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Presentation overview

1. Introductory concepts


➡ Strong vs. Weak simulation


➡ The Pauli group


➡ The Clifford group and stabiliser circuits


➡ The stabiliser formalism and the Gottesman-Knill theorem

2



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Presentation overview

2. Classical simulation complexity of extended Clifford circuit - paper review[*]


➡ The extra ingredients


➡ The extended classes


➡ Theorems and proofs


[*] R. Jozsa and M. V. den Nest, Quantum Information and Computation 14 
(2013), arXiv:1305.6190.
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Introductory concepts
➡ Strong vs. Weak simulation

• Strong simulation  calculate the probability of any desired outcome of the 
computation.

→

• Weak simulation  sample from the output distribution of the circuit.→
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Introductory concepts
➡ The Pauli group

• Definition 1: [PAULI GROUP]


The Pauli group on  qubits  is the group whose elements are -fold 
tensor products of the single-qubit Pauli operators , ,  and , together 
with the multiplicative factors  and . 

• Number of elements : ;   elements;  elements.


• Example: 

N 𝒫N N
I X Y Z

±1 ±i

4N+1 N = 1 ⇒ 16 N = 2 ⇒ 64

(X ⊗ I), (X ⊗ X), − i(Y ⊗ Z) ∈ 𝒫2
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Introductory concepts
➡ The Pauli group

•  can be completely described by  generators:


 


• Notation:  denotes the operator such that the single-qubit Pauli  acts on 
the -th qubit of the system and the identity is applied to all other qubits. 
Example:  

𝒫N 2N

𝒫N = ⟨X1, . . . , XN, Z1, . . . , ZN⟩ .

Xi X
i

X1 = (X ⊗ I ⊗ . . . ⊗ I) = (X(1) ⊗ I(2) ⊗ . . . ⊗ I(N)) .
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Introductory concepts
➡ The Pauli group

• Example:  has  elements but only  generators:





• Example:  has  elements but only  generators:


 

𝒫2 64 4

𝒫2 = ⟨X ⊗ I, I ⊗ X, Z ⊗ I, I ⊗ Z⟩ = ⟨X1, X2, Z1, Z2⟩ .

𝒫3 256 6

𝒫3 = ⟨X1, X2, X3, Z1, Z2, Z3⟩ .
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Introductory concepts
➡ The Clifford group and stabiliser circuits

• Definition 2: [CLIFFORD GROUP]


An operation is said to be a Clifford unitary  if it maps the Pauli group onto 
itself under conjugation, that is, if 

  

where . 

Clifford unitaries form a group known as the Clifford group and generated by 
the Hadamard ( ), phase ( ) and controlled-NOT ( ) gates.

C

C𝒫NC† = 𝒫N ⇔ CPiC† = Pj ,

Pi, Pj ∈ 𝒫N

H S CX
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Introductory concepts
➡ The Clifford group and stabiliser circuits

• Action of the generators of the Clifford group on the Pauli group generators: 

 


 





HXH† = Z; HZH† = X;

SXS† = Y; SZS† = Z;

CX(X ⊗ I)CX† = (X ⊗ X); CX(I ⊗ X)CX† = (I ⊗ X);

CX(Z ⊗ I)CX† = (Z ⊗ I); CX(I ⊗ Z)CX† = (Z ⊗ Z) .
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Introductory concepts
➡ The Clifford group and stabiliser circuits

• Definition 3: [STABILISER CIRCUIT]


A circuit is said to be a stabiliser circuit if the following conditions are met: 

(i) its inputs are computational basis states; 

(ii) each operation is either a Clifford unitary or a measurement in the 
computational basis. 
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem

• Definition 4: [STABILISING OPERATION]


An operator  is said to stabilise  if: 




• The stabiliser formalism is a particularly powerful framework for describing 
stabiliser circuits  in this case the stabiliser operators are always 
hermitian Pauli operators.

S ψ⟩

S ψ⟩ = ψ⟩ .

→
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem

• Definition 5: [STABILISER]


The set of operators  which stabilise an -qubit state  form a group 
known as the stabiliser: 

 


• The stabiliser is uniquely determined by  generators.

Pi N ψ⟩

𝒮 = {Pi : Pi ψ⟩ = ψ⟩ ∀Pi ∈ 𝒫N} .

N
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem

• Example: 


 generators for the stabiliser: 


• Example: Consider the Bell state





 generators for the stabiliser: 

00⟩

N = 2 ⇒ 2 𝒮 = ⟨Z ⊗ I, I ⊗ Z⟩ .

ℬ00⟩ =
00⟩ + 11⟩

2
.

N = 2 ⇒ 2 𝒮 = ⟨X ⊗ X, Z ⊗ Z⟩ .
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem

• Schrödinger’s picture of quantum mechanics: 


• Alternatively, we can use Heisenberg’s picture.


• In that case, we can describe the evolution of the state through the evolution 
of its stabiliser:


 

ψ⟩ → ψ′￼⟩ = U ψ⟩ .

𝒮 → 𝒮′￼ = U𝒮U† .

14



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem

• The tableau representation


x11 … x1N
x21 … x2N
⋮ ⋱ ⋮

xN1 … xNN

z11 … z1N
z21 … z2N
⋮ ⋱ ⋮

zN1 … zNN

s1
s2
⋮
sN
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem

• Example: Bell state  has stabiliser 





 


•Example: Bell state  has stabiliser 


00⟩ 𝒮 = ⟨Z ⊗ I, I ⊗ Z⟩ .

(0 0
0 0

1 0
0 1

0
0) .

ℬ00⟩ 𝒮 = ⟨X ⊗ X, Z ⊗ Z⟩ .

(1 1
0 0

0 0
1 1

0
0) .
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem
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Introductory concepts
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Introductory concepts
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem

• This formalism provides us with an efficient way of tracking the evolution of 
the state in a stabiliser circuit.


• At each step, the Pauli operators that generate the stabiliser can be updated 
efficiently through the application of the conjugation rules.
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Introductory concepts
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Efficient way of simulating stabiliser circuits!

GOTTESMAN-KNILL THEOREM
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Introductory concepts
➡ The stabiliser formalism and the Gottesman-Knill theorem

• Stabiliser circuits are not universal for quantum computation.


• Nevertheless, the  set is universal for quantum computation,


 

Clifford + T

T = diag(1, eiπ/4) .
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Paper review
➡ The extra ingredients

3 different binary classes are considered:


• Stabiliser state inputs (IN(BITS)) vs. More general product states (IN(PROD))


• Adaptivity (ADAPT) vs. Non-adaptivity (NON-ADAPT)


• Single output bit (OUT(1)) vs. Many output bits (OUT(MANY))


Additionally, the classical simulation complexity is considered for both strong 
and weak notions.

20
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Paper review
➡ The extended classes

21
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Paper review
➡ The extended classes
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GOAL: Determine what is the complexity of classically simulating each of these classes of 
quantum circuits. 
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Paper review
➡ The extended classes
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Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

Let  be a set of computational tasks defined by non-adaptive Clifford 
circuits, with computational basis input states and measurements on multiple 
output qubits. Then,  can be classically efficiently simulable in the strong 
sense. 

• Input: 


• Circuit: 


• Output state: 


• Desired probability: 

𝒯

𝒯

x⟩ = 0⟩
⊗N

= 0N⟩
C

ψ⟩ = C 0N⟩
p = p(y); y = 0M; M ≤ N

23
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Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

p = ⟨ψ ( 0M⟩ ⟨0M ⊗ I(M+1) ⊗ . . . ⊗ I(N)) ψ⟩

= ⟨ψ ( I + Z
2 )

⊗M

⊗ I(M+1) ⊗ . . . ⊗ I(N) ψ⟩

=
1

2M ⟨0N C† [(I(1) + Z(1)) ⊗ (I(2) + Z(2)) ⊗ . . . ⊗ (I(M) + Z(M)) ⊗ I(M+1) ⊗ . . . ⊗ I(N)] C 0N⟩
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Paper review
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2

Z(t)
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Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

p =
1
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2
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25



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

p =
1

2M ⟨0N C† [(I(1) + Z(1)) ⊗ (I(2) + Z(2)) ⊗ . . . ⊗ (I(M) + Z(M)) ⊗ I(M+1) ⊗ . . . ⊗ I(N)] C 0N⟩

(I(1) + Z(1)) ⊗ (I(2) + Z(2)) ⊗ . . . ⊗ (I(M) + Z(M)) = ∑
t∈ℤM

2

Z(t)

 Z(t) ≡ Zt1
(1) ⊗ Zt2

(2) ⊗ . . . ⊗ ZtM
(M)

25
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Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

 p =
1

2M ∑
t∈ℤM

2

⟨0N C†Z̃(t)C 0N⟩

26
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Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

 p =
1

2M ∑
t∈ℤM

2

⟨0N C†Z̃(t)C 0N⟩

26

 terms→ 2M
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Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

 p =
1

2M ∑
t∈ℤM

2

⟨0N C†Z̃(t)C 0N⟩

P(t) = C†Z(t)C ⇒ P(t)2 = I

26

 terms→ 2M



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
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 p =
1

2M ∑
t∈ℤM

2

⟨0N C†Z̃(t)C 0N⟩

P(t) = C†Z(t)C ⇒ P(t)2 = I
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(1) Zb1(t)

(1) ⊗ Xa2(t)
(2) Zb2(t)

(2) ⊗ . . . ⊗ XaN(t)
(N) ZbN(t)

(N) )

26
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Paper review
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2 → {±1, ± i}
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⟨0N C†Z̃(t)C 0N⟩
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Z 0⟩ = 0⟩; ⟨0 X 0⟩ = 0 ⇒ X (a(t)) = I ⇒ a(t) = 0N
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1

2M ∑
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F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

Recalling that P(t)2 = I ⇒ γ(t) = ± 1 ≡ (−1)u(t)

p =
1

2M ∑
t∈T0

(−1)u(t); T0 = {t : a(t) = 0N}

28
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Recalling that P(t)2 = I ⇒ γ(t) = ± 1 ≡ (−1)u(t)

p =
1

2M ∑
t∈T0

(−1)u(t); T0 = {t : a(t) = 0N}

Prove that:

(i)  can be classically determined in polynomial time;T0

(ii) The sum can be classically efficiently computed.
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(i)  can be classically determined in polynomial time:T0

Define a basis of  ,  ℤM
2 {ei , i = 1,...,M} : ei = 0102 . . .1i . . .0M

29
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(i)  can be classically determined in polynomial time:T0

Define a basis of  ,  ℤM
2 {ei , i = 1,...,M} : ei = 0102 . . .1i . . .0M

Then, any bit string can be written as: t =
M

∑
k=1

tkek

29
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(i)  can be classically determined in polynomial time:T0

Define a basis of  ,  ℤM
2 {ei , i = 1,...,M} : ei = 0102 . . .1i . . .0M

Then, any bit string can be written as: t =
M

∑
k=1

tkek

And it is also possible to write:   a(t) =
M

∑
k=1

tka(ek)
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(i)  can be classically determined in polynomial time (cont.):T0

30
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(i)  can be classically determined in polynomial time (cont.):T0

The labels  can be efficiently computed from the Clifford conjugation rules.a(ei)

30
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(i)  can be classically determined in polynomial time (cont.):T0

The labels  can be efficiently computed from the Clifford conjugation rules.a(ei)
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(i)  can be classically determined in polynomial time (cont.):T0

The labels  can be efficiently computed from the Clifford conjugation rules.a(ei)

They can be used to construct the columns of an  matrix  such that: N × M A
T0 = {t : At = 0N} ≡ ker(A) .
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(i)  can be classically determined in polynomial time (cont.):T0

The labels  can be efficiently computed from the Clifford conjugation rules.a(ei)

They can be used to construct the columns of an  matrix  such that: N × M A
T0 = {t : At = 0N} ≡ ker(A) .

Denote the basis of the kernel of  as A {ci, i = 1,...,L ≤ M} .
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(i)  can be classically determined in polynomial time (cont.):T0

31



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

(i)  can be classically determined in polynomial time (cont.):T0

There are classical algorithms which allow the efficient determination of the 
basis of the kernel of a matrix, so the first statement is proved.

31
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(ii) The sum can be classically efficiently computed:

Note that t ∈ T0 iff At = 0N ⇔ t ∈ T0 iff t =
L

∑
k=1

skck .

32
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(ii) The sum can be classically efficiently computed:

Note that t ∈ T0 iff At = 0N ⇔ t ∈ T0 iff t =
L

∑
k=1

skck .

Therefore, u(t) = u (
L

∑
k=1

skck) =
L

∑
k=1

sku (ck) .
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(ii) The sum can be classically efficiently computed:

Note that t ∈ T0 iff At = 0N ⇔ t ∈ T0 iff t =
L

∑
k=1

skck .

Therefore, u(t) = u (
L

∑
k=1

skck) =
L

∑
k=1

sku (ck) .

Let u(ck) = qk → u(t) = s ⋅ q

32
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(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

p =
1

2M ∑
t∈T0

(−1)u(t) =
1

2M ∑
s∈ℤL

2

(−1)s⋅q; T0 = {t : At = 0N}
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(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

p =
1

2M ∑
t∈T0

(−1)u(t) =
1

2M ∑
s∈ℤL

2

(−1)s⋅q; T0 = {t : At = 0N}

33



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

p =
1

2M ∑
t∈T0

(−1)u(t) =
1

2M ∑
s∈ℤL

2

(−1)s⋅q; T0 = {t : At = 0N}

p = {(1/2)M−L, if q = 0L

0, if q ≠ 0L
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(ii) The sum can be classically efficiently computed (cont.):

Returning to the sum we have:

p =
1

2M ∑
t∈T0

(−1)u(t) =
1

2M ∑
s∈ℤL
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(−1)s⋅q; T0 = {t : At = 0N}
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Strong simulation of this family of 
circuits can be carried out efficiently
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Summary | Procedure for the efficient strong classical simulation: 
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Summary | Procedure for the efficient strong classical simulation: 

1. determine the   labels efficiently from the Clifford update rules;M a (ek)
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1. determine the   labels efficiently from the Clifford update rules;M a (ek)
2. construct the  matrix ;N × M A

3. determine the  and its basis  (classically efficient);ker(A) {ck}

4. for each  compute:  using the Clifford update rules;ck qk = u(ck)

34



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
➡ Theorem 4 : STRONG| NON-ADAPT| IN(BITS)| OUT(MANY)

Summary | Procedure for the efficient strong classical simulation: 

1. determine the   labels efficiently from the Clifford update rules;M a (ek)
2. construct the  matrix ;N × M A

3. determine the  and its basis  (classically efficient);ker(A) {ck}

4. for each  compute:  using the Clifford update rules;ck qk = u(ck)

5. If  while q = 0L, p = (1/2)M−L, q ≠ 0L ⇒ p = 0.

34
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Let  be a set of computational tasks defined by non-adaptive Clifford 
circuits, with general product state input and measurement of a single output 
qubit. Then,  can be classically efficiently simulable in the strong sense. 

• Input: 


• Circuit: 


• Output state: 


• Output:  or , with probabilities  and 

𝒯

𝒯

ψ0⟩ = α1⟩ α2⟩ . . . αN⟩
C

ψf⟩ = C ψ0⟩ = C α1⟩ α2⟩ . . . αN⟩
b = 0 b = 1 p0 p1 .

38



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
➡ Theorem 1 : STRONG| NON-ADAPT| IN(PROD)| OUT(1)

Let  be a set of computational tasks defined by non-adaptive Clifford 
circuits, with general product state input and measurement of a single output 
qubit. Then,  can be classically efficiently simulable in the strong sense. 

• Input: 


• Circuit: 


• Output state: 


• Output:  or , with probabilities  and 

𝒯

𝒯

ψ0⟩ = α1⟩ α2⟩ . . . αN⟩
C

ψf⟩ = C ψ0⟩ = C α1⟩ α2⟩ . . . αN⟩
b = 0 b = 1 p0 p1 .

38



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
➡ Theorem 1 : STRONG| NON-ADAPT| IN(PROD)| OUT(1)

Let  be a set of computational tasks defined by non-adaptive Clifford 
circuits, with general product state input and measurement of a single output 
qubit. Then,  can be classically efficiently simulable in the strong sense. 

• Input: 


• Circuit: 


• Output state: 


• Output:  or , with probabilities  and 

𝒯

𝒯

ψ0⟩ = α1⟩ α2⟩ . . . αN⟩
C

ψf⟩ = C ψ0⟩ = C α1⟩ α2⟩ . . . αN⟩
b = 0 b = 1 p0 p1 .

38


p0 = ⟨ψf ( 0⟩ ⟨0 ) ψf⟩
p1 = ⟨ψf ( 1⟩ ⟨1 ) ψf⟩
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The two probabilities can be written as:








And therefore the difference between them reads:


p0 = ⟨ψ0 C† ( I + Z
2

⊗ I ⊗ . . . ⊗ I) C ψ0⟩

p1 = ⟨ψ0 C† ( I − Z
2

⊗ I ⊗ . . . ⊗ I) C ψ0⟩

p0 − p1 = ⟨ψ0 C† (Z ⊗ . . . ⊗ I) C ψ0⟩

39
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Pauli operator
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    (efficiently determined 
from the Clifford update rules)
C† (Z ⊗ . . . ⊗ I) C = ± P(1) ⊗ P(2) ⊗ . . . ⊗ P(N)

40
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k=1 ⟨αk P(k) αk⟩ .
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    (efficiently determined 
from the Clifford update rules)
C† (Z ⊗ . . . ⊗ I) C = ± P(1) ⊗ P(2) ⊗ . . . ⊗ P(N)

Therefore the difference between the two probabilities is simply:

 p0 − p1 = ± ΠN
k=1 ⟨αk P(k) αk⟩ .

We need only calculate  expectation values of  Pauli matrices, which 
can be done classically in  time.

N 2 × 2
poly(N)

40
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➡ Theorem 5: WEAK| ADAPT| IN(BITS)| OUT(MANY)

Let  be a set of computational tasks defined by adaptive Clifford circuits, 
with computational basis input states and measurements on multiple output 
qubits. Then,  can be classically efficiently simulable in the weak sense. 

 


• Input: 


• Circuit: 


•  intermediate measurements  output measurements


• Output distribution: 

𝒯

𝒯

x⟩ = x1x2 . . . xN⟩
C

K + M

p = p(y) = p(y1, y2, . . . , yK+M)
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• Consider a circuit  such as:C
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• Consider a circuit   on  qubits so that:C′￼ N + K
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•  and  are equivalent and for  we have:


(i) input state 


(ii) output measurements are carried out on qubits  to 


(iii) intermediate measurements are carried out on the first  qubits, and those 
are not used thereafter.

C C′￼ C′￼

01 . . .0KxK+1 . . . xK+N⟩ = 01 . . .0K⟩ x⟩;

K + 1 K + M;

K
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• A full run of  samples an associated probability distribution 



 


• Suppose that all intermediate measurements have been carried out.


• Then, the sequence  is fixed and the circuit  becomes non-adaptive.

C′￼

p(y1 . . . yKyK+1 . . . yK+M) .

y1 . . . yK C′￼
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• Then we can efficiently compute the marginal probabilities  and 



• This means that we know the probability of occurrence of each possible non-
adaptive circuit ; and for each of those we know the probability of each 
string.


• Therefore, we can sample from this distribution and weakly simulate the 
adaptive circuit  and, thus, 

p(y1 . . . yK)
p(y1 . . . yKyK+1 . . . yK+N) .

C′￼

C′￼ C .
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➡ Remarks on the Gottesman-Knill theorem

• GOTTESMAN-KNILL THEOREM (GK): (version 1)


Any quantum computation carried out on a (potentially adaptive) stabiliser 
circuit can be perfectly weakly simulated in polynomial time on a probabilistic 
classical computer. 

[1] D. Gottesman, in Group22: Proceedings of the XXII International 
Colloquium on Group Theoretical Methods in Physics (1998) pp. 32–43, 
arXiv:quant-ph/9807006v1.
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➡ Remarks on the Gottesman-Knill theorem

• GOTTESMAN-KNILL THEOREM (GK): (version 2)


For any (non-adaptive) stabiliser circuit with a single output qubit, the 
probability  that the output qubit is , can be efficiently classically computed. 

[2] S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004), 
arXiv:quant-ph/0406196v5.

p 1
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➡ Theorem 3: WEAK| ADAPT| IN(PROD)| OUT(1)

Let  be a set of computational tasks defined by adaptive Clifford circuits 
with general product state inputs and output measurement on a single qubit. 
Then, the weak classical simulation of  is QC-hard. 

• QC-hard means that universal quantum computation is possible.


• To prove this it suffices to show that the resources available allow to 
implement the  gate: 

𝒯

𝒯

T T = diag (1,eiπ/4) .
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A⟩ =
1

2 ( 0⟩ + eiπ/4 1⟩)

ψout⟩ = T ψin⟩
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Consider a set of computational tasks  defined by adaptive Clifford circuits 
such that input states are computational basis states and only a single output 
measurement is performed. Then, strong simulation of tasks in  is #P-hard. 

• The available ingredients can be used to realize the Toffoli gate.







𝒯

𝒯

TOFF a⟩ b⟩ c⟩ = a⟩ b⟩ c ⊕ (ab)⟩

a = 0 ⇒ TOFF 0⟩ b⟩ c⟩ = 0⟩ b⟩ c⟩ ≡ 0⟩ I ( b⟩ c⟩)
a = 1 ⇒ TOFF 1⟩ b⟩ c⟩ = 1⟩ b⟩ c ⊕ b⟩ ≡ 1⟩ CX ( b⟩ c⟩)
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• If the -th line is promised to be in a computational basis state we can 
implement the Toffoli gate as; 


• This sort of implementation does not allow the application of Toffoli gates 
coherently on general quantum states, because the adaptation requires a 
measurement on the -th line.

i

i
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• The Toffoli gate can perform universal classical computation.


• Therefore, the defined family of circuits can perform universal classical 
computation.  They can compute any Boolean function with an  bit input 
and a single bit output: 

⇒ N
f(x) ∈ ℤ2, x ∈ ℤN

2 .
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• Procedure to implement a circuit  on  qubits:


1. Every qubit is initialised in 


2. First  qubits are transformed by a Hadamard gate and then measured 
generating a random bit-string 


3. Perform the following mapping  


4. Measure the last qubit, registering the value of the function.

C ∈ 𝒯 N + 1

0⟩;

N
x ≡ x1x2 . . . xN;

U ∈ 𝒯 : U x⟩ 0⟩ = x⟩ f(x)⟩;
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• If it is possible to determine the probability  then it is possible to know 


• If it were possible to determine   then it would be possible to count the number 
of solutions to an NP-hard satisfiability problem, i.e., it would be possible to solve a 
#P-hard problem.


p(1) =
#f
2N

p = p(1), #f .

p(1)
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Consider a set of computational tasks  defined by non-adaptive Clifford 
circuits, with any general product state input and multiple bit output. Then, 
strong simulation of  is #P-hard. 

• Consider a universal quantum circuit  which has   gates.


• We can turn this into a Clifford circuit  on  qubits, replacing each  
gate in a line  by   an ancillary magic state qubit.

𝒯

𝒯

C, K T

C′￼ N + K T
i CXia , a
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• Recall the  gadget:


• But now we implement instead:

T
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•  and  only coincide if all  intermediate measurements yield  in which 
case we can write:


 


•  could be used to encode  of any Boolean function, and solve #P-hard 
problems.

C C′￼ K 0

pC(y) = pC′￼
(y |01 . . .0K) =

pC′￼
(y01 . . .0K)

pC′￼
(01 . . .0K)

.

pC(y) #f

69



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
➡ Theorem 6

70

WEAK STRONG

IN(BITS) Clas. Effic. Clas. Effic.

IN(PROD) Clas. Effic. Clas. Effic. 
(Theorem 1)

NON-ADAPT ADAPT

O
U

T(
1)

O
U

T(
M

AN
Y) WEAK STRONG

IN(BITS) Clas. Effic. Clas. Effic. 
(Theorem 4)

IN(PROD) #P-hard

(Theorem 6)

WEAK STRONG

IN(BITS) Clas. Effic. #P-hard

(Theorem 2)

IN(PROD) Univ. QC 
(Theorem 3) #P-hard

WEAK STRONG

IN(BITS) Clas. Effic. 
(Theorem 5) #P-hard

IN(PROD) Univ. QC #P-hard



F. C. R. Peres Quantum and Linear-Optical Computation (QLOC) | Journal Club

Paper review
➡ Theorem 7: WEAK/ NON-ADAPT| IN(PROD)| OUT(MANY)

Let  be the set of computational tasks defined (as in theorem 6) by non-
adaptive Clifford circuits, general product state inputs and multiple bit 
outputs. If  could be weakly efficiently classically simulated, then the 
polynomial hierarchy PH would collapse to its third level.

𝒯

𝒯
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means

-complete!


Their designation in 
the paper is a bit 

unfortunate!

BQP

A more recent 
result shows that 

under certain 
circumstances this can 
actually be classically 

efficient!
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Thank you for your attention!
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Introductory concepts
➡ The Clifford group and stabiliser circuits

• Action of the generators of the Clifford group on the Pauli group generators: 

   


       

HaXaH†
a = Za; HaZaH†

a = Xa; → swap xia and zia ; s′￼i = si ⊕ xiazia

SaXaS†
a = Ya; SaZaS†

a = Za; → x′￼ia = xia ; z′￼ia = zia ⊕ xia ; s′￼i = si ⊕ xiazia

A1
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Introductory concepts
➡ The Clifford group and stabiliser circuits

• Action of the generators of the Clifford group on the Pauli group generators: 







 


CXab(X(a) ⊗ I(b))CX†
ab = (X(a) ⊗ X(b)); CXab(I(a) ⊗ X(b))CX†

ab = (I(a) ⊗ X(b));

CXab(Z(a) ⊗ I(b))CX†
ab = (Z(a) ⊗ I(b)); CXab(I(a) ⊗ Z(b))CX†

ab = (Z(a) ⊗ Z(b));

→ x′￼ia = xia; x′￼ib = xia ⊕ xib; z′￼ia = zia ⊕ zib; z′￼ib = zib ;

s′￼i = si ⊕ xiazib (xibzia ⊕ 1)
A2
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Let  be the set of computational tasks defined (as in theorem 6) by non-
adaptive Clifford circuits, general product state inputs and multiple bit 
outputs. If  could be weakly efficiently classically simulated, then the 
polynomial hierarchy PH would collapse to its third level. 

• Again consider a universal quantum circuit  with   gates.


• To implement each  gate we use the same gadget as in the previous 
theorem, post-selecting the value  for all of the ancillas.

𝒯

𝒯

C, K T

T
0
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•  post-selection contains universal quantum computation with post-
selection.


• postBQP = PP


• Therefore,  contains 

𝒯 +

post𝒯 PP .

A4
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•  any class of bounded-error quantum circuits such that  contains 
PP.


• Weak efficient classical simulation of    is contained in postBPP.


•   would collapse to its third level.

𝒦 post𝒦

𝒦 ⇒ post𝒦

postBPP ⊂ PP ⇒ PH

A5


