On Quantum Bayesian Networks

Michael de Oliveira

Prof. Luis Soares Barbosa

Mestrado Integrado em Engenharia Física, Universidade do Minho

September 24, 2020

Outline

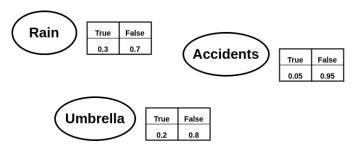
- Bayesian networks for a decision-making process
- Quantum decision-making
- Complexity estimation
- Picturing a quantum Bayesian algorithm
- Conclusions

Section 1

Bayesian networks for a decision-making process

Working with Uncertainty

A variety of domains handle objects and events that are uncertain (presents probabilistic behavior):



They are most of the time-related meaning that the probability of occurring is not independent:

$$P(Rain, Accidents) \neq P(Rain) * P(Accidents)$$
 (1)

Probability Distribution Table

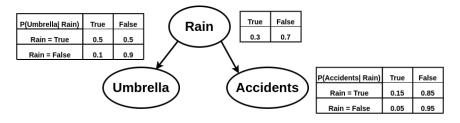
The complete information required to describe the occurrence of mutual events is given by the probability of each combination:

Rain	Umbrella	Accidents	P(Rain,)
True	True	True	0.08
True	True	False	0.12
True	False	True	0.03
True	False	False	0.025
False	True	True	0.01
	:	:	

This representation is very expensive in computational resources as it requires an exponential amount of space in relation to the number of variables.

Bayesian networks

Bayesian networks are a compact representation of the joint probability distribution table.



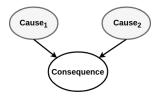
Any probability from the distribution table can be obtained by:

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i|Parents(X_i))$$
 (2)

Note: They are inspired by the Bayes updating rule.

Uses of Bayesian networks

In a variety of domains, constructing the network from the data can expose causal relations between the elements of study:



... while in other domains their capacity to infer conditional probabilities is explored:

$$P(Var|Evidence_1, Evidence_2) = \frac{P(Var, Evidence_1, Evidence_2)}{P(Evidence_1, Evidence_2)}$$
(3)

Decision Making

In a decision-making process, conditional probabilities are used to compute the utility of an action:

$$EU(a|e) = \sum_{r} P(Result = r|a, e) * U(r)$$
 (4)

By the maximum expected utility principle, a rational entity will choose the action with the greatest expected utility with respect to its own set of beliefs:

$$action = argmax_a EU(a|e)$$
 (5)

Bayesian networks for decision making

However, inference on a Bayesian network is an NP-Hard problem, which means that the number of iterations required to compute a value grows exponentially with the size of the problem.

Section 2

Quantum decision-making

Quantum inference

A quantum algorithm for inference on Bayesian networks was introduced by Low *et al* [2], leading to a quadratic speed up for some networks.

Rejection Sampling

=

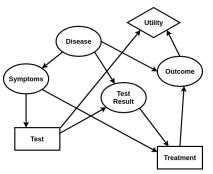
This comes from the fact that this kind of inference can be reduced to a search problem, to which the Amplitude Amplification algorithm can be applied.

With a quantum computer, decision problems could be improved:

$$EU(a|e) = \sum_{R} \underbrace{P(Result = r|a, e)}_{\mathbf{Quantum}} * \underbrace{U(r)}_{\mathbf{Classical}}$$
 (6)

The inference process which is a sub-process of the decision process suffers a quadratic speedup.

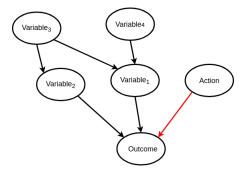
With the use of a decision network, the inference process computes the expected utilities directly:



Resulting in a quadratic speedup for the whole decision process:

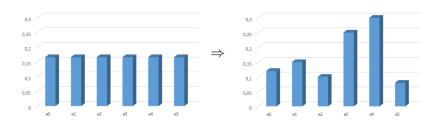
$$EU(a|e) = \sum_{R} P(Result = r|a, e) * U(r)$$
Quantum
(7)

The structure of the data can be used to create a different algorithm for the decision-making process.



Related variables are entangled in the quantum state. Therefore, a transformation on one of them has an impact on the other.

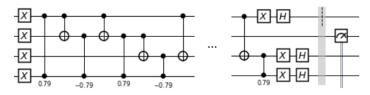
The utility function can be applied to the Outcome variable, which has a very interesting result on the Action variable.



This process exchanges the order of the action variable's probabilities according to their expected utility!

Implementation of Method 3

A simple decision-making process was implemented on IBM quantum simulator as a proof-of-concept of **Method 3**:



The results were in correspondence with the theoretical predictions:

States	Theoretically expected probability	Percentage of Samples
Action ₀	0,58	0.544
Action ₁	0,42	0.456

Section 3

Complexity estimation

Complexity estimation

The complexity of each process is defined by the following 2 terms:

- Number of samples (S)
- Number of iterations by sample (I_s)

Total Number of Iterations

$$I_t = S * I_s$$

Remark: The number of samples defines the precision of the value.

Number of Samples

The relation between the precision and the number of samples is defined by the error terms of a multinomial distribution (**Method 1 and 3**):

$$N = \frac{A * \pi_i (1 - \pi_i)}{\delta^2}, (i = 1, 2, ..., k)$$
 (8)

The Wald interval is considered for the case of a binomial distribution (**Method 2**):

$$N = z^2 \cdot \frac{\pi_i \left(1 - \pi_i\right)}{\delta^2} \tag{9}$$

Number of iterations per sample

The number of iterations in the Amplitude Amplification algorithm is related to the probability of the goal state:

$$I_s = \sqrt{\frac{1}{P(state)}} \tag{10}$$

For Methods 1 and 2 this value is

$$I_s = \sqrt{\frac{N_a}{P(e)}} \tag{11}$$

while, for Method 3,

$$I_s = \sqrt{\frac{N_r}{P(e)}} \tag{12}$$

Total Number of Iterations

Method 1:

$$n*2^m*\sqrt{\frac{N_a}{P(e)}}*\frac{A*\pi_i(1-\pi_i)}{\delta_c^2}$$
 (13)

Method 2:

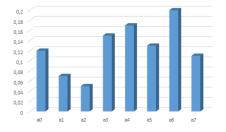
$$n*2^{m'}*\sqrt{\frac{N_a}{P(e)}}*\frac{z^2*\pi_i(1-\pi_i)}{\delta_b^2}$$
 (14)

Method 3:

$$n*2^{m'}*\sqrt{\frac{N_r}{P(e)}}*\frac{A*\pi_i(1-\pi_i)}{\delta_a^2}$$
 (15)

Complexity comparison

In reinforcement learning, the action is selected in correspondence to a probability distribution:



The distribution required is exactly the one constructed by **Method 3**, meaning that with this method only one sample solves the decision problem.

Section 4

Picturing a quantum Bayesian algorithm

String diagrams

String diagrams are graphical representations of terms in a monoidal (dagger compact) category, which provides a semantics for quantum programs [1].

This abstraction offers a framework to verify proprieties of quantum algorithms.

Grover's Algorithm in string diagrams

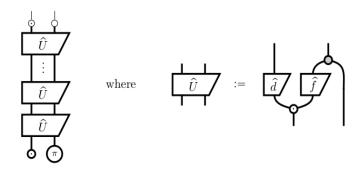


Figure: Grover's algorithm in string diagrams.

A verification example

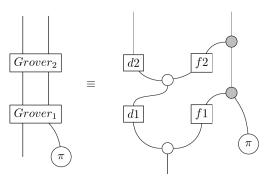
In our algorithm, the utility function is applied after a search for the correct values of the evidence variables. However, the utility function is applied within a search.

Question

Is the composition of 2 quantum searches equivalent to a quantum search with the union of the restrictions?

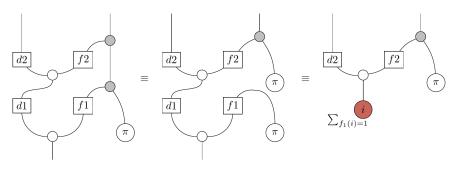
Proof

Both searches can be written as follows, where each one can have only one iteration.



Proof

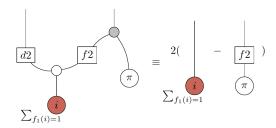
Equivalence-preserving transformations can be applied:



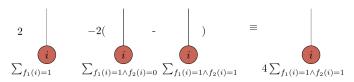
Until the resulting state is given to the second search process.

Proof

Finally, process d_2 can be described as below:

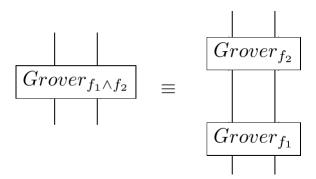


Resulting in:



Proven equivalence

The result shows that the programmer has a choice between the two implementations:



Section 5

Conclusions

Conclusions

- Decision-making processes can be implemented on a quantum device, with a speedup.
- The computational complexity of an algorithm helps the programmer to select the best solution.
- String diagrams revealed themselves as a very useful tool to analyze quantum processes.

References I

B. Coecke and A. Kissinger.

Picturing Quantum Processes: {A} First Course in Quantum Theory and Diagrammatic Reasoning.

Cambridge University Press, 2017.

G. H. Low, T. J. Yoder, and I. L. Chuang. Quantum inference on Bayesian networks. *Phys. Rev. A*, 89(6):62315, jun 2014.

On Quantum Bayesian Networks

Michael de Oliveira

Prof. Luis Soares Barbosa

Mestrado Integrado em Engenharia Física, Universidade do Minho

September 24, 2020