« Lemma 1: If a given circuit can be efficiently classically simulated in the
strong sense, then it can also be efficiently classically simulated in the weak
sense.
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Introductory concepts
= The Pauli group

* Definition 1: [PAuULI GROUP]

The Pauli group on N qubits &, is the group whose elements are N-fold
tensor products of the single-qubit Pauli operators 1, X, Y and Z, together
with the multiplicative factors =1 and *i.

 Number of elements : 4¥71: N =1 = 16 elements: N = 2 = 64 elements.

» Example: X® ), XQ® X), —i(Y® Z) € &,
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Introductory concepts
= The Pauli group

» 9, can be completely described by 2N generators:

Py =AXpse s X Zys oo Zy)

 Notation: X; denotes the operator such that the single-qubit Pauli X acts on
the 1-th qubit of the system and the identity is applied to all other qubits.

Example: X =(X®I®...®I)=(X(1)®I(2)®...®I(N)).
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Introductory concepts
= The Pauli group

» Example: &, has 64 elements but only 4 generators:

Pr=(XQLIRX, ZQLIQZ)=(X\. X, Z;, Z,) .

» Example: &, has 256 elements but only 6 generators:

953 — <X1, X29 X39 Zl? ZZ’ Z3> '
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Introductory concepts

= The Clifford group and stabiliser circuits

e Definition 2: [CLIFFORD GROUP]

An operation is said to be a Clifford unitary C if it maps the Pauli group onto
itself under conjugation, that is, If

CP\C' =Py CPC" =P,

where P;, P, € Py

Clifford unitaries form a group known as the Clifford group and generated by
the Hadamard (H), phase (S) and controlled-NoOT (CX) gates.
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Introductory concepts

= The Clifford group and stabiliser circuits

* Action of the generators of the Clifford group on the Pauli group generators:
HXH' =7, HZH' = X;
SXST=Y; SZS' =7Z;

CXXQRDNDCX ' =(X®X), CXUIRX)CX" =UR X):
CXZRQDNCX'=(ZQI):; CXURZ)CX' =(ZR7Z).
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= The Clifford group and stabiliser circuits

e Definition 3: [STABILISER CIRCUIT]
A circuit is said to be a stabiliser circuit if the following conditions are met:
(i) its inputs are computational basis states;

(Il) each operation is either a Clifford unitary or a measurement in the
computational basis.
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= The stabiliser formalism and the Gottesman-Knill theorem

e Definition 4: [STABILISING OPERATION]}

An operator S is said to stabilise | W) if:

S |w) = |w).

» The stabiliser formalism is a particularly powerful framework for describing

stabiliser circuits — In this case the stabiliser operators are always
hermitian Pauli operators.
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= The stabiliser formalism and the Gottesman-Knill theorem

e Definition 5: [STABILISER]

The set of operators P; which stabilise an N-qubit state | y) form a group
known as the stablliser:

§={Pi3Pi|W>= |l//> VP, € Pyt .

- The stabiliser is uniquely determined by /NV generators.
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Introductory concepts

= The stabiliser formalism and the Gottesman-Knill theorem

. Example; | 00)

N = 2 = 2 generators for the stabiliser: § =(Z QLI R 7).

« Example: Consider the Bell state

100) + | 11)

2

N = 2 = 2 generators for the stabiliser: § = (X Q® X, ZQ Z) .

|95joo> =
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= The stabiliser formalism and the Gottesman-Knill theorem
« Schrodinger’s picture of quantum mechanics: |1//) — |l//’) =U |1//)

» Alternatively, we can use Heisenberg’s picture.

* In that case, we can describe the evolution of the state through the evolution
of its stabiliser:

S > §'=US8U".

F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club



Introductory concepts ING3

VTERNE {A . /
NANOTECHNOLOGY
LABORATORY

= The stabiliser formalism and the Gottesman-Knill theorem

* [he tableau representation

xll XIN le ZIN Sl
X9 1 XZN {01 {ON S2
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Introductory concepts

= The stabiliser formalism and the Gottesman-Knill theorem

. Example: Bell state |O()) has stabiliser § = (ZQ L,LIQ Z) .
0 01 0|0
0 0|0 1(0/

.Example: Bell state | 95’00> has stabiliser 8§ = (XQ® X, ZQ Z).

1 110 010
0 01 1({0/)
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= The stabiliser formalism and the Gottesman-Knill theorem
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Introductory concepts

= The stabiliser formalism and the Gottesman-Knill theorem
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Introductory concepts

= The stabiliser formalism and the Gottesman-Knill theorem

o

0) D

of1]o0]0 1 00 0]0
— —
0 0[O0 1]0 0 0|0 1/0
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Introductory concepts

= The stabiliser formalism and the Gottesman-Knill theorem
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Introductory concepts

= The stabiliser formalism and the Gottesman-Knill theorem
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Introductory concepts

= The stabiliser formalism and the Gottesman-Knill theorem

0 i}y
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of1]olo\ _ (1{0]Jo o]0\ _ (1 1|0 oo
0 0[0 1]0 0 0J0]1]0 0 01 1]|0/)
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= The stabiliser formalism and the Gottesman-Knill theorem

* This formalism provides us with an efficient way of tracking the evolution of
the state in a stabiliser circuit.

* At each step, the Pauli operators that generate the stabiliser can be updated
efficiently through the application of the conjugation rules.
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= The stabiliser formalism and the Gottesman-Knill theorem

* This formalism provides us with an efficient way of tracking the evolution of
the state in a stabiliser circuit.

* At each step, the Pauli operators that generate the stabiliser can be updated
efficiently through the application of the conjugation rules.

- Efficient way of simulating stabiliser circuits! |
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= The stabiliser formalism and the Gottesman-Knill theorem

* This formalism provides us with an efficient way of tracking the evolution of
the state in a stabiliser circuit.

* At each step, the Pauli operators that generate the stabiliser can be updated
efficiently through the application of the conjugation rules.

- Efficient way of simulating stabiliser circuits! |

GOTTESMAN-KNILL THEOREM
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= The stabiliser formalism and the Gottesman-Knill theorem

o Stabiliser circuits are not universal for quantum computation.

» Nevertheless, the Clifford 4+ 1 set is universal for guantum computation,

T = diag(1, e™*).
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Paper review

= The extra ingredients

3 different binary classes are considered:

o Stabiliser state inputs (IN(BITS)) vs. More general product states (IN(PROD))
 Adaptivity (ADAPT) vs. Non-adaptivity (NON-ADAPT)

» Single output bit (OUT(1)) vs. Many output bits (OUT(MANY))

Additionally, the classical simulation complexity is considered for both strong
and weak notions.
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= The extended classes

NON-ADAPT ADAPT
WEAK STRONG WEAK STRONG
=
|5 IN(BITS) IN(BITS)
O
IN(PROD) IN(PROD)
g WEAK | STRONG WEAK | STRONG
<C
> INBITS) IN(BITS)
—
D,
O IN(PROD) IN(PROD)
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= The extended classes
NON-ADAPT ADAPT
WEAK STRONG WEAK STRONG
=
S IN(BITS) IN(BITS)
O
NEROD) | ANPBOD) |

OUT(MANY]™"

F. C. R. Peres
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= The extended classes
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NON-ADAPT ADAPT
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= Theorem 4 : STRONG| NON-ADAPT/ IN(BITS)| OUT(MANY)

Let I be a set of computational tasks defined by non-adaptive Clifford
circuits, with computational basis input states and measurements on multiple

output qubits. Then, & can be classically efficiently simulable in the strong
sense.

e = - — e = _— o = _——— e — gEe==—————— L = — = —_— - — -
S—— i — = — =

- Circuit: C
. Output state: |1//) =C ‘ON )

- Desired probability: p = p(y); y=0"; M <N
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Paper review
= Theorem 4 : STRONG| NON-ADAPT/IN(BITS)| OUT(MANW

Let I be a set of computational tasks defined by non-adaptive Clifford
circuits, with computational basis input states and measurements on multiple

output qubits. Then, & can be classically efficiently simulable in the strong
sense.

—e === — e . — —  — — ———— = — = —_

~+ Circuit: C
. Output state: |1//) =C ‘ON )
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Paper review
= Theorem 4 : STRONG| NON-ADAPT/IN(BITS)| OUT(MANW

Let I be a set of computational tasks defined by non-adaptive Clifford
circuits, with computational basis input states and measurements on multiple

output qubits. Then, & can be classically efficiently simulable in the strong
sense.

-« Circuit: C

. Output state: |1//) =C ‘ON )
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p= (‘OM) <OM‘ & lo41) ® - ®I<N>) )

[+ 7
— (l//| (T) ®I(M+1)®'°'®I(N) |l/f>

1

(1 + Zy) @ (fiy + 7)) ® - ® (fany + Ziany) @ hprany ® - ® Ly | € | 07)
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p= (‘OM) <OM‘ & lo41) ® - ®I<N>) )

(1) + Z0)) ® (I + Z0) ) ® - ® (L + Zan)) = 3, Z)

tez’!
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= Theorem 4 : STRONG| NON-ADAPT/IN(BITS)| OUT(MANW

o)+ Z(l)) ® (I@) + Z@)) ©..- 8 (I<M> +Zony ) @ Loy ® - ® 1<N>] C [0%)

(I + Z0)) ® (Ioy+ Z0)) ® - ® (Lany + Zag ) = . 200
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(1) +20) © (R +2) @ - ® (Lo + 2 | @ hoe) @ - @ ’(N)] 1)
(I + Z0)) ® (Ioy+ Z0)) ® - ® (Lany + Zag ) = . 200

— 74 ) Iy
(1) = Z(l) ) Z(z) ... & Z(M )
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Paper review
= Theorem 4 : STRONG| NON-ADAPT/IN(BITS)| OUT(MANW
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Paper review
= Theorem 4 : STRONG| NON-ADAPT/IN(BITS)| OUT(MANW

P = Z <ON‘ C'Z(t)C ‘ON> — 2M terms

teZM
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Paper review
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P = Z <ON‘ C'Z(t)C ‘ON> — 2M terms

teZM

P(t) = C'Z(t)C = P(t)> =1
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F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club



Paper review
= Theorem 4 : STRONG| NON-ADAPT/ IN(BITS)| OUT(MANY)

P = ZLM Z <ON‘ C'Z(t)C ‘ON> — 2M terms

tez’!
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P = ZLM Z <ON‘ C'Z(t)C ‘ON> — 2M terms

tez’!

P(t) = C'Z(t)C = P(t)> =1

_ ()b (1) o yaa(t)7by(t) an(t) 7 by(t)
P(t) = J’(t)<X<1> 21y OAg) Loy O QA L )

= y()X (a(t)) Z (b(t))

y(t) : ZJZVI — {1, +1i}
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P = ZLM Z <ON‘ C'Z(t)C ‘ON> — 2M terms

tez’!

P(t) = C'Z(t)C = P(t)> =1

P(t) = y(t) ( XaO700 & xaO7h0 o o XaN(t)ZbN(t))

(1) ) @ “©) (N) “W)
= y()X (a(t)) Z (b(t))
y(t) : 7 — (£1, £ i} a,b: 7% - 7%
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teZM

z|o> = [0); (0| X|0)=0= X (a(t)) =1= a(t)=0"
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P = ZLM Z <ON| C'Z(t)C |ON> — 2Mterms

tez’!

1
= 2 r(0"| X (a®) Z (b(®)) |OV)

tez’!

Z|0)y=10); (0| X|0)=0= X (a(t)) =1=> a(t)=0"

1
p=si 2 vt Ty={t: at)=0")
teT,

F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club



Paper review
= Theorem 4 : STRONG| NON-ADAPT/IN(BITS)| OUT(MANW

Recalling that P(t)> = = y(t) = £ 1 = (—1)*®

1
p== 2 (D" To={t: at)=0")

teT,
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Recalling that P(t)> = = y(t) = £ 1 = (—1)*®

1
p== 2 (D" To={t: at)=0")

teT,

Prove that:
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Recalling that P(t)> = = y(t) = £ 1 = (—1)*®

1
p== 2 (D" To={t: at)=0")

teT,

Prove that:

(i) 1;y can be classically determined in polynomial time;
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= Theorem 4 : STRONG| NON-ADAPT/IN(BITS)| OUT(MANW

Recalling that P(t)> = = y(t) = £ 1 = (—1)*®

= — Y (1" Ty = {t: a(t) = 0")

teT,

Prove that:

(i) 1;y can be classically determined in polynomial time;

(i) The sum can be classically efficiently computed.
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(i) 1; can be classically determined in polynomial time:

Define a basis of 75, {e;, i = 1,...M} : ;= 0,0,...1;...0,,
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(i) 1; can be classically determined in polynomial time:

Define a basis of 75, {e;, i = 1,...M} : ;= 0,0,...1;...0,,

Then, any bit string can be written as: t = 2 (e
k=1

F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club



INCH

NANOTECHNOLOGY
LABORATORY

Paper review
= Theorem 4 : STRONG| NON-ADAPT/IN(BITS)| OUT(MANY)

(i) 1; can be classically determined in polynomial time:

Define a basis of 75, {e;, i = 1,...M} : ;= 0,0,...1;...0,,

Then, any bit string can be written as: t = 2 (e
k=1

F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club



INCH

NANOTECHNOLOGY
RATORY

Paper review
= Theorem 4 : STRONG| NON-ADAPT/IN(BITS)| OUT(MANY)

(i) 1; can be classically determined in polynomial time:

Define a basis of 75, {e;, i = 1,...M} : ;= 0,0,...1;...0,,

Then, any bit string can be written as: t = 2 (e
k=1

And it is also possible to write: a(t) = Z La(ey)
k=1
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(i) 1, can be classically determined in polynomial time (cont.):
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(i) 1, can be classically determined in polynomial time (cont.):

The labels a(e;) can be efficiently computed from the Clifford conjugation rules.
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(i) 1, can be classically determined in polynomial time (cont.):

The labels a(e;) can be efficiently computed from the Clifford conjugation rules.
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(i) 1, can be classically determined in polynomial time (cont.):
The labels a(e;) can be efficiently computed from the Clifford conjugation rules.

They can be used to construct the columns of an N X M matrix A such that:
Ty ={t: At = 0V} = ker(A).
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(i) 1, can be classically determined in polynomial time (cont.):
The labels a(e;) can be efficiently computed from the Clifford conjugation rules.

They can be used to construct the columns of an N X M matrix A such that:
Ty ={t: At = 0V} = ker(A).

Denote the basis of the kernelof Aas {c¢;, i = 1,....L < M} .
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(i) 1,y can be classically determined in polynomial time (cont.):
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(i) 1,y can be classically determined in polynomial time (cont.):

There are classical algorithms which allow the efficient determination of the
basis of the kernel of a matrix, so the first statement is proved.
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(i) The sum can be classically efficiently computed:

L
Notethatt € T, iff At=0" o te T, iff t= Zskck.
k=1
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(i) The sum can be classically efficiently computed:

L
Notethatt € T, iff At=0" o te T, iff t= Zskck.
k=1

L L
Therefore, u(t) = u ( 2 Skck) = Z S, U (ck) .

k=1 k=1
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(i) The sum can be classically efficiently computed:

L
Notethatt € T, iff At=0" o te T, iff t= Zskck.
k=1

M=

Skck) Y st cr)

k=1

Therefore, u(t) = u (

k=1

Let u(c,) =g, = u(t) =s-q
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(i) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

1
p=—y D=0 Z( DS Ty = {t: At=0")

2M
teT, seZ5
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(i) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

1
p=—y D=0 Z( DS Ty = {t: At=0")

2M
teT, seZ5
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(i) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

1 1
P = Y (—1)H = i D (=1 Ty = {t: At=0")

teT, seZ5

)= (1/2ML ifg = 0F
0, if g # OF
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(i) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

1 1
P = Y (—1)H = i D (=1 Ty = {t: At=0")

teT, seZ5

)= (1/2ML ifg = 0F
0, if g # OF
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(i) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

P =

1
i 2 (D= =Y (<1 Ty = {t: At=0Y)

teT, seZ5
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(i) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

p=—y D=0 Z( DS Ty = {t: At=0")

teT, seZ5

2M

' Strong simulation of this family of |

circuits can be carried out efficiently]
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Summary | Procedure for the efficient strong classical simulation:
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Summary | Procedure for the efficient strong classical simulation:

1. determine the M a (ek) labels efficiently from the Clifford update rules;
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Summary | Procedure for the efficient strong classical simulation:

1. determine the M a (ek) labels efficiently from the Clifford update rules;

2. construct the N X M matrix A;
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Summary | Procedure for the efficient strong classical simulation:

1. determine the M a (ek) labels efficiently from the Clifford update rules;

2. construct the N X M matrix A;

3. determine the ker(A) and its basis {c, } (classically efficient);

F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club



an >
INTERNATIONAL 1 ‘

BERIAN

Paperreview V&L
= Theorem 4 : STRONG| NON-ADAPT/ IN(BITS)| OUT(MANY)

Summary | Procedure for the efficient strong classical simulation:

1. determine the M a (ek) labels efficiently from the Clifford update rules;
2. construct the N X M matrix A;
3. determine the ker(A) and its basis {c, } (classically efficient);

4. for each ¢, compute: g, = u(c,) using the Clifford update rules;
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Summary | Procedure for the efficient strong classical simulation:

1. determine the M a (ek) labels efficiently from the Clifford update rules;
2. construct the N X M matrix A;
3. determine the ker(A) and its basis {c, } (classically efficient);

4. for each ¢, compute: g, = u(c,) using the Clifford update rules;

5.1fg = 05, p = (1/2)ML, whileq # 08 = p = 0.
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NON-ADAPT ADAPT
WEAK STRONG WEAK STRONG

=
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IN(PROD) IN(PROD)
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Let I be a set of computational tasks defined by non-adaptive Clifford
circuits, with general product state input and measurement of a single output

f qubit. Then, J can be class:cally eff:c:ently s:mulable /n the strong sense.

. Input: |z/10> = |a1> |a2>... |aN>
» Circuit: C

. Output state: ‘l//f> =Clyy) =C|a)) |a) ... |ay)

» Output: b = 0 or b = 1, with probabilities p, and p, .
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Let I be a set of computational tasks defined by non-adaptive Clifford
circuits, with general product state input and measurement of a single output

qub/t Then J can be cIass:cally eff:c:ently s:mulable /n the strong sense.

nput: yo) = o) @) ... ay)
» Circuit: C

. Output state: ‘1//f> =Clyp) =C|a) |a) ... |ay

-« Output: b = 0 or b = 1, with probabilities Poand p; .|
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Let I be a set of computational tasks defined by non-adaptive Clifford
circuits, with general product state input and measurement of a single output

qub/t Then J can be cIass:cally eff:c:ently s:mulable /n the strong sense.

nput: yo) = o) @) ... ay)
» Circuit: C

. Output state: ‘1//f> =Clyp) =C|a) |a) ... |ay

-« Output: b = 0 or b = 1, with probabilities Poand p; .|
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The two probabilities can be written as:

[+ 7
[—7Z
P1:<l/fo| C' (T®I®...®I>C|llfo>

And therefore the difference between them reads:

Po—P1 = <l//0| CWL(Z®---®1)C|1//0>
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The two probabilities can be written as:

[+ 7
[—7Z
P1:<l/fo| C' (T®I®...®I>C|llfo>

And therefore the difference between them reads:
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The two probabilities can be written as:

[+ 7
[—7Z
P1:<l/fo| C' (T®I®...®I>C|llfo>

And therefore the difference between them reads:
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C'Z®...HC == PhyQPyH®...Q0 Py, (efficiently determined
from the Clifford update rules)
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C'Z®...HC == PhyQPyH®...Q0 Py, (efficiently determined
from the Clifford update rules)

Therefore the difference between the two probabillities is simply:
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C'Z®...HC == PhyQPyH®...Q0 Py, (efficiently determined
from the Clifford update rules)

Therefore the difference between the two probabillities is simply:

po—p1 = £II, <0‘k| Py |0‘k>-
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C'Z®...HC == PhyQPyH®...Q0 Py, (efficiently determined
from the Clifford update rules)

Therefore the difference between the two probabillities is simply:

po—p1 = £II, <0‘k| Py |0‘k>-
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= Theorem 1 : STRONG|NON-ADAPT|IN(PROD)] OUT(1)

C'Z®...HC == PhyQPyH®...Q0 Py, (efficiently determined
from the Clifford update rules)

Therefore the difference between the two probabillities is simply:

po—p1 = £ I <0‘k| Py |0‘k>

We need only calculate NV expectation values of 2 X 2 Pauli matrices, which
can be done classically in poly(N) time.
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Let I be a set of computational tasks defined by adaptive Clifford circuits,
with computational basis input states and measurements on multiple output

qub/ts Then J can be cIass:cally eff:c:ently s:mulable /n the Weak sense.

° IﬂpUt: ‘X) — |X1X2 . . .XN>
- Circuit: C
- K intermediate measurements + M output measurements

+ Output distribution: p = p(y) = p(¥1, Y2, - - - » Yam)
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e Consider a circuit C such as:

M M
:132> —
T3) Ux Uz (M) Us(M-2)
zN) —
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» Consider a circuit C' on N + K qubits so that:
M;

|O>a1 <> /7( ®
Jn My
10) 42 o—1 X ﬂ
1) — ° °
SL”Q> —
Uy Us(My) Us (M)
TN) —
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o C and (C'are equivalent and for C’ we have:

() input state [0, .. Oy .. Xgyn) = [0)...04) |X):
(ii) output measurements are carried out on qubits K + 1 to K + M;

(ili) intermediate measurements are carried out on the first K qubits, and those
are not used thereatfter.
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- A full run of C’ samples an associated probability distribution
POy - YkVkt1 -+ - Yiam) -

« Suppose that all intermediate measurements have been carried out.

- Then, the sequence y; ... yx is fixed and the circuit C' becomes non-adaptive.
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- Then we can efficiently compute the marginal probabilities p(y, . .. yx) and
PO - YkYK41 - - - YK4+N) -

» This means that we know the probability of occurrence of each possible non-

adaptive circuit C’; and for each of those we know the probability of each
string.

» Therefore, we can sample from this distribution and weakly simulate the
adaptive circuit C' and, thus, C.
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= Remarks on the Gottesman-Knill theorem

 GOTTESMAN-KNILL THEOREM (GK): (version 1)

Any quantum computation carried out on a (potentially adaptive) stabiliser
circuit can be perfectly weakly simulated in polynomial time on a probabilistic
classical computer.

[1] D. Gottesman, in Group22: Proceedings of the XXII International
Colloquium on Group Theoretical Methods in Physics (1998) pp. 3243,
arXiv:quant-ph/9807006v1.
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= Remarks on the Gottesman-Knill theorem

 GOTTESMAN-KNILL THEOREM (GK): (version 2)

For any (non-adaptive) stabiliser circuit with a single output qubit, the
probability p that the output qubit is 1, can be efficiently classically computed.

[2] S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004),
arXiv:quant-ph/0406196v>5.
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Let I be a set of computational tasks defined by adaptive Clifford circuits
with general product state inputs and output measurement on a single qubit.

% Then the Weak claSSIca/ s:mulet/on of J /s QC hard

» QC-hard means that universal quantum computation is possible.

» To prove this it suffices to show that the resources available allow to
implement the T gate: T = diag (1,6’”/4) .
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1 .
‘¢zn> ? SM |¢0ut> |A> — \/5 (|O> 1 o4 |1>)

A)

N
N
@
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F. C. R. Peres
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Consider a set of computational tasks & defined by adaptive Clifford circuits
such that input states are computational basis states and only a single output

- measurement IS performed. Thn, sn/to o tasks in I is #P-hard.

» The available ingredients can be used to realize the Toffoli gate.

TOFF |a) |b) c) = |a) |b) |c€|9(ab))
a=0= TOFF |0) |b) |c) = |0) [b) |¢) = |O)I(|b) \c>)
a=1= TOFF |1y |b) |c) = |1) |b) |c @ b) = |1)CX(|I9) \c>)
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- |If the 1-th line is promised to be in a computational basis state we can
implement the Toffoli gate as;
a

o — ®

CX“

N
%

p
\d

» This sort of implementation does not allow the application of Toffoli gates
coherently on general quantum states, because the adaptation requires a

measurement on the i-th line.
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 The Toffoli gate can perform universal classical computation.

» Therefore, the defined family of circuits can perform universal classical
computation. = They can compute any Boolean function with an /V bit input
and a single bit output: f(x) € Z,, x € ZZZV.
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» Procedure to implement a circuit C € & on N + 1 qubits:
1. Every qubit is initialised in | 0):

2. First NV qubits are transformed by a Hadamard gate and then measured
generating a random bit-string X = XX, . . . Xp;

3. Perform the following mapping U €  : U |x) |()) = |x) |f(x));

4. Measure the last qubit, registering the value of the function.
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#
p(l) = 2—]];

- If it is possible to determine the probability p = p(1), then it is possible to know #f .

- If it were possible to determine p(1) then it would be possible to count the number
of solutions to an NP-hard satisfiability problem, i.e., it would be possible to solve a
#P-hard problem.
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NON-ADAPT ADAPT
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— . . . #P-hard
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= Theorem 2: STRONG/ADAPT/IN(BITS)| OUT(1)

NON-ADAPT ADAPT
WEAK STRONG WEAK STRONG
=
— . . . #P-hard
- IN(BITS) Clas. Effic. | Clas. Effic. IN(BITS) Clas. Effic. (Theclem N
O
. Clas. Effic. Univ. QC |

IN(PROD) | Clas. Effic. (Theorem 1) IN(PROD) (Theorem 3) #P-hard
g WEAK | STRONG WEAK | STRONG
<§E IN(BITS) | Clas. Effic. | =12 EIMC NEiTS) | ClasEffe |y g ¥/
: ' " | (Theorem 4) (Theorem 5) . /
8 IN(PROD) IN(PROD) | Univ. QC 4p-hard
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Consider a set of computational tasks & defined by non-adaptive Clifford
circuits, with any general product state input and multiple bit output. Then,

strong SImuIat/on of /s nP-hard

- — = e —_—

- Consider a universal quantum circuit C, which has K 1" gates.

- We can turn this into a Clifford circuit C' on N + K qubits, replacing each T

gate in aline 1 by CX, , a an ancillary magic state qubit.
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- Recall the 1" gadget: |¢, > . gM W t>
M
A) O F '
- But now we implement instead: Wm> * Wout>
M
A) o

F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club



Paper review
= Theorem 6: STRONG/ NON-ADAPT/IN(PROD)| OUT(MANW h

- C and C’ only coincide if all K intermediate measurements yield O in which
case we can write:

PcAYO;...0x)

pcy) = pc(y |0, K) 20 .. .0¢)

- pc(y) could be used to encode #f of any Boolean function, and solve #P-hard
problems.

F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club



Paper review

= Theorem 6

INTERNATIONAL IBERIAN

NANOTECHNOLOGY
LABORATORY

NON-ADAPT ADAPT
WEAK STRONG WEAK STRONG
=
— . . . #P-hard
- IN(BITS) Clas. Effic. | Clas. Effic. IN(BITS) Clas. Effic. (Theorem 2)
O
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Let I be the set of computational tasks defined (as in theorem 6) by non-
adaptive Clifford circuits, general product state inputs and multiple bit

outputs. If & could be weakly efficiently classically simulated, then the
polynom/al h/erarchy PH Would collapse to /ts th/rd Ievel

e I _—— e — = =S . ————— = = — — — —
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NON-ADAPT ADAPT
WEAK STRONG WEAK STRONG
=
— . . . #P-hard
- IN(BITS) Clas. Effic. | Clas. Effic. IN(BITS) Clas. Effic. (Theorem 2)
@,
J I . Clas. Effic. Univ. QC )
- \!\E(PROD) Clas. Effic. (Theorem 1) IN(PROD) | (theorem 3 #P-hard
WEAK | STRONG ! WEAK | STRONG
AN | Clas. Effic. Clas. Effic.
IN(BIT Clas. Effic. (Theorem 4) RS ) | (Theorem 5) #P-hard
@ i Clas. Effic.
IN(PROD) | then PH collapse Univ. QC #P-hard

F. C. R. Peres

(Theorem 7)




Thank you for your attention!
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= The Clifford group and stabiliser circuits

* Action of the generators of the Clifford group on the Pauli group generators:

HXH =Z7; HZH =X; — swapx,andz, ;s =s,® X,

a a d a—a —d

SCZXCZS; — Y SCZZCZS; — Z : — xl.,d — la ; Zi,a — Zld @ xza ; Sl, — Sl @ A
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Introductory concepts

= The Clifford group and stabiliser circuits

* Action of the generators of the Clifford group on the Pauli group generators:

/

/o . _ . 1 . 1 :
— Xia = Xigs xib — Aig GB Aibs $iag = <ig EB ibs Zib — <ip s

/
S; = 8; D X2 (xibzia D 1)
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Let I be the set of computational tasks defined (as in theorem 6) by non-
adaptive Clifford circuits, general product state inputs and multiple bit

outputs. If & could be weakly efficiently classically simulated, then the
polynomial hierarchy PH would collapse to its third level.

—e— e - 3 e — == - —______ = . ————— = = — — — —

- Again consider a universal quantum circuit C, with K T  gates.

- To implement each 1 gate we use the same gadget as in the previous
theorem, post-selecting the value O for all of the ancillas.
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Paper review
= Theorem 7: WEAK/ NON-ADAPT/IN(PROD)| OUT(MANY)

« I + post-selection contains universal quantum computation with post-
selection.

* postBQP = PP

» Therefore, posts contains PP .
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Paper review
= Theorem 7: WEAK/ NON-ADAPT/IN(PROD)| OUT(MANY)

« A any class of bounded-error quantum circuits such that post.% contains
PP.

» Weak efficient classical simulation of & = post# is contained in postBPP.

» postBPP C PP = PH would collapse to its third level.
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