Structural Reason for Locality of Macroscopic Correlations

Rui Soares Barbosa

Quantum Group Computing Laboratory University of Oxford

rui.soares.barbosa@cs.ox.ac.uk

Oxford, 13th February 2013

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction

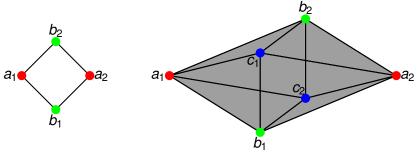
- Macroscopic correlations arising from microscopic models (Ramanathan et al. 2011: QM models)
- Monogamy of violation of Bell inequalities from the non-signalling condition (Pawłowski, Brukner 2009: bipartite models).
- Use the general framework of Abramsky and Brandenburger (2011) and provide a structural reason using Vorob'ev's theorem (1962).

・ 同 ト ・ ヨ ト ・ ヨ ト

Measurement Scenarios

Abramsky-Brandenburger framework

- a finite set of measurements X;
- a cover \mathcal{U} of X (or an abstract simplicial complex Σ on X), indicating the **compatibility** of measurements.



Examples: Bell-type scenarios, KS configurations, and more.

E.g. Z and X measurements on the W state:

	000	001	010	011	100	101	110	111	
$a_1b_1c_1$	9	1	1	1	1	1	1	9	
$a_1b_1c_2$	8	2	0	2	0	2	8	2	
$a_1 b_2 c_1$	8	0	2	2	0	8	2	2	
$a_1 b_2 c_2$	4	4	4	0	4	4	4	0	
$a_2b_1c_1$	8	0	0	8	2	2	2	2	
$a_2b_1c_2$	4	4	4	4	4	0	4	0	
$a_2b_2c_1$	4	4	4	4	4	4	0	0	
$a_2b_2c_2$	0	8	8	0	8	0	0	0	
(every entry should be divided by 24)									

3

Vorob'ev's theorem

For which measurement compatibility structures \mathcal{U} (or Σ) is it so that **any** nosignalling empirical model admits a global extension, i.e. is local/non-contextual?

Macroscopic Correlations and Monogamy

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

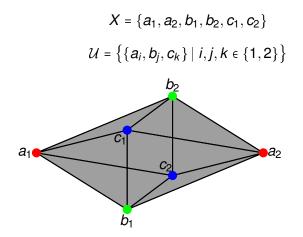
Emergent macroscopic correlations

A **macroscopic scenario** is obtained from an underlying microscopic scenario by **lumping together** certain measurements (e.g. spins in a given direction of several particles give rise to a magnetisation measurement in that direction).

The merged measurements must be 'symmetric' in some sense. E.g. consider a multipartite scenario where several parties are considered as being on the same macroscopic site (several Bobs). For this identification to be possible, there must be a symmetry between these Bobs, i.e. all the Bobs must allow the same measurements, and these must have the same compatibility relations with those of Alice, Claire, etc.

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider a tripartite scenario:



Empirical model: no signalling probabilities

$$p(a_i, b_j, c_k = x, y, z)$$

where x, y, z are possible outcomes.

A (1) > A (2) > A (2) >

Empirical model: no signalling probabilities

$$p(a_i, b_j, c_k = x, y, z)$$

where x, y, z are possible outcomes.

Consider the subsystem composed of A and B only, given by marginalisation (in QM, partial trace):

$$p(a_i, b_j = x, y) = \sum_z p(a_i, b_j, c_k = x, y, z)$$

(this is independent of c_k due to no-signalling).

Similarly define $p(a_i, c_k = x, y)$.

イロト イポト イヨト イヨト 三日

• Consider *B* and *C* to be in the same 'macroscopic' site. The symmetry identifies the measurements $b_1 \sim c_1$ and $b_2 \sim c_2$, giving rise to macroscopic measurements m_1 and m_2 .

- Consider *B* and *C* to be in the same 'macroscopic' site. The symmetry identifies the measurements $b_1 \sim c_1$ and $b_2 \sim c_2$, giving rise to macroscopic measurements m_1 and m_2 .
- The emergent 'macroscopic' probabilities are given as an average:

$$p(a_i, m_j = x, y) = \frac{1}{2} \left(p(a_i, b_j = x, y) + p(a_i, c_j = x, y) \right)$$

Macroscopic locality and micrscopic monogamy

Consider any **(general) Bell inequality** for a bipartite scenario: a set of coefficients $\alpha(i, j, x, y)$ and a bound *R*.

Macroscopic locality and micrscopic monogamy

Consider any **(general) Bell inequality** for a bipartite scenario: a set of coefficients $\alpha(i, j, x, y)$ and a bound *R*.

$$\sum_{i,j,x,y} \alpha(i,j,x,y) p(a_i, m_j = x, y) \le R$$

$$\Leftrightarrow \qquad \sum_{i,j,x,y} \frac{1}{2} \alpha(i,j,x,y) \left(p(a_i, b_j = x, y) + p(a_i, c_j = x, y) \right) \le R$$

$$\Leftrightarrow \qquad \sum_{i,j,x,y} \alpha(i,j,x,y) p(a_i, b_j = x, y) + \sum_{i,j,x,y} \alpha(i,j,x,y) p(a_i, c_j = x, y) \le 2R$$

Macroscopic locality and micrscopic monogamy

Consider any **(general) Bell inequality** for a bipartite scenario: a set of coefficients $\alpha(i, j, x, y)$ and a bound *R*.

$$\sum_{i,j,x,y} \alpha(i,j,x,y) p(a_i, m_j = x, y) \le R$$

$$\Rightarrow \qquad \sum_{i,j,x,y} \frac{1}{2} \alpha(i,j,x,y) \left(p(a_i, b_j = x, y) + p(a_i, c_j = x, y) \right) \le R$$

$$\Rightarrow \qquad \sum_{i,j,x,y} \alpha(i,j,x,y) p(a_i, b_j = x, y) + \sum_{i,j,x,y} \alpha(i,j,x,y) p(a_i, c_j = x, y) \le 2R$$

The macroscopic model $p(a_i, m_j = \cdots)$ satisfies the inequality if and only if the microscopic model is monogamous with respect to violating it.

Example: W-state

			10						
$a_1 m_1$	10	2	2	10					
$a_1 m_2$	8	4	8	4					
a_2m_1	8	8	4	4					
a_2m_2	8	8	8	0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									

This is **local**! This is general for any empirical model.

・ 同 ト ・ ヨ ト ・ ヨ ト

Another example model

	000	001	010	011	100	101	110	111	
$a_1b_1c_1$	1	1	0	0	0	0	1	1	
$a_1b_1c_2$	1	1	0	0	0	0	1	1	
$a_1 b_2 c_1$	1	1	0	0	0	0	1	1	
$a_1 b_2 c_2$	1	1	0	0	0	0	1	1	
$a_2b_1c_1$	1	1	0	0	0	0	1	1	
$a_2b_1c_2$	1	1	0	0	0	0	1	1	
$a_2b_2c_1$	0	0	1	1	1	1	0	0	
$a_2b_2c_2$	0	0	1	1	1	1	0	0	
(every entry should be divided by 4)									

・ロト ・ 同ト ・ ヨト ・ ヨト

Another example model

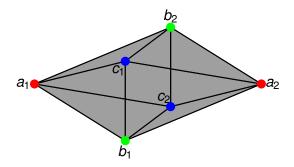
	00	01	10	11		00	01	10	11
a_1b_1	2	0	0	2	<i>a</i> ₁ <i>c</i> ₁	1	1	1	1
a_1b_2	2	0	0	2	<i>a</i> ₁ <i>c</i> ₂	1	1	1	1
a_2b_1	2	0	0	2	<i>a</i> ₂ <i>c</i> ₁	1	1	1	1
a_2b_2	0	2	2	0	$a_2 c_2$	1	1	1	1
(divided by 4)					(divided by 4)				

left: maximally non-local, right: local

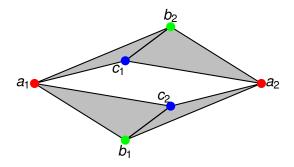
	00	01	10	11				
$a_1 m_1$	3	1	1	3				
$a_1 m_1$	3	1	1	3				
$a_1 m_1$	3	1	1	3				
$a_1 m_1 a_1 m_1$	1	3	3	1				
(every entry should be divided by								

Again, this is local!

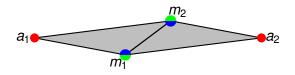
8)



- Microscopic scenario: simplicial complex $\mathfrak{D}_2 * \mathfrak{D}_2 * \mathfrak{D}_2$.
- We identify *B* and *C*: $b_1 \sim c_1$, $b_2 \sim c_2$.
- The macroscopic scenario arises as the quotient.

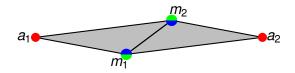


- Microscopic scenario: simplicial complex $\mathfrak{D}_2 * \mathfrak{D}_2 * \mathfrak{D}_2$.
- We identify *B* and *C*: $b_1 \sim c_1$, $b_2 \sim c_2$.
- The macroscopic scenario arises as the quotient.



- Microscopic scenario: simplicial complex $\mathfrak{D}_2 * \mathfrak{D}_2 * \mathfrak{D}_2$.
- We identify *B* and *C*: $b_1 \sim c_1$, $b_2 \sim c_2$.
- The macroscopic scenario arises as the quotient.

・ 同 ト ・ ヨ ト ・ ヨ ト



- This quotient complex satisfies the Vorob'ev condition.
- Therefore, no matter which micro model p(a_i, b_j, c_k = ···) we start from, the macro model p(a_i, m_i = ···) is local!
- In particular, it satisfies any Bell inequality. Hence, the original tripartite model also satisfies a monogamy relation for any Bell inequality.

イロト イポト イヨト イヨト

Summary/Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A macro model arises as a quotient/average of its micro model. New structural insights stem from our approach:

- If the quotient (macro) scenario of some (micro) scenario is Vorob'ev-regular, then the emergent macroscopic model will be extendable (i.e. local/non-contextual), whatever no-signalling microscopic empirical model it arises from.
- 2. A finer analysis reveals that an emergent macroscopic model satisfies a given Bell inequality if and only if its underlying microscopic model satisfies a corresponding **monogamy** inequality.
- 3. In particular, (1) is the case for multipartite scenarios provided there are enough particles on each macro site. So our approach highlights the **reason why** the result of Ramanathan et al. holds holds, and generalises it from QM to any no-signalling theory.

Moreover, it also shows that monogamy relations for violation of general multipartite Bell inequalities follow from the no-signalling condition alone, generalising the result of Pawłowski and Brukner (2009) from bipartite to multipartite.

Questions...

イロン イロン イヨン イヨン

ъ