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Contextuality Scenarios

—

Let X be a set of outcomes, and define two other sets .# and

N

(a) . is a set of subsets of X, such that M, M' € .#4 — M’
is not a subset of M. Each M of .# is called a maximal
measurement context.

(b) A4 is again a set of subsets of X, such that M € .# then
M ¢ 4 and N,N' € ./ = N’is not a subset of N. The
sets N € A4 are called maximal partial measurement
contexts.

A contextuality scenario is then the triple € := (X, .#,.4).




Example: ¢ = (X, X,0)

Def. (a) . is a set of subsets of X, such that
M,M' €¢ # = M’ is not a subset of M. Each M of .# is
called a maximal measurement context.




Examples: € = (X, 0, X)
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Def. (b) .4 is again a set of subsets of X, such that M € .#
then M ¢ A4 and N,N' € ./ = N’ is not a subset of N.
The sets N € A4 are called maximal partial measurement
contexts.




Example: Specker’s triangle
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Examples: Antidistinguishability scenario
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Value functions
—

A value function v : X — {0,1} on a contextuality scenario

¢ = (X, 4, /) is such that,

(a) For any M € ., v(a) =1 for one a € M.

(b) For any N € A4, v(a) =1 for at most one a € M.
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—

A value function v : X — {0,1} on a contextuality scenario
¢ = (X, 4, /) is such that,

(a) For any M € ., v(a) =1 for one a € M.

(b) For any N € A4, v(a) =1 for at most one a € M.
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Value functions
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Notice that for any finite set X the functions X — {0, 1} are in
one to one correspondence with vectors in {0, 1}|X l,

14




Value functions

—

Notice that for any finite set X the functions X — {0, 1} are in
one to one correspondence with vectors in {0, 1}|X l,
For instance, take X = {a,b, c}

14




Value functions 14

—

Notice that for any finite set X the functions X — {0, 1} are in
one to one correspondence with vectors in {0, 1}|X l,

For instance, take X = {a,b, c} this implies that there are 23
functions for this set:

(0,0,0) (0,0,1) (0,1,0) (0,1,1)
(1,0,0) (1,0,1) (1,1,0) (1,1,1)
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Value functions are defined for scenarios! 15

—

In the scenario ¢ = (X, X, 0), with X = {a, b, ¢} we have that
M = X so the possible value functions can only be the
following:

(0,6:07 (0,0,1) (0,1,0) (O41)
(1,0,0) (-6:1) (1407 (141]

We define the set of all possible value functions v in a given €
by the set V.




Value functions in Specker’s triangle
—
For the scenario €g), the possible value functions are,
(0-6:07 (06:1) (0450) (0451)
(-6:07 (16:1) (L40) (1451)
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Quantum models 18

—

A quantum model of a contextuality scenario € = (X, .4, /")
consists of,

(a) A Hilbert space 52,

(b) For any a € X an association to P,, a projector onto a
subspace of .77 such that,
(bl) VM € A we have ) ., Po=1.
(b2) YN € A if a,b € N then a # b implies P, P, = 0.




Specker’s triangle case again 19

If this is possible then we must have that, P, + P, = 1,
P,+P.=1and P,+ P.=1. But then P, =P, = P, =1/2

which is not a projection. -~
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A state w : X — [0,1] on a contextuality scenario
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outcome in X such that,
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States 21

—

A state w : X — [0,1] on a contextuality scenario
¢ = (X, ., /) is a function assigning probabilities to every
outcome in X such that,

(a) For all M € .# we have ) ., w(a) = 1.
(b) For all N € .4 we have ) . yw(a) <1

The set of all states in € is denoted Sg.




Quantum states

—
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A quantum state on a contextuality scenario € = (X, .#,.A4")
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Quantum states 22

—

A quantum state on a contextuality scenario € = (X, .#,.A4")
isa state such that there exists a quantum model for the
scenario together with a state p in the Hilbert state of the same
model such that

w(a) = Tr{pP,}.

We denote the set of quantum states of € by Q.




Kochen-Specker state
—

A Kochen-Specker noncontextual state on a contextuality
scenario € = (X, ., V) is
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Kochen-Specker state 23

—

A Kochen-Specker noncontextual state on a contextuality
scenario € = (X, .#,./) isa state w such that

w(a) =Y pu(a) (1)
vEVe
where 0 < p, <1, ZHEVQ_‘ Py = 1.
1. The set of all KSNC states is denoted by Cl.

2. There are scenarios € that have quantum states that are
not Kochen-Specker states.

3. For all € we have C¢ C Q¢ C Sg.
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Antidistinguishability 27
—

In a contextuality scenario € a set of outcomes
{ai,...,a,} C X is antidistinguishable if there exists
outcomes af-, cee a# € X such that,

1. There exists a context M € .# for which
{ai,...,ap} C M.

2. For each j € {1,2,...,n} there exists a context or a partial
context N; such that {a;, ajL} C N;.

3. For each outcome a € M \ {af,...,a;}, and each a; there

exists a context or a maximal partial context N such that
{a,a;} € N. Here for technical necessity.
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Antidistinguishability
———

Theorem (Caves-Fuchs-Schack)

Let X ={l|a1),|a2),|as)}. Then, the set X is
antidistinguishable if, and only if

19 + 113 + 1oz < 1

(r1ig + 713 + 123 — 1)2 > 4rior137r23

where 1;j = |{a;|a;)|?.
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Parentesis

—

Corollary

Every triple of antidistinguishable outcomes |a1),|az),|as) has
overlap vectors inside the coherence-free polytope.
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A weak pairwise antiset W would be a set of outcomes such
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Pairwise Antisets

—

A strong pairwise antiset W in a contextuality scenario

¢ = (X, 4, /) is a set of outcomes for which there exists a
maximal context M € .# such that for any pair a,b € W and
any ¢ € M the triple {a, b, c} is antidistinguishable.
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—

A strong pairwise antiset W in a contextuality scenario

¢ = (X, 4, /) is a set of outcomes for which there exists a
maximal context M € .# such that for any pair a,b € W and
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Strong Pairwise Antiset
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Strong Pairwise Antiset: Yu-Oh
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C2

(0,1,0)

o (1,0,0)
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Yu-Oh

c1

C2
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Strong Pairwise Antiset: Yu-Oh
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Strong Pairwise Antiset: Yu-Oh

1 -1
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Main Result 44
—

Theorem (Leifer-Duarte)

Let W be a strong pairwise antiset in a contextuality scenario €.
Then, for every state w € Cg

Z w(a) <1 (6)

aceW

If W is only a weak pairwise antiset in the contextuality
scenario and the principle outcome c is such that w(c) =1 then
the same inequality holds.




Yu-Oh
—

We have W = {a1, a2, as,as} be a strong pairwise antiset of
scenario Cy,_op with principle context given by {ci, o, c3}.
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Yu-Oh
—

We have W = {a1, a2, as,as} be a strong pairwise antiset of
scenario Cy,_op with principle context given by {ci, o, c3}.

Cl (17 0’ 0)

Co €

(0,1,0)
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Yu-Oh

According to the Leifer-Duarte theorem we have that,

For KSNC states.
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Yu-Oh

D lai){ail =

i=1
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Yu-Oh
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Yu-Oh violation 51

—

This implies that this pairwise antiset of states reach the
following quantum bound, for any state p.

ZW(CM) = ZTr{plaD(ail} = TY{PZ Iai><ail} = g >1 (9)

=1




Ending aspects

» They show that the same holds for other sets and other
dimensions.

» They have proved that this kind of antidistinguishability
inequalities of overlaps is associated to noncontextuality
inequalities.

» They introduced an interesting framework with new types
of scenarios that mixes CSW and AFLS notions.
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Antidistinguishability vs Coherence-free
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Evidence from K5 graph
—

+Tﬁal —Hapaz +TP03 +Tpa4 “Tajaz ~Taraz ~Taras —Tazas ~Tazas —Tazay < 1

+27pay + 27 pay + 27 pag + 27pay — Taras

_ralag - 7404(14 - T&2a3 - r(l2a4 - ra3a4 S 3
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Evidence from K35 graph 56

—

+7Tpay T Tpaz + Tpas T Tpay — Taraz — Taras — Tasas — Tazas <1

+2Tpa1 + 2rpa2 + ZTPCLS + 2rpa4 ~ Taraz = Taras — Tazas — Tazas <3

|a1) |a2)

|as) as) -




Evidence from Kj 57

—

+Tpa1 + Tpas + T'pas + Tpay — Taraz = Taras = Tazas — Tazas < 1

_l’_

+7par T Tpas + Tpaz + Tpay < 1

+27pay + 27 pay + 27paz + 27pay — Tajas — Taras — Tasas — Tagas < 1+1
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