The contextual fraction and contextuality as a resource

Samson Abramsky¹

Rui Soares Barbosa¹

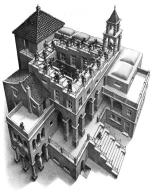
Shane Mansfield²

¹Department of Computer Science, University of Oxford {samson.abramsky,rui.soares.barbosa}@cs.ox.ac.uk

²School of Informatics, University of Edinburgh shane.mansfield@ed.ac.uk

Foundations of Quantum Mechanics and Technology Linnéuniversitetet, Växjö, 13th June 2017

► Contextuality: a fundamental non-classical phenomenon of QM



- ► Contextuality: a fundamental non-classical phenomenon of QM
- Contextuality as a **resource** for QIP and QC:

- Contextuality: a fundamental non-classical phenomenon of QM
- Contextuality as a **resource** for QIP and QC:
 - Non-local games XOR games (CHSH; Cleve, Høyer, Toner, & Watrous) quantum graph homomorphisms (Mančinska & Roberson) constraint satisfaction (Cleve & Mittal) etc. (Abramsky, B, de Silva, & Zapata)

- Contextuality: a fundamental non-classical phenomenon of QM
- Contextuality as a resource for QIP and QC:
 - Non-local games XOR games (CHSH; Cleve, Høyer, Toner, & Watrous) quantum graph homomorphisms (Mančinska & Roberson) constraint satisfaction (Cleve & Mittal) etc. (Abramsky, B, de Silva, & Zapata)
 - MBQC
 Raussendorf (2013)
 - "Contextuality in measurement-based quantum computation"

- Contextuality: a fundamental non-classical phenomenon of QM
- Contextuality as a resource for QIP and QC:
 - Non-local games
 XOR games (CHSH; Cleve, Høyer, Toner, & Watrous)
 quantum graph homomorphisms (Mančinska & Roberson)
 constraint satisfaction (Cleve & Mittal)
 - etc. (Abramsky, B, de Silva, & Zapata)
 - ► MBQC
 - Raussendorf (2013)
 - "Contextuality in measurement-based quantum computation"
 - MSD
 - Howard, Wallman, Veith, & Emerson (2014)
 - "Contextuality supplies the 'magic' for quantum computation"

Abramsky & Brandenburger: unified framework for non-locality and contextuality

- Abramsky & Brandenburger: unified framework for non-locality and contextuality
- qualitative hierarchy of contextuality for empirical models

- Abramsky & Brandenburger: unified framework for non-locality and contextuality
- qualitative hierarchy of contextuality for empirical models
- quantitative grading measure of contextuality (NB: there may be more than one useful measure)

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

► **General**, i.e. applicable to any measurement scenario

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

- ► **General**, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality

We introduce the contextual fraction (generalising the notion of non-local fraction)

- ► **General**, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

- ► **General**, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities

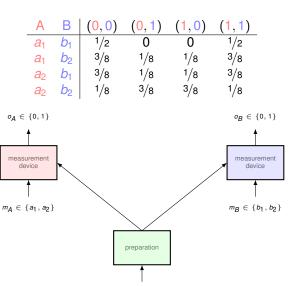
We introduce the **contextual fraction** (generalising the notion of non-local fraction)

- ► **General**, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

- ► **General**, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities
- Relates to quantifiable advantages in QC and QIP tasks

Empirical data



Abramsky–Brandenburger framework

Measurement scenario $\langle X, \mathcal{M}, \mathcal{O} \rangle$:

- X is a finite set of measurements or variables.
- O is a finite set of outcomes or values.
- \triangleright M is a cover of X, indicating **joint measurability** (contexts)

Abramsky-Brandenburger framework

Measurement scenario $\langle X, \mathcal{M}, \mathcal{O} \rangle$:

- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- \triangleright \mathcal{M} is a cover of X, indicating **joint measurability** (contexts)

Example: (2,2,2) Bell scenario

- ▶ The set of variables is $X = \{a_1, a_2, b_1, b_2\}$.
- ▶ The outcomes are $O = \{0, 1\}$.
- The measurement contexts are:

$$\{ \{a_1,b_1\}, \{a_1,b_2\}, \{a_2,b_1\}, \{a_2,b_2\} \}.$$

Joint outcome or **event** in a context C is $s \in O^C$, e.g.

$$\textbf{\textit{s}} = [\textbf{\textit{a}}_1 \mapsto \textbf{\textit{0}}, \textbf{\textit{b}}_1 \mapsto \textbf{\textit{1}}]$$
 .

Joint outcome or **event** in a context C is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1] .$$

Empirical model: family $\{e_C\}_{C \in \mathcal{M}}$ where $e_C \in \text{Prob}(O^C)$ for $C \in \mathcal{M}$.

It specifies a probability distribution over the events in each context.

Each distribution is a row of the probability table.

Joint outcome or **event** in a context C is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1] .$$

Empirical model: family $\{e_C\}_{C \in \mathcal{M}}$ where $e_C \in \text{Prob}(O^C)$ for $C \in \mathcal{M}$.

It specifies a probability distribution over the events in each context. Each distribution is a row of the probability table.

Compatibility condition: the distributions "agree on overlaps"

$$\forall C, C' \in \mathcal{M}. \quad e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.$$

Joint outcome or **event** in a context C is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1].$$

Empirical model: family $\{e_C\}_{C \in \mathcal{M}}$ where $e_C \in \text{Prob}(O^C)$ for $C \in \mathcal{M}$.

It specifies a probability distribution over the events in each context. Each distribution is a row of the probability table.

Compatibility condition: the distributions "agree on overlaps"

$$\forall C, C' \in \mathcal{M}. \quad e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.$$

In multipartite scenarios, compatibility = the **no-signalling** principle.

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \text{Prob}(O^X)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C :

$$\exists d \in \mathsf{Prob}(O^X). \ \forall C \in \mathcal{M}. \ d|_C = e_C.$$

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \text{Prob}(O^X)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C :

$$\exists d \in \mathsf{Prob}(\mathcal{O}^X). \ \forall \ C \in \mathcal{M}. \ \ d|_{\mathcal{C}} = e_{\mathcal{C}}.$$

i.e. all the local information can be glued into a consistent global description.

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \text{Prob}(O^X)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C :

$$\exists d \in \mathsf{Prob}(O^X). \ \forall C \in \mathcal{M}. \ d|_C = e_C.$$

i.e. all the local information can be glued into a consistent global description.

Contextuality:

family of data which is locally consistent but globally inconsistent.

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \text{Prob}(O^X)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C :

$$\exists d \in \mathsf{Prob}(O^X). \ \forall C \in \mathcal{M}. \ d|_C = e_C.$$

i.e. all the local information can be glued into a consistent global description.

Contextuality:

family of data which is locally consistent but globally inconsistent.

The import of results such as Bell's and Bell–Kochen–Specker's theorems is that there are empirical models arising from quantum mechanics that are contextual.

Strong contextuality

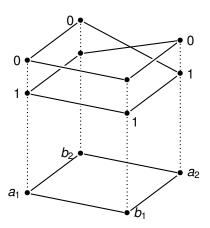
Strong Contextuality: **no** event can be extended to a global assignment.

Strong contextuality

Strong Contextuality: **no** event can be extended to a global assignment.

E.g. K-S, GHZ, the PR box:

Α	В	(0,0)	(0, 1)	(1,0)	(1,1)
a ₁	b_1	✓	×	×	✓
a_1	b_2	\checkmark	×	×	\checkmark
a_2	b_1	\checkmark	×	×	\checkmark
a_2	b_2	×	\checkmark	\checkmark	×



Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}.\ d|_{C}=e_{C}$$
.

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}.\ d|_{C}=e_{C}.$$

Which fraction of a model admits a non-contextual explanation?

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}.\ d|_{C}=e_{C}.$$

Which fraction of a model admits a non-contextual explanation?

Consider **subdistributions** $c \in \text{SubProb}(O^X)$ such that:

$$\forall_{C \in \mathcal{M}}. \ c|_{C} \leq e_{C}$$
.

Non-contextual fraction: maximum weight of such a subdistribution.

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}.\ d|_{C}=e_{C}.$$

Which fraction of a model admits a non-contextual explanation?

Consider **subdistributions** $c \in \text{SubProb}(O^X)$ such that:

$$\forall_{C \in \mathcal{M}}. \ c|_{C} \leq e_{C}.$$

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda)e'$$

where e^{NC} is a non-contextual model.

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}.\ d|_{C}=e_{C}.$$

Which fraction of a model admits a non-contextual explanation?

Consider **subdistributions** $c \in \text{SubProb}(O^X)$ such that:

$$\forall_{C \in \mathcal{M}}. \ c|_{C} \leq e_{C}.$$

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda)e'$$

where e^{NC} is a non-contextual model.

The contextual fraction

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}.\ d|_{C}=e_{C}.$$

Which fraction of a model admits a non-contextual explanation?

Consider **subdistributions** $c \in \text{SubProb}(O^X)$ such that:

$$\forall_{C \in \mathcal{M}}. \ c|_{C} \leq e_{C}$$
.

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda)e^{SC}$$

where e^{NC} is a non-contextual model. e^{SC} is strongly contextual!

$$NCF(e) = \lambda$$
 $CF(e) = 1 - \lambda$

(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

```
Find \mathbf{d} \in \mathbb{R}^n such that \mathbf{M} \, \mathbf{d} = \mathbf{v}^e and \mathbf{d} \geq \mathbf{0} .
```

(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find
$$\mathbf{d} \in \mathbb{R}^n$$
 such that $\mathbf{M} \, \mathbf{d} = \mathbf{v}^e$ and $\mathbf{d} \geq \mathbf{0}$.

Computing the non-contextual fraction corresponds to solving the following linear program:

```
Find \mathbf{c} \in \mathbb{R}^n maximising \mathbf{1} \cdot \mathbf{c} subject to \mathbf{M} \mathbf{c} \leq \mathbf{v}^e and \mathbf{c} \geq \mathbf{0} .
```

E.g. Equatorial measurements on GHZ(n)

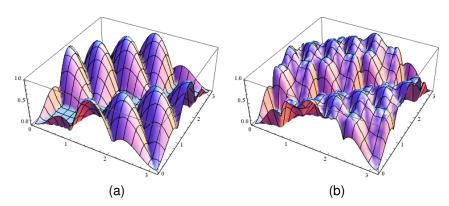


Figure: Contextual fraction of empirical models obtained with equatorial measurements at ϕ_1 and ϕ_2 on each qubit of $|\psi_{GHZ(n)}\rangle$ with: (a) n=3; (b) n=4.

Violations of Bell inequalities

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- ▶ a set of coefficients $\alpha = \{\alpha(C, s)\}_{C \in \mathcal{M}. s \in O^C}$
- ▶ a bound R

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- ▶ a set of coefficients $\alpha = \{\alpha(C, s)\}_{C \in \mathcal{M}, s \in O^C}$
- ▶ a bound R

For a model e, the inequality reads as

$$\mathcal{B}_{\alpha}(e) \leq R$$
,

where

$$\mathcal{B}_{\alpha}(e) := \sum_{C \in \mathcal{M}, s \in \mathcal{O}^{C}} \alpha(C, s) e_{C}(s)$$
.

An **inequality** for a scenario $\langle X, \mathcal{M}, \mathcal{O} \rangle$ is given by:

- ▶ a set of coefficients $\alpha = \{\alpha(C, s)\}_{C \in \mathcal{M}, s \in O^C}$
- ▶ a bound R

For a model e, the inequality reads as

$$\mathcal{B}_{\alpha}(e) \leq R$$
,

where

$$\mathcal{B}_{\alpha}(e) := \sum_{C \in \mathcal{M}, s \in \mathcal{O}^{C}} \alpha(C, s) e_{C}(s)$$
.

Wlog we can take R non-negative (in fact, we can take R = 0).

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- ▶ a set of coefficients $\alpha = \{\alpha(C, s)\}_{C \in \mathcal{M}, s \in O^C}$
- a bound R

For a model e, the inequality reads as

$$\mathcal{B}_{\alpha}(e) \leq R$$
,

where

$$\mathcal{B}_{\alpha}(e) := \sum_{C \in \mathcal{M}. s \in \mathcal{O}^{\mathcal{C}}} \alpha(C, s) e_{C}(s) .$$

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a **Bell inequality** if it is satisfied by every NC model. If it is saturated by some NC model, the Bell inequality is said to be **tight**.

Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst NC models.

Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

$$\|\alpha\| := \sum_{C \in \mathcal{M}} \max \left\{ \alpha(C, s) \mid s \in O^C \right\}$$

Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

$$\|\alpha\| := \sum_{C \in \mathcal{M}} \max \left\{ \alpha(C, s) \mid s \in O^C \right\}$$

The **normalised violation** of a Bell inequality $\langle \alpha, R \rangle$ by an empirical model e is the value

$$\frac{\max\{0,\mathcal{B}_{\alpha}(e)-R\}}{\|\alpha\|-R}\;.$$

Proposition

Let e be an empirical model.

Proposition

Let e be an empirical model.

► The normalised violation by *e* of any Bell inequality is at most CF(*e*).

Proposition

Let e be an empirical model.

- ► The normalised violation by *e* of any Bell inequality is at most CF(*e*).
- ► This bound is attained: there exists a Bell inequality whose normalised violation by e is exactly CF(e).

Proposition

Let e be an empirical model.

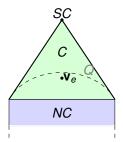
- ► The normalised violation by *e* of any Bell inequality is at most CF(*e*).
- ► This bound is attained: there exists a Bell inequality whose normalised violation by *e* is exactly CF(*e*).
- Moreover, this Bell inequality is tight at "the" non-contextual model e^{NC} and maximally violated by "the" strongly contextual model e^{SC} for any decomposition:

$$e = NCF(e)e^{NC} + CF(e)e^{SC}$$
.

Quantifying Contextuality LP:

Find $\mathbf{c} \in \mathbb{R}^n$ maximising $\mathbf{1} \cdot \mathbf{c}$ subject to $\mathbf{M} \, \mathbf{c} \leq \mathbf{v}^e$ and $\mathbf{c} \geq \mathbf{0}$

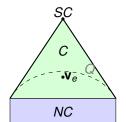
$$e = \lambda e^{NC} + (1 - \lambda)e^{SC}$$
 with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.



Quantifying Contextuality LP:

Find $\mathbf{c} \in \mathbb{R}^n$ maximising $\mathbf{1} \cdot \mathbf{c}$ subject to $\mathbf{M} \mathbf{c} \leq \mathbf{v}^e$ and $\mathbf{c} > \mathbf{0}$.

$$e = \lambda e^{NC} + (1 - \lambda)e^{SC}$$
 with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.



Dual LP:

Find $\mathbf{y} \in \mathbb{R}^m$ minimising $\mathbf{y} \cdot \mathbf{v}^e$ subject to $\mathbf{M}^T \mathbf{y} \ge \mathbf{1}$ and $\mathbf{y} > \mathbf{0}$

Quantifying Contextuality LP:

Find $\mathbf{c} \in \mathbb{R}^n$

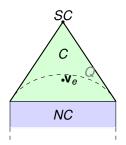
maximising $\mathbf{1} \cdot \mathbf{c}$

subject to $\mathbf{M}\mathbf{c} \leq \mathbf{v}^e$

and

 $\mathsf{c} \geq \mathsf{0}$.

$$e = \lambda e^{NC} + (1 - \lambda)e^{SC}$$
 with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.



Dual LP:

Find $\mathbf{y} \in \mathbb{R}^m$

minimising $\mathbf{y} \cdot \mathbf{v}^e$ subject to $\mathbf{M}^T \mathbf{y} \geq \mathbf{1}$

and $y \ge 0$

 $\boldsymbol{a} := \boldsymbol{1} - |\mathcal{M}|\boldsymbol{y}$

Quantifying Contextuality LP:

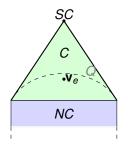
Find $\mathbf{c} \in \mathbb{R}^n$

maximising $\mathbf{1} \cdot \mathbf{c}$

subject to $\mathbf{M}\mathbf{c} \leq \mathbf{v}^e$

and $c \geq 0$

$$e = \lambda e^{NC} + (1 - \lambda)e^{SC}$$
 with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.



Dual LP:

and

Find $\mathbf{y} \in \mathbb{R}^m$ minimising $\mathbf{y} \cdot \mathbf{v}^e$ subject to $\mathbf{M}^T \mathbf{y} \geq \mathbf{1}$

$$\boldsymbol{a} := \boldsymbol{1} - |\mathcal{M}|\boldsymbol{y}$$

 $\mathbf{v} > \mathbf{0}$

Find $\mathbf{a} \in \mathbb{R}^m$ maximising $\mathbf{a} \cdot \mathbf{v}^e$ subject to $\mathbf{M}^T \mathbf{a} \leq \mathbf{0}$ and $\mathbf{a} < \mathbf{1}$.

Quantifying Contextuality LP:

and

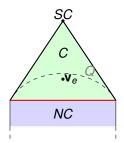
Find $\mathbf{c} \in \mathbb{R}^n$

maximising $1 \cdot c$

subject to $\mathbf{M}\mathbf{c} \leq \mathbf{v}^e$

 $e = \lambda e^{NC} + (1 - \lambda)e^{SC}$ with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.

c > 0



Dual LP:

Find $y \in \mathbb{R}^m$ minimising $y \cdot v^e$ subject to $M^T y \ge 1$ and $y \ge 0$

 $\mathbf{a} := \mathbf{1} - |\mathcal{M}|\mathbf{y}$

Find $\mathbf{a} \in \mathbb{R}^m$ maximising $\mathbf{a} \cdot \mathbf{v}^e$ subject to $\mathbf{M}^T \mathbf{a} \leq \mathbf{0}$ and $\mathbf{a} < \mathbf{1}$.

computes tight Bell inequality (separating hyperplane)

Operations on empirical models

Contextuality as a resource

Contextuality as a resource

- More than one possible measure of contextuality.
- What properties should a good measure satisfy?

Contextuality as a resource

- More than one possible measure of contextuality.
- What properties should a good measure satisfy?

- Monotonicity wrt operations that do not introduce contextuality
- Towards a resource theory as for entanglement (e.g. LOCC), non-locality, ...

Relabelling $e[\alpha]$

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Coarse-graining e/f

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Coarse-graining e/f

Mixing $\lambda e + (1 - \lambda)e'$

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Coarse-graining e/f

Mixing $\lambda e + (1 - \lambda)e'$

Choice e & e'

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Coarse-graining e/f

Mixing $\lambda e + (1 - \lambda)e'$

Choice e & e'

Relabelling $CF(e[\alpha]) = CF(e)$

Restriction $e \mid \mathcal{M}'$

Coarse-graining e/f

Mixing $\lambda e + (1 - \lambda)e'$

Choice e & e'

Relabelling
$$CF(e[\alpha]) = CF(e)$$

Restriction
$$CF(e \upharpoonright \mathcal{M}') \leq CF(e)$$

Coarse-graining e/f

Mixing
$$\lambda e + (1 - \lambda)e'$$

Choice e & e'

Relabelling
$$CF(e[\alpha]) = CF(e)$$

Restriction
$$CF(e \upharpoonright \mathcal{M}') \leq CF(e)$$

Coarse-graining
$$CF(e/f) \leq CF(e)$$

Mixing
$$\lambda e + (1 - \lambda)e'$$

Choice
$$e \& e'$$

Tensor
$$e_1 \otimes e_2$$

Relabelling $CF(e[\alpha]) = CF(e)$

Restriction $CF(e \upharpoonright \mathcal{M}') \leq CF(e)$

Coarse-graining $CF(e/f) \leq CF(e)$

Mixing $CF(\lambda e + (1 - \lambda)e') \le \lambda CF(e) + (1 - \lambda)CF(e')$

Choice e & e'

Operations and the contextual fraction

Relabelling $CF(e[\alpha]) = CF(e)$

Restriction $CF(e \upharpoonright \mathcal{M}') \leq CF(e)$

Coarse-graining $CF(e/f) \leq CF(e)$

Mixing $CF(\lambda e + (1 - \lambda)e') \le \lambda CF(e) + (1 - \lambda)CF(e')$

Choice $CF(e \& e') = max\{CF(e), CF(e')\}$

Tensor $e_1 \otimes e_2$

Operations and the contextual fraction

Relabelling $CF(e[\alpha]) = CF(e)$

Restriction $CF(e \upharpoonright \mathcal{M}') \leq CF(e)$

Coarse-graining $CF(e/f) \leq CF(e)$

Mixing $CF(\lambda e + (1 - \lambda)e') \le \lambda CF(e) + (1 - \lambda)CF(e')$

Choice $CF(e \& e') = max\{CF(e), CF(e')\}$

Tensor $CF(e_1 \otimes e_2) = CF(e_1) + CF(e_2) - CF(e_1)CF(e_2)$

 $NCF(e_1 \otimes e_2) = NCF(e_1) NCF(e_2)$

Contextual fraction and quantum advantages

Contextual fraction and advantages

Contextuality has been associated with quantum advantage in information-processing and computational tasks.

Contextual fraction and advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
- ▶ Measure of contextuality → quantify such advantages.

E.g. Raussendorf (2013) ℓ 2-MBQC

E.g. Raussendorf (2013) \(\ell 2 - MBQC \)

 measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)

E.g. Raussendorf (2013) \(\ell 2 - MBQC \)

- measurement-based quantum computing scheme (*m* input bits, *I* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- E.g. Raussendorf (2013) ℓ2-MBQC
 - measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
 - classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

additional power to compute non-linear functions resides in certain resource empirical models.

- E.g. Raussendorf (2013) ℓ2-MBQC
 - measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
 - classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- additional power to compute non-linear functions resides in certain resource empirical models.
- ▶ Raussendorf (2013): If an ℓ 2-MBQC **deterministically** computes a non-linear Boolean function $f: 2^m \longrightarrow 2^l$ then the resource must be **strongly contextual**.

E.g. Raussendorf (2013) \(\ell 2 - MBQC \)

- measurement-based quantum computing scheme (*m* input bits, *I* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- additional power to compute non-linear functions resides in certain resource empirical models.
- ▶ Raussendorf (2013): If an ℓ 2-MBQC **deterministically** computes a non-linear Boolean function $f: 2^m \longrightarrow 2^l$ then the resource must be **strongly contextual**.
- Probabilistic version: non-linear function computed with sufficently large probability of success implies contextuality.

▶ **Goal**: Compute Boolean function $f: 2^m \longrightarrow 2^l$ using ℓ 2-MBQC

- ▶ **Goal**: Compute Boolean function $f: 2^m \longrightarrow 2^l$ using ℓ 2-MBQC
- Hardness of the problem

$$\nu(f) := \min \{ d(f, g) \mid g \text{ is } \mathbb{Z}_2\text{-linear} \}$$

(average distance between f and closest \mathbb{Z}_2 -linear function)

where for Boolean functions f and g, $d(f,g) := 2^{-m} | \{i \in 2^m | f(i) \neq g(i)\}.$

- ▶ **Goal**: Compute Boolean function $f: 2^m \longrightarrow 2^l$ using ℓ 2-MBQC
- Hardness of the problem

$$\nu(f) := \min \{ d(f, g) \mid g \text{ is } \mathbb{Z}_2\text{-linear} \}$$

(average distance between f and closest \mathbb{Z}_2 -linear function)

where for Boolean functions f and g, $d(f,g) := 2^{-m} | \{i \in 2^m | f(i) \neq g(i)\}.$

▶ Average probability of success computing f (over all 2^m possible inputs): \bar{p}_S .

- ▶ **Goal**: Compute Boolean function $f: 2^m \longrightarrow 2^l$ using ℓ 2-MBQC
- Hardness of the problem

$$\nu(f) := \min \{ d(f,g) \mid g \text{ is } \mathbb{Z}_2\text{-linear} \}$$

(average distance between f and closest \mathbb{Z}_2 -linear function)

where for Boolean functions f and g, $d(f,g) := 2^{-m} | \{i \in 2^m | f(i) \neq g(i)\}.$

- ▶ Average probability of success computing f (over all 2^m possible inputs): \bar{p}_S .
- ► Then,

$$1 - \bar{p}_S \geq \mathsf{NCF}(e) \nu(f)$$

Contextual fraction and cooperative games

- Game described by *n* formulae (one for each allowed input).
- These describe the winning condition that the corresponding outputs must satisfy.

Contextual fraction and cooperative games

- Game described by n formulae (one for each allowed input).
- These describe the winning condition that the corresponding outputs must satisfy.
- If the formulae are k-consistent (at most k are jointly satisfiable), hardness of the task is $\frac{n-k}{n}$.

(cf. Abramsky & Hardy, "Logical Bell inequalities")

Contextual fraction and cooperative games

- Game described by *n* formulae (one for each allowed input).
- These describe the winning condition that the corresponding outputs must satisfy.
- If the formulae are k-consistent (at most k are jointly satisfiable), hardness of the task is $\frac{n-k}{n}$. (cf. Abramsky & Hardy, "Logical Bell inequalities")
- We have

$$1 - \bar{p}_{S} \geq \text{NCF} \frac{n-k}{n}$$

▶ Negative Probabilities Measure

- Negative Probabilities Measure
 - Alternative relaxation of global probability distribution requirement.

- Negative Probabilities Measure
 - Alternative relaxation of global probability distribution requirement.
 - Find quasi-probability distribution q on O^X such that $q|_C = e_C$

Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^X such that $q|_C = e_C$
- ... with minimal weight $|q| = 1 + 2\epsilon$. The value ϵ provides alternative measure of contextuality.

Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^X such that $q|_C = e_C$
- ... with minimal weight $|q|=1+2\epsilon$. The value ϵ provides alternative measure of contextuality.
- How are these related?

Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^X such that $q|_C = e_C$
- ... with minimal weight $|q| = 1 + 2\epsilon$. The value ϵ provides alternative measure of contextuality.
- How are these related?
- Corresponds to affine decomposition

$$e = (1 + \epsilon) e_1 - \epsilon e_2$$

with e₁ and e₂ both non-contextual.

Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^X such that $q|_C = e_C$
- ... with minimal weight $|q| = 1 + 2\epsilon$. The value ϵ provides alternative measure of contextuality.
- How are these related?
- Corresponds to affine decomposition

$$e = (1 + \epsilon) e_1 - \epsilon e_2$$

with e₁ and e₂ both non-contextual.

▶ Corresponding inequalities $|\mathcal{B}_{\alpha}(e)| \leq R$.

Negative Probabilities Measure

- Alternative relaxation of global probability distribution requirement.
- Find quasi-probability distribution q on O^X such that $q|_C = e_C$
- ... with minimal weight $|q| = 1 + 2\epsilon$. The value ϵ provides alternative measure of contextuality.
- How are these related?
- Corresponds to affine decomposition

$$e = (1 + \epsilon) e_1 - \epsilon e_2$$

with e1 and e2 both non-contextual.

- ▶ Corresponding inequalities $|\mathcal{B}_{\alpha}(e)| \leq R$.
- Cyclic measurement scenarios

- Negative Probabilities Measure
- Signalling models

- Negative Probabilities Measure
- Signalling models
 - Empirical data may sometimes not satisfy no-signalling (compatibility).

Negative Probabilities Measure

Signalling models

- Empirical data may sometimes not satisfy no-signalling (compatibility).
- Given a signalling table, can we quantify amount of no-signalling and contextuality?

Negative Probabilities Measure

Signalling models

- Empirical data may sometimes not satisfy no-signalling (compatibility).
- Given a signalling table, can we quantify amount of no-signalling and contextuality?
- Connections with Contextuality-by-Default (Dzhafarov et al.)

- Negative Probabilities Measure
- Signalling models
- Resource theory and algebra of empirical models
 - Sequencing

- Negative Probabilities Measure
- Signalling models
- Resource theory and algebra of empirical models
 - Sequencing (→ causality?)

- Negative Probabilities Measure
- Signalling models
- Resource theory and algebra of empirical models
 - ▶ Sequencing (~> causality?)
 - Cf. "Noncontextual wirings"
 Amaral, Cabello, Terra Cunha, & Aolita (2017)

- Negative Probabilities Measure
- Signalling models
- Resource theory and algebra of empirical models
 - ▶ Sequencing (~> causality?)
 - Cf. "Noncontextual wirings"
 Amaral, Cabello, Terra Cunha, & Aolita (2017)
 - What (else) is this resource useful for?

Questions...

"The contextual fraction as a measure of contextuality" Samson Abramsky, RSB, & Shane Mansfield

arXiv:1705.07918[quant-ph]