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Quantum and Linear-Optical Computation group

• Welcome to new QPI PhD students!

- Rafael Wagner – supervisors Rui, Ernesto, Mikhail Vasilevskiy (Uminho) – coherence and contextuality
- Anita Camillini – supervisors Ernesto and Michael Belsley (Uminho) – scalable photonic q. computing
- Antonio Molero- supervisors Raffaele, Ernesto, Luís S. Barbosa – q. machine learning
- Angelos Bampounis - supervisors Rui, Pedro Patrício (Math, Uminho) – matchgates and magic states
- Raman Choudhary – supervisors Rui, Luís Paulo Santos – contextuality and q. advantage



Journal Club

• Informal talk and discussion on one or more recent interesting papers

• Papers I will focus on here:

- Quantum supremacy using a programmable superconducting processor – Arute et 

al., Nature 574, 505 (2019) [Google Quantum AI team, leader John Martinis]

- Quantum computational advantage with photons - H. Wang et al., Science 370 

(6523), 1460 (Dec. 2020) [University of Science and Technology of China, leaders 

Chao-Yang Lu, Jian-Wei Pan]



Journal Club

A bit of background on the current status 

of different QC platforms



Quantum computation: current status

Ion Traps
Few ions trapped in EM fields, addressed individually by lasers

• Electronic levels = qubits

• Motional degrees of freedom = qubit-qubit interactions

• Long history: atomic clocks. Extremely good gates, up to 32 qubits

Key companies: IonQ (USA), Honeywell (USA), Alpine Q. Technologies (Austria)

Gossip: q. volume of 4 000 000 in IonQ press-release; Honeywell: 128

Q. Volume tutorial: https://pennylane.ai/qml/demos/quantum_volume.html

Montage: ion trap, trapped ions (IonQ)

This field gave Dave Wineland his 

2012 Physics Nobel Prize



Quantum computation: current status

Anyons
Exotic statistics of excitations in 2D electron gases in solids

• 2020 witnessed experimental signatures of anyons

• Naturally robust against decoherence = destruction of 

superpositions due to external interference

Key companies: Microsoft

H. Bartolomei et al., Science 

368 (6487), 173 (2020)

Electrons in solid state
Electron spin of phosphorus atoms in silicon

• Two-qubit gates demonstrated

• Could leverage existing Si industry processes for 

scaling up

Key companies: Silicon Quantum Computing 

(Australia)

Y. He et al., Nature 571, 371 (2019)



Quantum computation: current status

Superconducting chips
Superconductor dynamics is governed by QM. Transmon qubits (2007) can be coupled 

and read out, and are the basic units in QCs based on superconductors

• Up to 72 qubits, although noise so far prevents deep circuits

• Recent demonstration of quantum computational advantage by the Google Quantum 

AI team (2019)

• For hands-on experience on quantum computers: https://qiskit.org/ (IBM’s SDK)

Key companies: IBM Q Experience, Google Quantum AI, Rigetti Computing, IQM

Image: Arute et al., Nature 574, 505 (2019)Google CEO Sundar Pichai with QC cryostat

https://qiskit.org/


Quantum computation: current status

Theory:

• Scalable, error-corrected QCs will provide 

computational break-throughs in data security, 

optimization, materials science, q. chemistry, etc.

• Open problem: can we obtain practical advantage 

with near-term Noisy, Intermediate-Scale Quantum 

(NISQ) devices?

Experiment: 

• Small-scale QC prototypes using various physical platforms

• Demonstrations of computational advantage for contrived, useless tasks

• Still no practical advantage over classical computers

• Still a long way towards error-correction & large scale QC



Journal Club

The Google Quantum AI quantum 

advantage experiment



Google Quantum AI experiment (2019)

Images from: Arute et al., Nature 574, 505 (2019)

• 53 superconducting qubits, connected to nearest 

neighbors in square lattice

• Up to 20 cycles of randomly chosen one- and two-

qubit gates (random = hard instance). 2-qubit gates 

tile sequentially, 1-qubit gates randomly picked from 

3-gate set {sqrt(X), sqrt(Y), sqrt((X+Y)/sqrt(2))}

• fSim gates chosen as they are harder than CZs to simulate using a Feynman path 

integral approach – circuits half as deep for the same simulation cost

• 2-qubit gates: fSim

• 2 fSim gates (+ single 

qubit gates) give a CZ



Google Quantum AI experiment (2019)

Images from: Arute et al., Nature 574, 505 (2019)

Device verification: use of cross-entropy fidelity

• P(x_i) are calculated probabilities of experimental outcomes

• F correlated with how often we sample high-probability outcomes

• F=1 for ideal distribution, F=0 for uniform distribution

Test circuits can be 

simulated classically:

• Patch circuit: 2-qubit 

gates between two 

halves of computer not 

implemented.

• Elided circuit: only a few 

early 2-qubit gates are 

removed.



Google Quantum AI experiment (2019)

Images from: Arute et al., Nature 574, 505 (2019)

• Estimated simulation run-time of largest circuits on supercomputer: 10000 years

• Estimated energy cost: 1 petawatt hour

• IBM controversy: simulation possible in a few days?



Journal Club

Quantum advantage with Gaussian 

Boson Sampling



Quantum computing with light – discrete variables

Path encodings

Dual-rail: single photon in two propagation modes, labelled 0/1

• arbitrary single-photon gates easy – beam splitters (BS) and phase shifters:
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• Arbitrary single-qubit unitaries implementable with a BS and phase shifters

• The problem is two-qubit unitaries – how to make the two photons interact?

• One way: medium with large cross-Kerr non-linearity (hard to do)

• Measurement-induced non-linearities:

key idea of Knill-Laflamme-Milburn (KLM) proposal

What kind of QC can we build with linear optical elements only?

q



• Input to output creation operators 

mapped by unitary:

• Any m-mode linear interferometer can be decomposed in
- 2-mode beam splitters;

- single-mode phase shifters.

• Output probabilities given by permanents of matrices associated with U:

- Example: the probability of an output of one photon per mode, with an input of 

one photon per mode, is:

  

p = per(U)
2

• The permanent is similar to the determinant, but with no negative signs. 

The calculation is intractable (#P-hard). 

Non-interacting photons in linear interferometers



Example: Hong-Ou-Mandel effect

• Two identical photons simultaneously arrive 

at a beam splitter

U =
T iR

iR T
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• If the beam splitter is unbalanced, we have

• T= transmissivity

• R=reflectivity

  

p = per(U)
2

= T 2 -R2 2

• Probability that the two photons exit in different modes is

Hong-Ou-Mandel effect: for balanced beam-splitter T=R, and p=0

Photons always leave the BS in the same mode:

or



• Given m-mode interferometer description U, 

sample from the output distribution of:

1. Input of n indistinguishable photons;

2. Multi-photon interference in interferometer;

3. Yes/no detection at output modes.

• Classical exact simulation would imply a highly unlikely computational complexity 

result (“collapse of the polynomial hierarchy”)

• Even approximate simulation is hard, modulo a couple of reasonable conjectures.

• Advantages: about 45 photons would be non-trivial to simulate. If we can add:

• Intermediate photon measurements;

• Ultra-fast reconfiguration of interferometer based on outcomes

we would have a universal photonic quantum computer.

• Disadvantages: it doesn’t solve a “useful” problem; certification can be difficult.

Aaronson/Arkhipov arxiv:1011.3245

Photonic Boson Sampling



Spring et al., Science 339, 798 (2013) [Walmsley group] Tillmann et al, Nat. Photon. 7, 540 (2013) [Walther group]

Broome et al., Science 339, 794 (2013) [White group] Crespi et al., Nat. Photon. 7, 545 (2013) [Sciarrino group]

• Interference of 3,4 photons in integrated photonic chips with 5,6 modes

• Verified that probabilities are given in terms of permanents of 3x3 matrices

Experimental progress: first small-scale experiments (2013)



Integrated multi-mode interferometers

• Challenge: stability of complex interferometers

• Solution: integrated interferometers with 

waveguides inscribed with lasers in glass:

• Beam splitting by evanescent-field coupling 

between close waveguides

• Phase shifs implemented by differences in path 

length

• 3D design technology 



Experimental progress: reconfigurability (2015-)

Fully reconfigurable 6-mode interferometer [Carolan et al., Science 349, 711 (2015)]

• Full reconfigurability in seconds by thermo-optic phase shifters

• 6-photon boson sampling (only 15 events)

• Automated experiments

Universal 12-mode reconfigurable chip

[Taballione et al., arXiv:2012.05673]

• Silicon nitrite

• 128 tunable thermo-optic phase 

shifters



Experimental progress: current state-of-the-art (2019)

• Boson Sampling experiment at University of Science and Technology of China 

(Chao-Yang Lu’s group) - H. Wang et al., Phys. Rev. Lett. 123, 250503 (2019)

- quantum-dot micropillar, demultiplexed solid state source

- Up to 14 photons detected

- Still simulable on a conventional computer



Photonic quantum advantage: Gaussian boson sampling (2020)

• Gaussian Boson Sampling experiment @ 

Univ. of Science and Technology of China 

(Hefei) - H. Wang et al., Science 370 (6523), 1460 

(Dec. 2020)

Source: 25 PDC non-linear crystals -> 25 two-mode squeezed states = 50 single-mode squeezed states

• Gaussian Boson Sampling:

• Input: squeezed, single-mode states (from PDC)

• Probabilities given by hafnians/Torontonians, 

matrix functions related to permanents (and hard to 

compute classically)

• Single-photon detection at the output



Photonic quantum advantage: Gaussian boson sampling (2020)

• Gaussian Boson Sampling experiment @ Univ. of Science and Technology of China 

(Hefei) - H. Wang et al., Science 370 (6523), 1460 (Dec. 2020)

Interferometer

• Fully-connected, 50-spatial-mode interferometer= 

100 hybrid modes (using H/V polarization)

• 50-path interferometer = 5 10-mode, fully 

connected chips, linked to 10, 5-mode fully 

connected chips. Result: full connectivity



Photonic quantum advantage: Gaussian boson sampling (2020)

• Gaussian Boson Sampling experiment @ Univ. of Science and Technology of China 

(Hefei) - H. Wang et al., Science 370 (6523), 1460 (Dec. 2020)

• Open questions:

• improved classical simulation, “faking” events using supercomputer

• Future: higher complexity regime, explore GBS’s applications: molecular 

simulations, graph theory problems

• Validation tests against uniform distribution, and 

thermal distribution (distrib. tends to thermal if too many 

photons lost)

• Variation of the heavy-output generation (HOG) test –

checking if events are mostly high-prob events (similar 

to cross-entropy test)

• Estimated classical simulation time: about 1 billion years on supercomputer

Device verification



Thank you for your 

attention!


