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Introduction

» framework for non-locality and contextuality
» general measurement scenarios

» empirical model:
probabilities of outcomes of compatible measurements

» sometimes possibilistic information is enough!
(proofs without inequalities)

» supports determine the combinatorial structure of the

no-signalling polytope.
» ... but not quite possibilities alone!
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Abramsky—Brandenburger framework

Measurement scenarios:
> a finite set of measurements X;
> a finite set of outcomes O;
» a cover M of X, indicating joint measurability.

bo

bo

a ao

by
by
Examples: Bell-type scenarios, KS configurations, and more.




Abramsky-Brandenburger framework

No-signalling empirical model:

> a family (ec)ceams Where eg is a probability distribution on
the outcomes of measurements in context C.

» compatibility condition:

eclenc = €c'lene

(on multipartite scenarios: no-signalling)




Abramsky-Brandenburger framework

No-signalling empirical model:
» afamily (ec)cea, Where e is a probability distribution on
the outcomes of measurements in context C.

» compatibility condition:
eclenc = ec'lenc

(on multipartite scenarios: no-signalling)

An empirical model is local/non-contextual when there exists
a global distribution py (i.e. for all measurements at the same
time) that marginalises to all the ec.




Bell scenario
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Bell scenario
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Possibilistic collapse

» Given an empirical model e, define possibilistic model
poss(e) by taking the support of each distributions.

» Contains the possibilistic, or logical, information of that
model.
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Possibilistic collapse

» Given an empirical model e, define possibilistic model
poss(e) by taking the support of each distributions.

» Contains the possibilistic, or logical, information of that

model.

|00 01 10 11 |00 01 10 11
a1b1 1/2 0 0 1/2 a1b1 1 0 0 1
aiby |38 1/8 18 38 +— abo| 1 1 1 1
aby | 3/s /8 /8 38 aby |1 1 1 1
ab, | 1/8 3/8 3/s 1/8 ab, |1 1 1 1
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Logical contextuality: Hardy model
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Logical contextuality: Hardy model
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Logical contextuality: Hardy model
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Logical contextuality: Hardy model

00 01 10
aobo 1 1 1
aob1 0 1 1
aiby| O 1 1
ay b1 1 1 1

There are some global sections, but...
Logical contextuality: Not all sections extend to global ones.

Also: strong contextuality, conomological, All-versus-nothing.
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The no-signalling polytope

» Fix a measurement scenario (X, O, M).
» N set of probabilistic empirical models.
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The no-signalling polytope

» Fix a measurement scenario (X, O, M).
» N set of probabilistic empirical models.
» convex set: convex combination (done componentwise)

(re+(1-r)e)c=rec+(1-r)eg

gives another empirical model.

» explicitly represent models as points in RN, with
N = ZCEM ‘C|

» N is a polytope: defined by a finite number of linear
constraints.
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The structure of the no-signalling polytope

v

N set of probabilistic empirical models
F: the face lattice of this polytope (vertices, edges, ...)

v

v

S: possibilistic models of the form poss(e) for some e e N
ordered contextwise by support

Then

v

FxS,

7127



In fact, the result applies to a much wider class of polytopes.

N is defined by constraints:
> Non-negativity;
» Linear equations: viz. normalisation and no-signalling.

In geometric terms: N = H,o n Aff(N)
where Aff(N) is the affine subspace generated by A/,
and Hyo ={v|v>0}.
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In fact, the result applies to a much wider class of polytopes.

N is defined by constraints:
> Non-negativity;
» Linear equations: viz. normalisation and no-signalling.

In geometric terms: N = H,o n Aff(N)
where Aff(N) is the affine subspace generated by A/,
and Hyo ={v|v>0}.

For any P is standard form, there is an order-isomorphism be-
tween:

» F(P), the face lattice of P.

» S(P), set of “supports” of points in P, ordered by inclusion.
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Polytopes

» A V-polytope is the convex hull Conv(S) of a finite set of
points S c R".
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Polytopes

» A V-polytope is the convex hull Conv(S) of a finite set of
points S c R".

> An 7{-polytope is a bounded intersection of a finite set of
closed half-spaces in R".

{x|a-x>b} forsomeacR" beR.

Fundamental Theorem of Polytopes: the two notions coincide.
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Face lattice

> a-X 2> bis valid for P if it is satisfied by every x € P.
» A valid inequality defines a face F of P:

F = {xeP|a-x=b}.

» F(P): the set of faces of P; 7 (P): the set of non-empty
faces.
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Face lattice

> a-X 2> bis valid for P if it is satisfied by every x € P.
A valid inequality defines a face F of P:

v

F = {xeP|a-x=b}.

v

F(P): the set of faces of P; F*(P): the set of non-empty
faces.

v

F(P) is partially ordered by set inclusion.
It is a finite lattice.
It is atomistic, coatomistic, and graded.

Meets in F(P) are given by intersection of faces, joins
defined indirectly.

v

v

v

Called the face lattice of P, aka the combinatorial type of P.
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Relative interior

Relative interior of a set S:
relint(S) = {x e S| 3e> 0. Aff(S) n B.(x) c S}
For a convex set:
relint(S) ={xeS|VyeS.3e>0.(1+¢e)x—eye S}

Intuitively: a point x is in the relative interior if the line segment
[y,x] from any point y of S in to x can be extended beyond x
while remaining in S.
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Carrier face

Every polytope P can be written as the disjoint union of the rel-
ative interiors of its non-empty faces:

P= || relintF.
FeF+(P)

This means that for any polytope P we can define a map
carr : P —— F*(P)

which assigns to each point x of P its carrier face — the unique
face F such that x e relint F.
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Supports

Polytope P in standard form: P = .o n Aff(P).
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Supports

Polytope P in standard form: P = .o n Aff(P).
» Define a map supp : H.o — {0, 1}

(suppx);=1 3 X170
! 1, x>0

» S(P) := {suppx | x € P}, ordered componentwise.

» Join of u, v is componentwise boolean disjunction:
(uvv); = u;vv,.

» Forx,yePand0<\<1,
supp (AX+ (1 =)\)y) = suppx v suppy.

» So S(P), is afinite lattice.

13/27
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Clearly, x? -z > 0 is valid for all z € P, and defines a face

For xin P, define a vector x” in R": x{ =
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={zeP|suppz<suppX}.
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0, x;>0
1, X;= 0
Clearly, x? -z > 0 is valid for all z € P, and defines a face

For xin P, define a vector x” in R": x{ =

Fx ={zeP|x°-2=0}
={zeP|suppz<suppX}.

Forall x in P, carrx = F.

Show that x € relint Fy:
» Letze Fy.
» Choose ¢ such that ez < x.
» Vi=(1+e)x—ez>0.
» Hence, v € Fy.

15/27
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Some consequences

» Models are in the relative interior of the same face iff they
have the same support.

» An empirical model has full support iff it is in the relative
interior of the no-signalling polytope. Consequently, any
logically contextual model must lie in a proper face of the
polytope.

» The vertices of the no-signalling polytope are exactly the
probability models with minimal support. Moreover, there is
only one probability model for each such minimal support.

» Therefore, the extremal empirical models are exactly those
models which are completely and uniquely determined by
their supports.

» These vertices of the polytope can be written as the
disjoint union of the non-contextual, deterministic models —
the vertices of the polytope of classical models — and the
strongly contextual models with minimal support.
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But ...

> Note the mention of support!

» We still start from probabilistic models and take their
supports.

Can we characterise the combinatorial type of N using
only possibilistic notions?
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Recall that empirical models are families of consistent
distributions.

These can be defined over any commutative semiring R.
» R, gives probabilistic models.
» B gives possibilistic models.

v

v

19/27



Recall that empirical models are families of consistent
distributions.

» These can be defined over any commutative semiring R.
» R, gives probabilistic models.
» B gives possibilistic models.

v

Using the (unique) semiring homomorphism R,y — B, we have
a map
poss : Nr,, — Ng

19/27



» Recall that empirical models are families of consistent
distributions.

» These can be defined over any commutative semiring R.

» R, gives probabilistic models.

» B gives possibilistic models.
Using the (unique) semiring homomorphism R,y — B, we have
a map

poss : Nr,, — Ng

The support lattice S(Nr.,) is the image of this map.

Can we give an intrinsic characterisation of the image
of the possibilistic collapse map, using only possibilistic
notions?

19/27



S(Nr,o) # VB

i.e. there exist possibilistic empirical models that are not the
support of any (probabilistic) empirical model (Abramsky, 2012).

A B[00 01 10 11

ay b1 1 0 0 1
aj bg 1 1 0 1
a by 1 0 0 1
a bg 1 0 0 1
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S(Nr,o) # VB

i.e. there exist possibilistic empirical models that are not the
support of any (probabilistic) empirical model (Abramsky, 2012).

A B[00 01 10 11
b

a byl c 0 0 (¢
a b|d g 0 d
a bjle 0 0 ¢
ao b2 f 0 0 f!
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» The requirement that each variable be strictly positive is
essential in this argument.
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» The requirement that each variable be strictly positive is
essential in this argument.

» A sensible question would be: given a possibilistic
empirical model, is there always a (probabilistic) empirical
model whose support is at most the original one?

» That is, are minimal possibilistic models always realisable
as supports?

» Also, NO!
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X={AB,C,D}
M = {{A7 B}’ {A’ C}’ {A7 D}7 {87 C}, {B, D}7 {07 D}}
0={0,1,2}
Possible assignments:

AB — 00, 10, 21

a b ¢
AC ~ 00, 11, 21

d e f
AD ~ 01, 10, 21

k I m
BC ~ 00, 11

g h
BD ~ 00, 11

i
cD -~ 01, 10

n o
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AB ~ 00, 10, 21

a b ¢
AC ~ 00, 11, 21

d e f
AD ~ 01, 10, 21

k I m
BC ~ 00, 11

g h
BD ~ 00, 11

i
cD -~ 01, 10

n 0

v

All variables must be equated.

» Minimality: set any variable to zero, then all must be zero.
> Only remaining non-trivial equation is a=a+ a.

> No non-zero, real solution!
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A Bell-type example

Xgell = {A1,B1,Cy,D1,A2,B5,Co, Do}
Magei = {A1,B1,C1, D1} x {Az, Bo, Co, Do}

0={0,1,2}
Possible sections:

AlAz ~ 00, 11, 22
BiB,, CiC,, DiD» ~ 00, 11
A1Bs, AB; ~ 00, 10, 21
A1Co, AsxCy ~ 00, 11, 21
AiD>, AsD; ~ 01, 10, 21
BiCs, B:Cy ~ 00, 11
BD», ByD; 00, 11
CiD>, C>D; ~ 01, 10
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A Bell-type example




Still an open question

Can we give an intrinsic characterization of the image
of the possibilistic collapse map, using only possibilistic
notions?
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