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Introduction

▸ framework for non-locality and contextuality
▸ general measurement scenarios

▸ empirical model:
probabilities of outcomes of compatible measurements

▸ sometimes possibilistic information is enough!
(proofs without inequalities)

▸ supports determine the combinatorial structure of the
no-signalling polytope.

▸ . . . but not quite possibilities alone!
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Abramsky–Brandenburger framework

Measurement scenarios:
▸ a finite set of measurements X ;
▸ a finite set of outcomes O;
▸ a coverM of X , indicating joint measurability.

a1 a2

b1

b2

a1 a2

b1

b2

c1

c2

Examples: Bell-type scenarios, KS configurations, and more.
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Abramsky-Brandenburger framework

No-signalling empirical model:
▸ a family (eC)C∈M, where eC is a probability distribution on

the outcomes of measurements in context C.
▸ compatibility condition:

eC ∣C∩C′ = eC′ ∣C∩C′

(on multipartite scenarios: no-signalling)

An empirical model is local/non-contextual when there exists
a global distribution pX (i.e. for all measurements at the same
time) that marginalises to all the eC .
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Bell scenario

a2a1 b2b1
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Possibilistic collapse

▸ Given an empirical model e, define possibilistic model
poss(e) by taking the support of each distributions.

▸ Contains the possibilistic, or logical, information of that
model.
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a2b1 1/8 1/8

a2b2 1/8 1/8

z→

00 01 10 11
a1b1 1 0 0 1
a1b2 1 1 1 1
a2b1 1 1 1 1
a2b2 1 1 1 1
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Logical contextuality: Hardy model

00 01 10 11
a0b0 1 1 1 1
a0b1 0 1 1 1
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a1b1 1 1 1 0
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There are some global sections,

but . . .

Logical contextuality: Not all sections extend to global ones.

Also: strong contextuality, cohomological, All-versus-nothing.
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The no-signalling polytope

▸ Fix a measurement scenario ⟨X ,O,M⟩.
▸ N : set of probabilistic empirical models.

▸ convex set: convex combination (done componentwise)

(re + (1 − r)e′)C ∶= reC + (1 − r)e′C

gives another empirical model.

▸ explicitly represent models as points in RN , with
N = ∑C∈M ∣C∣.

▸ N is a polytope: defined by a finite number of linear
constraints.
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The structure of the no-signalling polytope

▸ N : set of probabilistic empirical models
▸ F : the face lattice of this polytope (vertices, edges, . . . )

▸ S: possibilistic models of the form poss(e) for some e ∈ N
▸ ordered contextwise by support

Then
F ≅ S�

7/27



In fact, the result applies to a much wider class of polytopes.

N is defined by constraints:
▸ Non-negativity;
▸ Linear equations: viz. normalisation and no-signalling.

In geometric terms: N =H≥0 ∩Aff(N )
where Aff(N ) is the affine subspace generated by N ,
and H≥0 = {v ∣ v ≥ 0}.

For any P is standard form, there is an order-isomorphism be-
tween:

▸ F(P), the face lattice of P.
▸ S(P), set of “supports” of points in P, ordered by inclusion.
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Polytopes

▸ A V-polytope is the convex hull Conv(S) of a finite set of
points S ⊆ Rn.

▸ An H-polytope is a bounded intersection of a finite set of
closed half-spaces in Rn.

{x ∣ a ⋅ x ≥ b} for some a ∈ Rn, b ∈ R.

Fundamental Theorem of Polytopes: the two notions coincide.
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Face lattice

▸ a ⋅ x ≥ b is valid for P if it is satisfied by every x ∈ P.
▸ A valid inequality defines a face F of P:

F ∶= {x ∈ P ∣ a ⋅ x = b}.

▸ F(P): the set of faces of P; F+(P): the set of non-empty
faces.

▸ F(P) is partially ordered by set inclusion.
▸ It is a finite lattice.
▸ It is atomistic, coatomistic, and graded.
▸ Meets in F(P) are given by intersection of faces, joins

defined indirectly.

Called the face lattice of P, aka the combinatorial type of P.
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Relative interior

Relative interior of a set S:

relint (S) = {x ∈ S ∣ ∃ε > 0. Aff(S) ∩Bε(x) ⊆ S}

For a convex set:

relint (S) = {x ∈ S ∣ ∀y ∈ S. ∃ε > 0. (1 + ε)x − εy ∈ S}

Intuitively: a point x is in the relative interior if the line segment
[y,x] from any point y of S in to x can be extended beyond x
while remaining in S.
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Carrier face

Every polytope P can be written as the disjoint union of the rel-
ative interiors of its non-empty faces:

P = ⊔
F∈F+(P)

relint F .

This means that for any polytope P we can define a map

carr ∶ P - F+(P)

which assigns to each point x of P its carrier face — the unique
face F such that x ∈ relint F .

12/27



Supports

Polytope P in standard form: P =H≥0 ∩Aff(P).

▸ Define a map supp ∶H≥0 - {0,1}n:

(supp x)i = { 0, xi = 0
1, xi > 0

▸ S(P) ∶= {supp x ∣ x ∈ P}, ordered componentwise.

▸ Join of u,v is componentwise boolean disjunction:
(u ∨ v)i ∶= ui ∨ vi .

▸ For x,y ∈ P and 0 < λ < 1,
supp (λx + (1 − λ)y) = supp x ∨ supp y .

▸ So S(P)� is a finite lattice.
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F+(P)
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S(P)

supp
--

WTS: carr x ⊆ carr y ⇔ supp x ≤ supp y
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For x in P, define a vector xσ in Rn: xσ
i =

⎧⎪⎪⎨⎪⎪⎩

0, xi > 0
1, xi = 0

.

Clearly, xσ ⋅ z ≥ 0 is valid for all z ∈ P, and defines a face

Fx = {z ∈ P ∣ xσ ⋅ z = 0}
= {z ∈ P ∣ supp z ≤ supp x} .

For all x in P, carr x = Fx.

Show that x ∈ relint Fx:
▸ Let z ∈ Fx.
▸ Choose ε such that εz ≤ x.
▸ v ∶= (1 + ε)x − εz ≥ 0.
▸ Hence, v ∈ Fx.
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Fx = {z ∈ P ∣ xσ ⋅ z = 0}
= {z ∈ P ∣ supp z ≤ supp x} .
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carr x ⊆ carr y ⇔ supp x ≤ supp y
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Some consequences
▸ Models are in the relative interior of the same face iff they

have the same support.

▸ An empirical model has full support iff it is in the relative
interior of the no-signalling polytope. Consequently, any
logically contextual model must lie in a proper face of the
polytope.

▸ The vertices of the no-signalling polytope are exactly the
probability models with minimal support. Moreover, there is
only one probability model for each such minimal support.

▸ Therefore, the extremal empirical models are exactly those
models which are completely and uniquely determined by
their supports.

▸ These vertices of the polytope can be written as the
disjoint union of the non-contextual, deterministic models –
the vertices of the polytope of classical models – and the
strongly contextual models with minimal support.
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But . . .

▸ Note the mention of support!
▸ We still start from probabilistic models and take their

supports.

Can we characterise the combinatorial type of N using
only possibilistic notions?
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▸ Recall that empirical models are families of consistent
distributions.

▸ These can be defined over any commutative semiring R.
▸ R≥0 gives probabilistic models.
▸ B gives possibilistic models.

Using the (unique) semiring homomorphism R≥0 Ð→ B, we have
a map

poss ∶ NR≥0 Ð→ NB

The support lattice S(NR≥0) is the image of this map.

Can we give an intrinsic characterisation of the image
of the possibilistic collapse map, using only possibilistic
notions?
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S(NR≥0) ≠ NB

i.e. there exist possibilistic empirical models that are not the
support of any (probabilistic) empirical model (Abramsky, 2012).

A B 0 0 0 1 1 0 1 1
a1 b1 1 0 0 1
a1 b2 1 1 0 1
a2 b1 1 0 0 1
a2 b2 1 0 0 1
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S(NR≥0) ≠ NB

i.e. there exist possibilistic empirical models that are not the
support of any (probabilistic) empirical model (Abramsky, 2012).

A B 0 0 0 1 1 0 1 1
a1 b1 c 0 0 c′

a1 b2 d g 0 d ′

a2 b1 e 0 0 e′

a2 b2 f 0 0 f ′
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▸ The requirement that each variable be strictly positive is
essential in this argument.

▸ A sensible question would be: given a possibilistic
empirical model, is there always a (probabilistic) empirical
model whose support is at most the original one?

▸ That is, are minimal possibilistic models always realisable
as supports?

▸ Also, NO!
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X = {A,B,C,D}
M = {{A,B},{A,C},{A,D},{B,C},{B,D},{C,D}}
O = {0,1,2}

Possible assignments:

AB ↦ 00, 10, 21
a b c

AC ↦ 00, 11, 21
d e f

AD ↦ 01, 10, 21
k l m

BC ↦ 00, 11
g h

BD ↦ 00, 11
i j

CD ↦ 01, 10
n o
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AB ↦ 00, 10, 21
a b c

AC ↦ 00, 11, 21
d e f

AD ↦ 01, 10, 21
k l m

BC ↦ 00, 11
g h

BD ↦ 00, 11
i j

CD ↦ 01, 10
n o

a = k , b = l , g = i , h = j , c = n, d = k , e = l , f = m
c = h, h = o, g = n, i = o, j = n, c = j , l = o, d = n.
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AB ↦ 00, 10, 21
a b c

AC ↦ 00, 11, 21
d e f

AD ↦ 01, 10, 21
k l m

BC ↦ 00, 11
g h

BD ↦ 00, 11
i j

CD ↦ 01, 10
n o

▸ All variables must be equated.
▸ Minimality: set any variable to zero, then all must be zero.
▸ Only remaining non-trivial equation is a = a + a.
▸ No non-zero, real solution!
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A Bell-type example

XBell = {A1,B1,C1,D1,A2,B2,C2,D2}
MBell = {A1,B1,C1,D1} × {A2,B2,C2,D2}

O = {0,1,2}

Possible sections:

A1A2 ↦ 00, 11, 22
B1B2, C1C2, D1D2 ↦ 00, 11
A1B2, A2B1 ↦ 00, 10, 21
A1C2, A2C1 ↦ 00, 11, 21
A1D2, A2D1 ↦ 01, 10, 21
B1C2, B2C1 ↦ 00, 11
B1D2, B2D1 ↦ 00, 11
C1D2, C2D1 ↦ 01, 10
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A Bell-type example

●
A1

●
B1

●
C1

●
D1

●A2 ●B2 ● C2 ● D2

●●
●

●● ●● ●●

●●
●

●● ●● ●●
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Still an open question

Can we give an intrinsic characterization of the image
of the possibilistic collapse map, using only possibilistic
notions?
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