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Overview

▸ Average macro correlations from micro models are local
(Ramanathan, Paterek, Kay, Kurzyński & Kaszlikowski 2011:
multipartite quantum models)

▸ Monogamy of violation of Bell inequalities
(Pawłowski & Brukner 2009: bipartite no-signalling models)

▸ General framework of Abramsky & Brandenburger (2011):
▸ connect and generalise the results above
▸ provide a structural explanation related to Vorob'ev’s

theorem (1962)
▸ This talk: we mainly consider a simple illustrative example.
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Monogamy of non-locality



Non-locality

p(ai ,bj = x ,y)

Alice Bob

a1,a2 b1,b2

00 01 10 11
a1b1 0 0
a1b2 1/8 1/8

a2b1 1/8 1/8

a2b2 1/8 1/8

1/25



Non-locality

p(ai ,bj = x ,y)

Alice Bob

a1,a2 b1,b2

00 01 10 11
a1b1 1/2 0 0 1/2

a1b2 3/8 1/8 1/8 3/8

a2b1 3/8 1/8 1/8 3/8

a2b2 1/8 3/8 3/8 1/8

1/25



Non-locality
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Monogamy of non-locality

Alice

Bob

Charlie

a1,a2

b1,b2

c1,c2
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Monogamy of non-locality

▸ Empirical model: no signalling probabilities

p(ai ,bj ,ck = x ,y ,z)

where x , y , z are possible outcomes.

▸ Consider the subsystem composed of A and B only, given
by marginalisation (in QM, partial trace):

p(ai ,bj = x ,y) = ∑
z

p(ai ,bj ,ck = x ,y ,z)

(this is independent of ck due to no-signalling).

Similarly define p(ai ,ck = x ,z). (A and C)
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Monogamy of non-locality
Given a Bell inequality B(−,−, ) ≤ R,

Alice

Bob

Charlie

a1,a2

b1,b2

c1,c2

Monogamy relation: B(A,B) + B(A,C) ≤ 2R
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Macroscopic average behaviour



Macroscopic measurements

▸ (Micro) dichotomic measurement: a single particle is
subject to an interaction a and collides with one of two
detectors: outcomes 0 and 1.

▸ The interaction is probabilistic: p(a = x), x = 0,1.

▸ Consider beam (or region) of N particles, differently
prepared.

▸ Subject each particle to the interaction a: the beam gets
divided into 2 smaller beams hitting each of the detectors.

▸ Outcome represented by the intensity of resulting beams:
Ia ∈ [0,1] proportion of particles hitting the detector 1.

▸ We are concerned with the mean, or expected, value of
such intensities.
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Macroscopic average behaviour

▸ This mean intensity can be interpreted as the average
behaviour among the particles in the beam or region:
if we would randomly select one of the N particles and
subject it to the microscopic measurement a, we would get
outcome 1 with probability Ia:

Ia =
N
∑

i=1
pi(a = 1) .

▸ The situation is analogous to statistical mechanics, where
a macrostate arises as an averaging over an extremely
large number of microstates, and hence several different
microstates can correspond to the same macrostate.
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Macroscopic average behaviour: multipartite

▸ Multipartite macroscopic measurements:
▸ several ‘macroscopic’ sites consisting of a large number of

microscopic sites/particles;
▸ several (macro) measurement settings at each site.

▸ Average macroscopic Bell experiment: the (mean) values
of the macroscopic intensities indicate the behaviour of a
randomly chosen tuple of particles: one from each of the
beams, or sites.

▸ We shall show that, as long as there are enough particles
(microscopic sites) in each macroscopic site, such average
macroscopic behaviour is always local no matter which
no-signalling model accounts for the underlying
microscopic correlations.
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Macroscopic average behaviour: tripartite example
▸ Consider again the tripartite scenario:

A

B

C

a1,a2

b1,b2

c1,c2

▸ We regard sites B and C as forming one ‘macroscopic’
site, M, and site A as forming another.

▸ In order to be ‘lumped together’, B and C must be
symmetric/of the same type: the symmetry identifies the
measurements b1 ∼ c1 and b2 ∼ c2, giving rise to
‘macroscopic’ measurements m1 and m2.

▸ Given an empirical model p(ai ,bj ,ck = x ,y ,z), the
‘macroscopic’ average behaviour is a bipartite model (with
two macro sites A and M) given by the following average of
probabilities of the partial models:

pai ,mj (x ,y) =
pai ,bj (x ,y) + pai ,cj (x ,y)

2
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Example: W state

Z and X measurements on the W state:

000 001 010 011 100 101 110 111
a1b1c1 9 1 1 1 1 1 1 9
a1b1c2 8 2 0 2 0 2 8 2
a1b2c1 8 0 2 2 0 8 2 2
a1b2c2 4 4 4 0 4 4 4 0
a2b1c1 8 0 0 8 2 2 2 2
a2b1c2 4 4 4 4 4 0 4 0
a2b2c1 4 4 4 4 4 4 0 0
a2b2c2 0 8 8 0 8 0 0 0

(every entry should be divided by 24)
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Example: W state

00 01 10 11
a1m1 10 2 2 10
a1m2 8 4 8 4
a2m1 8 8 4 4
a2m2 8 8 8 0

(every entry should be divided by 24)

This is local!
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Another example model

000 001 010 011 100 101 110 111
a1b1c1 1 1 0 0 0 0 1 1
a1b1c2 1 1 0 0 0 0 1 1
a1b2c1 1 1 0 0 0 0 1 1
a1b2c2 1 1 0 0 0 0 1 1
a2b1c1 1 1 0 0 0 0 1 1
a2b1c2 1 1 0 0 0 0 1 1
a2b2c1 0 0 1 1 1 1 0 0
a2b2c2 0 0 1 1 1 1 0 0

(every entry should be divided by 4)
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Another example model

00 01 10 11
a1b1 2 0 0 2
a1b2 2 0 0 2
a2b1 2 0 0 2
a2b2 0 2 2 0

(divided by 4)

00 01 10 11
a1c1 1 1 1 1
a1c2 1 1 1 1
a2c1 1 1 1 1
a2c2 1 1 1 1

(divided by 4)

maximally non-local local

00 01 10 11
a1m1 3 1 1 3
a1m1 3 1 1 3
a1m1 3 1 1 3
a1m1 1 3 3 1

(every entry should be divided by 8)

Again, this is local!
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Monogamy of non-locality
and macroscopic averages



A simple observation
Consider any bipartite Bell inequality B(−,−) ≤ R, given by a set
of coefficients α(i , j ,x ,y) and a bound R.

B(A,M) ≤ R

⇔

∑

i,j,x,y
α(i , j , x , y)p(ai ,mj = x , y) ≤ R

⇔

∑

i,j,x,y
α(i , j , x , y)

p(ai ,bj = x , y) + p(ai , cj = x , y)
2

≤ R

⇔

∑

i,j,x,y
α(i , j , x , y)p(ai ,bj = x , y) + ∑

i,j,x,y
α(i , j , x , y)p(ai , cj = x , y) ≤ 2R

⇔

B(A,B) + B(A,C) ≤ R

The average model pai ,mj satisfies the inequality if and
only if in the microscopic model Alice is monogamous
with respect to violating it with Bob and Charlie.
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A simple observation

▸ In the two examples above, the average models were local.

▸ Equivalently, the examples satisfied the monogamy relation
for any Bell inequality.

▸ This is true for all no-signalling empirical models on the
tripartite scenario under consideration, with two
measurement settings per site.

▸ We give a structural explanation for this...

▸ . . . which generalises well beyond this particular scenario.
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Vorob'ev’s theorem



Abramsky-Brandenburger framework

Measurement scenarios:
▸ a finite set of measurements X ;
▸ a cover U of X (or an abstract simplicial complex Σ on X ),

indicating joint measurability or compatibility of
measurements.

a1 a2

b1

b2

a1 a2

b1

b2

c1

c2

Examples: Bell-type scenarios, KS configurations, and more.
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Abramsky–Brandenburger framework

E.g. the tripartite scenario:

X = {a1,a2,b1,b2,c1,c2}

U = {{ai ,bj ,ck} ∣ i , j ,k ∈ {1,2}}

a1 a2

b1

b2

c1

c2
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Abramsky-Brandenburger framework

No-signalling empirical model:
▸ a family (pC)C∈U , where pC is a probability distribution on

the outcomes of measurements in context C.
▸ compatibility condition: pC and pC′ marginalise to the same

distribution on the outcomes of measurements in C ∩C′.
(on multipartite scenarios: no-signalling)

An empirical model admits a local/non-contextual hidden vari-
able explanation (in the sense of Bell’s theorem) iff there exists
a global distribution pX (i.e. for all measurements at the same
time) that marginalises to all the pC .

Obstructions to such extensions are witnessed by violations of
general Bell inequalities.
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Vorob'ev’s theorem

For which measurement compatibility structures Σ is it so
that any no-signalling empirical model admits a global ex-
tension, i.e. is local/non-contextual?

Vorob'ev(1962) derived a necessary and sufficient combinato-
rial condition on Σ for this to be the case.

▸ Turns out to be equivalent to the notion of acyclicity of a
database schema.
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Acyclicity

▸ Graham reduction step: delete a measurement that
belongs to only one maximal context.

▸ A cover is acyclic when it is Graham reducible to ∅.

a

b

c

d

e

b

c

d

e

19/25



Acyclicity

▸ Graham reduction step: delete a measurement that
belongs to only one maximal context.

▸ A cover is acyclic when it is Graham reducible to ∅.

a

b

c

d

e

b

c

d

e

19/25



Acyclicity

▸ Graham reduction step: delete a measurement that
belongs to only one maximal context.

▸ A cover is acyclic when it is Graham reducible to ∅.

a

b

c

d

e

b

c

d

e

b

c

d b d b

∅

19/25



Acyclicity

▸ Graham reduction step: delete a measurement that
belongs to only one maximal context.

▸ A cover is acyclic when it is Graham reducible to ∅.

a

b

c

d

e

b

c

d

e

b

c

d b d b

∅

Theorem (Vorob'ev 1962, adapted)
All empirical models on Σ are extendable iff Σ is acyclic
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Sketch of proof of Vorob'ev’s theorem

▸ If Σ is acyclic,

a

b

c

d

e

b

c

d

e

b

c

d b d b

∅

▸ If Σ is not acyclic (Graham reduction fails).

a

b

c

d

e

b

c

d

e

There is a “cycle”!
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▸ If Σ is acyclic,

a

b

c

d

e

b

c

d

e

b

c

d b d b

∅

then construct a global distribution by glueing

Given distributions Pab over {a,b} and Pbc over {b, c} compatible on b,

∑

x∈O
P(a,b = x , y) = ∑

z∈O
P(b, c = y , z) ,

we can define an extension:

P(a,b, c = x , y , z) =
P(a,b = x , y)P(b, c = y , z)

P(b = y)
.

▸ If Σ is not acyclic (Graham reduction fails).

a

b

c

d

e

b

c

d

e

There is a “cycle”!
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A structural explanation



Structural Reason

a1 a2

b1

b2

c1

c2

▸ Measurement scenario: simplicial complex D2 ∗D2 ∗D2.
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Structural Reason

a1 a2

m1

m2

▸ Measurement scenario: simplicial complex D2 ∗D2 ∗D2.
▸ We identify B and C: b1 ∼ c1, b2 ∼ c2.
▸ The macro scenario arises as a quotient.
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Structural Reason

a1 a2

m1

m2

▸ This quotient complex is acyclic.
▸ Therefore, no matter from which micro model pai ,bj ,ck we

start, the averaged macro correlations pai ,mj are local.
▸ In particular, they satisfy any Bell inequality. Hence, the

original tripartite model also satisfies a monogamy relation
for any Bell inequality.
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General multipartite scenarios



General multipartite scenarios
▸ n macroscopic sites A,B,C, . . .
▸ ki measurement settings at site i
▸ take ri copies of each site i , or ri micro sites constituting i .

For a macro site A:
▸ copies / micro sites: A(1), . . . ,A(r1)

▸ measurement settings at A(m): a(m)1 , . . . ,a(m)kA

Scenario: Σn,k⃗ ,r⃗ ∶=D
(∗r1)
k1

∗⋯ ∗D
(∗rn)
kn

.

▸ Symmetry by Sr1 ×⋯ ×Srn identifies the copies at each
macro site.

a(1)j ∼ ⋯ ∼ a(rA)
j (∀j ∈ {1, . . . ,kA}),

b(1)j ∼ ⋯ ∼ a(rA)
j (∀j ∈ {1, . . . ,kA}),

etc.
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General multipartite scenarios

Proposition
The quotient of the measurement scenario Σn,k⃗ ,r⃗ by the
symmetry above is acyclic iff . . . ?

one of the following holds:
▸ each site has at least as many microscopic sites or copies

as it has measurement settings, i.e. ∀i∈{1,...,n}. ki ≤ ri ;
▸ one of the sites has a single copy and the condition above

is satisfied by all the other sites, i.e.
∃i0. (ri0 = 1 ∧ ∀i∈{1,...î0...,n}. ki ≤ ri).

We get monogamy relations

rB

∑

mB=1

rC

∑

mC=1
⋯ B(A,B(mB),C(mC), . . .) ≤ rBrC⋯ R
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as it has measurement settings, i.e. ∀i∈{1,...,n}. ki ≤ ri ;
▸ one of the sites has a single copy and the condition above

is satisfied by all the other sites, i.e.
∃i0. (ri0 = 1 ∧ ∀i∈{1,...î0...,n}. ki ≤ ri).

We get monogamy relations
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Conclusions



Summary

▸ A symmmetry (G-action) on Σ identifies measurements.
▸ A model satisfies a G-monogamy relation for a Bell

inequality iff the macro average correlations (quotient
model by G) satisfy the Bell inequality.

▸ So, if the quotient scenario is acyclic, then any
no-signalling empirical model is G-monogamous wrt to
all Bell inequalities (since the average correlations, being
defined in this quotient scenario, must be
local/non-contextual).
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Summary

▸ In particular, we proved that this is the case for multipartite
Bell-type scenarios provided the number of parties being
identified as belonging to each ‘macro’ site is larger than
the number of measurement settings available to each of
them.

▸ Our approach highlights the reason why monogamy
relations for general multipartite Bell inequalities follow
from no-signalling alone, generalising the result of
Pawłowski and Brukner (2009) from bipartite to multipartite.
It also shows that what Ramanathan et al. proved holds
not only for QM but for any no-signalling theory.

▸ The approach is not restricted to multipartite Bell-type
scenarios. More generally, we can apply the same ideas to
derive monogamy relations for contextuality inequalities.
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Questions...

?
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