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Contextuality Scenarios 5

Let X be a set of outcomes, and define two other sets M and
N :

(a) M is a set of subsets of X, such that M,M ′ ∈M =⇒ M ′

is not a subset of M . Each M of M is called a maximal
measurement context.

(b) N is again a set of subsets of X, such that M ∈M then
M /∈ N and N,N ′ ∈ N =⇒ N ′ is not a subset of N . The
sets N ∈ N are called maximal partial measurement
contexts.

A contextuality scenario is then the triple C := (X,M ,N ).
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Example: C = (X,X, ∅) 6

Def. (a) M is a set of subsets of X, such that
M,M ′ ∈M =⇒ M ′ is not a subset of M . Each M of M is
called a maximal measurement context.



Examples: C = (X, ∅, X) 7

Def. (b) N is again a set of subsets of X, such that M ∈M
then M /∈ N and N,N ′ ∈ N =⇒ N ′ is not a subset of N .
The sets N ∈ N are called maximal partial measurement
contexts.



Example: Specker’s triangle 8

CSp = ({a, b, c}, {{a, b}, {a, c}, {b, c}}, ∅)



Examples: Antidistinguishability scenario 9

CAntD = ({a1, a2, a3, a⊥1 , a⊥2 , a⊥3 },
{{a⊥1 , a⊥2 , a⊥3 }}, {{a1, a⊥a }, {a2, a⊥2 }, {a3, a⊥3 }})
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A value function v : X → {0, 1} on a contextuality scenario
C = (X,M ,N ) is such that,

(a) For any M ∈M , v(a) = 1 for one a ∈M .
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Value functions 14

Notice that for any finite set X the functions X → {0, 1} are in
one to one correspondence with vectors in {0, 1}|X|.

For instance, take X = {a, b, c} this implies that there are 23

functions for this set:

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)

(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
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Value functions are defined for scenarios! 15

In the scenario C = (X,X, ∅), with X = {a, b, c} we have that
M = X so the possible value functions can only be the
following:

����(0, 0, 0) (0, 0, 1) (0, 1, 0) ����(0, 1, 1)

(1, 0, 0) ����(1, 0, 1) ����(1, 1, 0) ����(1, 1, 1)

We define the set of all possible value functions v in a given C
by the set VC.
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Value functions in Specker’s triangle 16

For the scenario CSp the possible value functions are,

����(0, 0, 0) ����(0, 0, 1) ����(0, 1, 0) ����(0, 1, 1)

����(1, 0, 0) ����(1, 0, 1) ����(1, 1, 0) ����(1, 1, 1)
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Quantum models 18

A quantum model of a contextuality scenario C = (X,M ,N )
consists of,

(a) A Hilbert space H ,

(b) For any a ∈ X an association to Pa, a projector onto a
subspace of H such that,

(b1) ∀M ∈M we have
∑

a∈M Pa = 1.
(b2) ∀N ∈ N if a, b ∈ N then a 6= b implies PaPb = 0.
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Specker’s triangle case again 19

If this is possible then we must have that, Pa + Pb = 1,
Pa + Pc = 1 and Pb + Pc = 1. But then Pa = Pb =⇒ Pa = 1/2
which is not a projection.
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A state ω : X → [0, 1] on a contextuality scenario
C = (X,M ,N ) is a function assigning probabilities to every
outcome in X such that,

(a) For all M ∈M we have
∑

a∈M ω(a) = 1.

(b) For all N ∈ N we have
∑

a∈N ω(a) ≤ 1

The set of all states in C is denoted SC.
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Quantum states 22

A quantum state on a contextuality scenario C = (X,M ,N )
is

a state such that there exists a quantum model for the
scenario together with a state ρ in the Hilbert state of the same
model such that

ω(a) = Tr{ρPa}.

We denote the set of quantum states of C by QC.
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Kochen-Specker state 23

A Kochen-Specker noncontextual state on a contextuality
scenario C = (X,M ,N ) is

a state ω such that

ω(a) =
∑
v∈VC

pvv(a) (1)

where 0 ≤ pv ≤ 1,
∑

n∈VC pv = 1.

1. The set of all KSNC states is denoted by CC.

2. There are scenarios C that have quantum states that are
not Kochen-Specker states.

3. For all C we have CC ⊂ QC ⊂ SC.



Kochen-Specker state 23

A Kochen-Specker noncontextual state on a contextuality
scenario C = (X,M ,N ) isa state ω such that

ω(a) =
∑
v∈VC

pvv(a) (1)

where 0 ≤ pv ≤ 1,
∑

n∈VC pv = 1.

1. The set of all KSNC states is denoted by CC.

2. There are scenarios C that have quantum states that are
not Kochen-Specker states.

3. For all C we have CC ⊂ QC ⊂ SC.



Kochen-Specker state 23

A Kochen-Specker noncontextual state on a contextuality
scenario C = (X,M ,N ) isa state ω such that

ω(a) =
∑
v∈VC

pvv(a) (1)

where 0 ≤ pv ≤ 1,
∑

n∈VC pv = 1.

1. The set of all KSNC states is denoted by CC.

2. There are scenarios C that have quantum states that are
not Kochen-Specker states.

3. For all C we have CC ⊂ QC ⊂ SC.



Kochen-Specker state 23

A Kochen-Specker noncontextual state on a contextuality
scenario C = (X,M ,N ) isa state ω such that

ω(a) =
∑
v∈VC

pvv(a) (1)

where 0 ≤ pv ≤ 1,
∑

n∈VC pv = 1.

1. The set of all KSNC states is denoted by CC.

2. There are scenarios C that have quantum states that are
not Kochen-Specker states.

3. For all C we have CC ⊂ QC ⊂ SC.



Kochen-Specker state 23

A Kochen-Specker noncontextual state on a contextuality
scenario C = (X,M ,N ) isa state ω such that

ω(a) =
∑
v∈VC

pvv(a) (1)

where 0 ≤ pv ≤ 1,
∑

n∈VC pv = 1.

1. The set of all KSNC states is denoted by CC.

2. There are scenarios C that have quantum states that are
not Kochen-Specker states.

3. For all C we have CC ⊂ QC ⊂ SC.



Antidistinguishability



Antidistinguishability: idea 25

|a1〉 =

1
0
0

 , |a2〉 =
1√
3

1
1
1

 |a3〉 =
1√
3

−1
1
1

 (2)

|a⊥1 〉 =

0
1
0

 , |a⊥2 〉 =
1√
2

 1
0
−1

 |a⊥3 〉 =
1√
2

1
0
1

 (3)



Antidistinguishability: idea 25

|a1〉 =

1
0
0

 , |a2〉 =
1√
3

1
1
1

 |a3〉 =
1√
3

−1
1
1

 (2)

|a⊥1 〉 =

0
1
0

 , |a⊥2 〉 =
1√
2

 1
0
−1

 |a⊥3 〉 =
1√
2

1
0
1

 (3)



Antidistinguishability: idea 26



Antidistinguishability 27

In a contextuality scenario C a set of outcomes
{a1, . . . , an} ⊆ X is antidistinguishable if there exists
outcomes a⊥1 , . . . , a

⊥
n ∈ X such that,

1. There exists a context M ∈M for which
{a⊥1 , . . . , a⊥n } ⊆M .

2. For each j ∈ {1, 2, . . . , n} there exists a context or a partial
context Nj such that {aj , a⊥j } ⊆ Nj .

3. For each outcome a ∈M \ {a⊥1 , . . . , a⊥n }, and each aj there
exists a context or a maximal partial context N such that
{a, aj} ⊆ N . Here for technical necessity.
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Antidistinguishability 29

Theorem (Caves-Fuchs-Schack)

Let X = {|a1〉 , |a2〉 , |a3〉}. Then, the set X is
antidistinguishable if, and only if

r12 + r13 + r23 < 1 (4)

(r12 + r13 + r23 − 1)2 ≥ 4r12r13r23 (5)

where rij := |〈ai|aj〉|2.



Parentesis 30

Corollary

Every triple of antidistinguishable outcomes |a1〉, |a2〉, |a3〉 has
overlap vectors inside the coherence-free polytope.



Pairwise Antisets



Pairwise antisets 32

A weak pairwise antiset W would be a set of outcomes such
that there exists another outcome c ∈ X such that any pair
a, b ∈W forms an antidistinguishable triple with c. In other
words, {a, b, c} is again an antidistinguishable triple.



Pairwise antisets 32

A weak pairwise antiset W would be a set of outcomes such
that there exists another outcome c ∈ X such that any pair
a, b ∈W forms an antidistinguishable triple with c. In other
words, {a, b, c} is again an antidistinguishable triple.



Pairwise Antisets 33

A strong pairwise antiset W in a contextuality scenario
C = (X,M ,N ) is a set of outcomes for which there exists a
maximal context M ∈M such that for any pair a, b ∈W and
any c ∈M the triple {a, b, c} is antidistinguishable.
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Strong Pairwise Antiset: Yu-Oh 42

|a1〉 =
1√
3

1
1
1

 , |a2〉 =
1√
3

−1
1
1

 , |a3〉 =
1√
3

 1
−1
1

 , |a4〉 =
1√
3

 1
1
−1

 .
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Main Result 44

Theorem (Leifer-Duarte)

Let W be a strong pairwise antiset in a contextuality scenario C.
Then, for every state ω ∈ CC∑

a∈W
ω(a) ≤ 1 (6)

If W is only a weak pairwise antiset in the contextuality
scenario and the principle outcome c is such that ω(c) = 1 then
the same inequality holds.



Yu-Oh 45

We have W = {a1, a2, a3, a4} be a strong pairwise antiset of
scenario CY u−Oh with principle context given by {c1, c2, c3}.
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Yu-Oh 46

According to the Leifer-Duarte theorem we have that,

∑
a∈W

ω(a) =

4∑
i=1

ω(ai) ≤ 1 (7)

For KSNC states.
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1√
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c1 =

1
0
0

 , c2 =

0
1
0

 , c3 =

0
0
1

 , (8)
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4∑
i=1

|ai〉〈ai| =
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4∑
i=1

|ai〉〈ai| =

1

3

1
1
1

 (1 1 1) +
1

3

−1
1
1

 (−1 1 1)+

1

3

 1
−1
1

 (1 −1 1) +
1

3

 1
1
−1

 (1 1 −1) =
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4∑
i=1

|ai〉〈ai| =

1
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1
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1 1 1
1 1 1
1 1 1

 +
1

3

 1 −1 −1
−1 1 1
−1 1 1

 +
1

3

 1 −1 1
−1 1 −1
1 −1 1

 +
1

3

 1 1 −1
1 1 −1
−1 −1 1

 =

4

3

1 0 0
0 1 0
0 0 1


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This implies that this pairwise antiset of states reach the
following quantum bound, for any state ρ.

4∑
i=1

ω(ai) =
∑
i

Tr{ρ|ai〉〈ai|} = Tr

{
ρ
∑
i

|ai〉〈ai|

}
=

4

3
> 1 (9)



Ending aspects 52

I They show that the same holds for other sets and other
dimensions.

I They have proved that this kind of antidistinguishability
inequalities of overlaps is associated to noncontextuality
inequalities.

I They introduced an interesting framework with new types
of scenarios that mixes CSW and AFLS notions.
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Antidistinguishability vs Coherence-free 54

|W |∑
i=1

ω(ai) ≡
∑
i

rρi ≤ 1 (10)



Evidence from K5 graph 55

+rρa1+rρa2+rρa3+rρa4−ra1a2−ra1a3−ra1a4−ra2a3−ra2a4−ra3a4 ≤ 1

+2rρa1 + 2rρa2 + 2rρa3 + 2rρa4 − ra1a2
−ra1a3 − ra1a4 − ra2a3 − ra2a4 − ra3a4 ≤ 3
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+rρa1 + rρa2 + rρa3 + rρa4 − ra1a2 − ra1a4 − ra2a3 − ra3a4 ≤ 1

+2rρa1 + 2rρa2 + 2rρa3 + 2rρa4 − ra1a2 − ra1a4 − ra2a3 − ra3a4 ≤ 3
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+rρa1 + rρa2 + rρa3 + rρa4 − ra1a2 − ra1a4 − ra2a3 − ra3a4 ≤ 1

+

+rρa1 + rρa2 + rρa3 + rρa4 ≤ 1

=

+2rρa1 + 2rρa2 + 2rρa3 + 2rρa4 − ra1a2 − ra1a4 − ra2a3 − ra3a4 ≤ 1 + 1
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