Contextuality as a resource yielding quantum advantage

Rui Soares Barbosa

Department of Computer Science, University of Oxford

rui.soares.barbosa@cs.ox.ac.uk

LIG – Laboratoire d'Informatique de Grenoble Université Grenoble Alpes 26th June 2018 Joint work with:

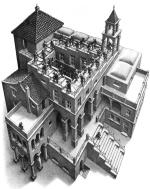
- Samson Abramsky (Oxford)
- Shane Mansfield (Sorbonne)

and also:

- Kohei Kishida (Dalhousie)
- Giovanni Carù (Oxford)
- Nadish de Silva (UCL)
- Octavio Zapata (UCL)

Contextuality and non-locality:

fundamental non-classical phenomenona of QM



- Contextuality and non-locality: fundamental non-classical phenomenona of QM
- Contextuality as a resource for QIP and QC:

Contextuality and non-locality: fundamental non-classical phenomenona of QM

Contextuality as a resource for QIP and QC:

Non-local games

XOR games (CHSH; Cleve–Høyer–Toner–Watrous) quantum graph homomorphisms (Mančinska–Roberson) constraint satisfaction (Cleve–Mittal) etc. (Abramsky–B–de Silva–Zapata)

Contextuality and non-locality: fundamental non-classical phenomenona of QM

Contextuality as a resource for QIP and QC:

Non-local games

XOR games (CHSH; Cleve–Høyer–Toner–Watrous) quantum graph homomorphisms (Mančinska–Roberson) constraint satisfaction (Cleve–Mittal) etc. (Abramsky–B–de Silva–Zapata)

MBQC

Raussendorf (2013)

"Contextuality in measurement-based quantum computation"

Contextuality and non-locality: fundamental non-classical phenomenona of QM

Contextuality as a resource for QIP and QC:

Non-local games

XOR games (CHSH; Cleve–Høyer–Toner–Watrous) quantum graph homomorphisms (Mančinska–Roberson) constraint satisfaction (Cleve–Mittal) etc. (Abramsky–B–de Silva–Zapata)

MBQC

Raussendorf (2013)

"Contextuality in measurement-based quantum computation"

MSD

Howard-Wallman-Veith-Emerson (2014)

"Contextuality supplies the 'magic' for quantum computation"

Contextuality formulated in a theory-independent fashion

 Abramsky & Brandenburger: unified framework for non-locality and contextuality (cf. Cabello–Severini–Winter, Acín–Fritz–Leverrier–Sainz)

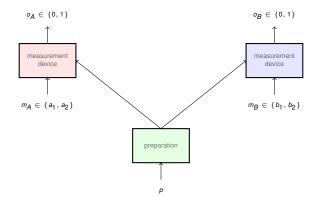
- Abramsky & Brandenburger: unified framework for non-locality and contextuality (cf. Cabello–Severini–Winter, Acín–Fritz–Leverrier–Sainz)
- Towards a resource theory of contextuality:

- Abramsky & Brandenburger: unified framework for non-locality and contextuality (cf. Cabello–Severini–Winter, Acín–Fritz–Leverrier–Sainz)
- Towards a resource theory of contextuality:
 - Combine and transform contextual blackboxes

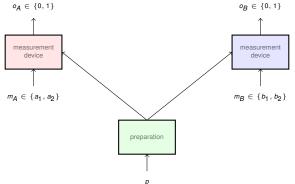
- Abramsky & Brandenburger: unified framework for non-locality and contextuality (cf. Cabello–Severini–Winter, Acín–Fritz–Leverrier–Sainz)
- Towards a resource theory of contextuality:
 - Combine and transform contextual blackboxes
 - Measure of contextuality

- Abramsky & Brandenburger: unified framework for non-locality and contextuality (cf. Cabello–Severini–Winter, Acín–Fritz–Leverrier–Sainz)
- Towards a resource theory of contextuality:
 - Combine and transform contextual blackboxes
 - Measure of contextuality
 - Quantifiable advantages in QC and QIP tasks

Empirical data



Empirical data



(Abramsky-Hardy)

• Propositional formulae ϕ_1, \ldots, ϕ_N

(Abramsky-Hardy)

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\blacktriangleright p_i := \mathsf{Prob}(\phi_i)$

(Abramsky-Hardy)

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\blacktriangleright p_i := \mathsf{Prob}(\phi_i)$
- Not simultaneously satisfiable, hence

$$\mathsf{Prob}(igwedge \phi_i) = \mathsf{0}$$

(Abramsky-Hardy)

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\blacktriangleright p_i := \mathsf{Prob}(\phi_i)$
- Not simultaneously satisfiable, hence

$$\mathsf{Prob}(igwedge \phi_i) = \mathsf{0}$$

Using elementary logic and probability:

$$1 = \operatorname{Prob}(\neg \bigwedge \phi_i) = \operatorname{Prob}(\bigvee \neg \phi_i)$$
$$\leq \sum_{i=1}^{N} \operatorname{Prob}(\neg \phi_i) = \sum_{i=1}^{N} (1 - p_i) = N - \sum_{i=1}^{N} p_i.$$

(Abramsky-Hardy)

- Propositional formulae ϕ_1, \ldots, ϕ_N
- $\blacktriangleright p_i := \mathsf{Prob}(\phi_i)$
- Not simultaneously satisfiable, hence

$$\mathsf{Prob}(igwedge \phi_i) = \mathsf{0}$$

Using elementary logic and probability:

$$1 = \operatorname{Prob}(\neg \bigwedge \phi_i) = \operatorname{Prob}(\bigvee \neg \phi_i)$$
$$\leq \sum_{i=1}^{N} \operatorname{Prob}(\neg \phi_i) = \sum_{i=1}^{N} (1 - p_i) = N - \sum_{i=1}^{N} p_i.$$

• Hence, $\sum_{i=1}^{N} p_i \le N - 1$.

Α	В	(<mark>0,0</mark>)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1,1)
<i>a</i> ₁	b_1	1/2	0	0	1/2
a_1	b ₂	3/8	1/8	1/8	³ /8
a_2	b_1	3/8	1/8	1/8	3/8
		1/8	3/8	3/8	1/8

Α	В	(<mark>0,0</mark>)	(<mark>0</mark> , 1)		(1 , 1)
<i>a</i> 1	b_1	1/2	0	0	1/2
a_1	b ₂	3/8	1/8	1/8	3/8
a_2	b_1	3/8	1/8	1/8	³ /8
a 2	b 2	1/8	3/8	3/8	1/8

 $\phi_1 = a_1 \leftrightarrow b_1$ $\phi_2 = a_1 \leftrightarrow b_2$ $\phi_3 = a_2 \leftrightarrow b_1$ $\phi_4 = a_2 \oplus b_2$

Α	В	(<mark>0,0</mark>)	(<mark>0</mark> , 1)		(1 , 1)
a_1	b_1	1/2	0	0	1/2
a_1	b ₂	3/8	1/8	1/8	³ /8
a_2	b_1	3/8	1/8	1/8	³ /8
a 2	b ₂	1/8	3/8	3/8	1/8

 $\phi_1 = a_1 \leftrightarrow b_1$ $\phi_2 = a_1 \leftrightarrow b_2$ $\phi_3 = a_2 \leftrightarrow b_1$ $\phi_4 = a_2 \oplus b_2$

These formulae are contradictory.

Α	В	(<mark>0,0</mark>)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1 , 1)
a_1	b_1	1/2	0	0	/
<i>a</i> 1	b ₂	3/8	1/8	1/8	³ /8
a_2	b_1	3/8	1/8	1/8	³ /8
a 2	b 2	1/8	3/8	3/8	1/8

 $\phi_1 = a_1 \leftrightarrow b_1$ $\phi_2 = a_1 \leftrightarrow b_2$ $\phi_3 = a_2 \leftrightarrow b_1$ $\phi_4 = a_2 \oplus b_2$

These formulae are contradictory. But

$$p_1 + p_2 + p_3 + p_4 = 3.25$$

Α	В	(<mark>0</mark> , 0)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1 , 1)
<i>a</i> ₁	b_1	1/2	0	0	1/2
a_1	b 2	3/8	1/8	1/8	³ /8
a_2		3/8	1/8	1/8	³ /8
a 2	b ₂	1/8	3/8	3/8	1/8

 $\phi_1 = a_1 \leftrightarrow b_1$ $\phi_2 = a_1 \leftrightarrow b_2$ $\phi_3 = a_2 \leftrightarrow b_1$ $\phi_4 = a_2 \oplus b_2$

These formulae are contradictory. But

$$p_1 + p_2 + p_3 + p_4 = 3.25$$

The inequality is violated by 1/4.

But the Bell table can be realised in the real world.

- But the Bell table can be realised in the real world.
- What was our unwarranted assumption?

- But the Bell table can be realised in the real world.
- What was our unwarranted assumption?
- That all variables could in principle be observed simultaneously.

- But the Bell table can be realised in the real world.
- What was our unwarranted assumption?
- That all variables could in principle be observed simultaneously.
- Local consistency vs global inconsistency.

Abramsky–Brandenburger framework

Measurement scenario $\langle X, \mathcal{M}, O \rangle$:

- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- ▶ *M* is a cover of *X*, indicating **joint measurability** (contexts)

Abramsky–Brandenburger framework

Measurement scenario $\langle X, \mathcal{M}, O \rangle$:

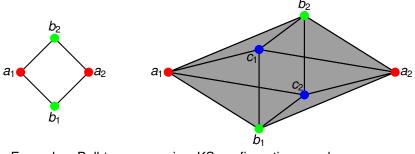
- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- ▶ *M* is a cover of *X*, indicating **joint measurability** (contexts)

Example: (2,2,2) Bell scenario

- The set of variables is $X = \{a_1, a_2, b_1, b_2\}$.
- The outcomes are $O = \{0, 1\}$.
- The measurement contexts are:

 $\{ \{a_1, b_1\}, \ \{a_1, b_2\}, \ \{a_2, b_1\}, \ \{a_2, b_2\} \}.$

Measurement scenarios



Examples: Bell-type scenarios, KS configurations, and more.

Another example: 18-vector Kochen–Specker

► A set of 18 variables, X = {A,..., O}

Another example: 18-vector Kochen–Specker

- ► A set of 18 variables, X = {A,..., O}
- ► A set of outcomes *O* = {0, 1}

Another example: 18-vector Kochen–Specker

- ► A set of 18 variables, X = {A,..., O}
- A set of outcomes *O* = {0, 1}
- ► A measurement cover *M* = {*C*₁,..., *C*₉}, whose contexts *C_i* correspond to the columns in the following table:

U_1	U_2	U_3	U_4	U_5	U_6	U_7	U_8	U_9
Α	Α	Н	Н	В	1	Р	Р	Q
В	Е	1	K	E	K	Q	R	R
С	F	С	G	М	Ν	D	F	М
D	G	J	L	N	0	J	L	0

Joint outcome or **event** in a context *C* is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1]$$
.

Joint outcome or **event** in a context *C* is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1]$$
.

Empirical model: family $\{e_C\}_{C \in \mathcal{M}}$ where $e_C \in \operatorname{Prob}(O^C)$ for $C \in \mathcal{M}$.

It specifies a probability distribution over the events in each context. Each distribution is a row of the probability table.

Joint outcome or **event** in a context *C* is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1]$$
.

Empirical model: family $\{e_C\}_{C \in \mathcal{M}}$ where $e_C \in \operatorname{Prob}(O^C)$ for $C \in \mathcal{M}$.

It specifies a probability distribution over the events in each context. Each distribution is a row of the probability table.

Compatibility condition: the distributions "agree on overlaps"

$$\forall C, C' \in \mathcal{M}. \quad e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.$$

Joint outcome or **event** in a context *C* is $s \in O^C$, e.g.

$$s = [a_1 \mapsto 0, b_1 \mapsto 1]$$
.

Empirical model: family $\{e_C\}_{C \in \mathcal{M}}$ where $e_C \in \operatorname{Prob}(O^C)$ for $C \in \mathcal{M}$.

It specifies a probability distribution over the events in each context. Each distribution is a row of the probability table.

Compatibility condition: the distributions "agree on overlaps"

$$\forall C, C' \in \mathcal{M}. \quad e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.$$

In multipartite scenarios, compatibility = the **no-signalling** principle.

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \operatorname{Prob}(O^{\chi})$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C :

$$\exists d \in \operatorname{Prob}(O^X)$$
. $\forall C \in \mathcal{M}$. $d|_C = e_C$.

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \operatorname{Prob}(O^{\chi})$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C :

$$\exists d \in \operatorname{Prob}(O^X)$$
. $\forall C \in \mathcal{M}$. $d|_C = e_C$.

i.e. all the local information can be glued into a consistent global description.

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \operatorname{Prob}(O^{\chi})$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C :

$$\exists d \in \operatorname{Prob}(O^X)$$
. $\forall C \in \mathcal{M}$. $d|_C = e_C$.

i.e. all the local information can be glued into a consistent global description.

Contextuality:

family of data which is locally consistent but globally inconsistent.

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \operatorname{Prob}(O^{\chi})$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C :

$$\exists d \in \operatorname{Prob}(O^X)$$
. $\forall C \in \mathcal{M}$. $d|_C = e_C$.

i.e. all the local information can be glued into a consistent global description.

Contextuality:

family of data which is locally consistent but globally inconsistent.

The import of results such as Bell's and Bell–Kochen–Specker's theorems is that there are **contextual** empirical models arising from quantum mechanics.

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \text{Prob}(O^X)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_C :

$$\exists d \in \operatorname{Prob}(O^X)$$
. $\forall C \in \mathcal{M}$. $d|_C = e_C$.

i.e. all the local information can be glued into a consistent global description.

Contextuality:

family of data which is locally consistent but globally inconsistent.

The import of results such as Bell's and Bell–Kochen–Specker's theorems is that there are **contextual** empirical models arising from quantum mechanics.

Note: existence of a global probability distribution is equivalent to existence of a factorisable hidden-variable model (more familiar in the case of Bell locality).

Possibilistic collapse

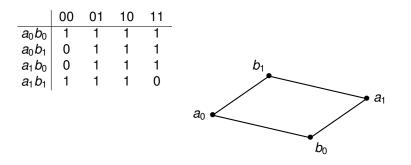
- Given an empirical model e, define possibilistic model poss(e) by taking the support of each distributions.
- Contains the possibilistic, or logical, information of that model.

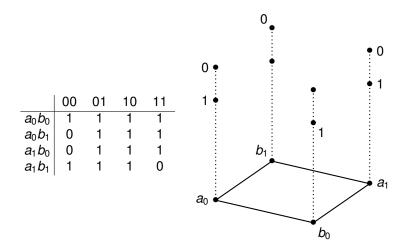
Possibilistic collapse

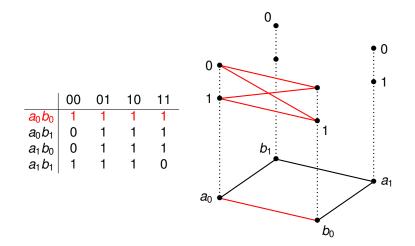
- Given an empirical model e, define possibilistic model poss(e) by taking the support of each distributions.
- Contains the possibilistic, or logical, information of that model.

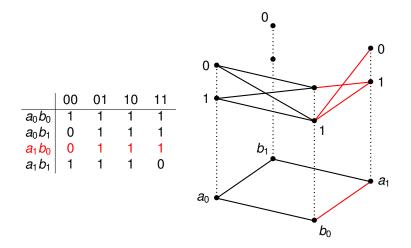
	00	01	10	11			00	01	10	11
a_1b_1	1/2	0	0	1/2		a_1b_1	1	0	0	1
a_1b_2	3/8	1/8	1/8	3/8	\mapsto	a_1b_2	1	1	1	1
a_2b_1	3/8	1/8	1/8	3/8		a_2b_1	1	1	1	1
a_2b_2	1/8	3/8	3/8	1/8		a_2b_2	1	1	1	1

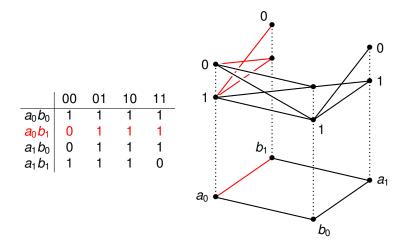
		00	01	10	11	
	a_0b_0	1	1	1	1	
	a_0b_1	0	1	1	1	
	$a_0 b_0$ $a_0 b_1$ $a_1 b_0$	0	1	1	1	
ć	a_1b_1	1	1	1	0	

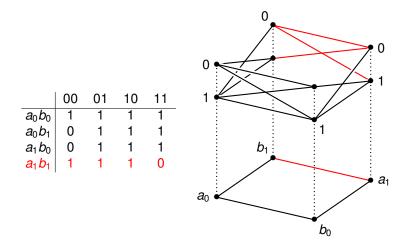


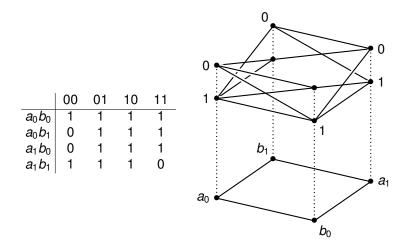


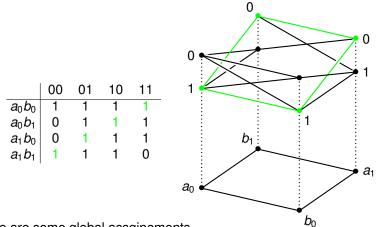




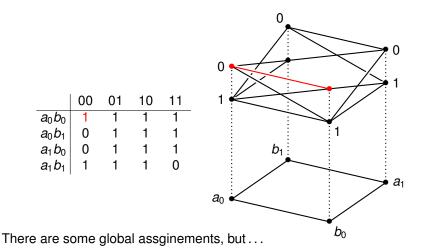


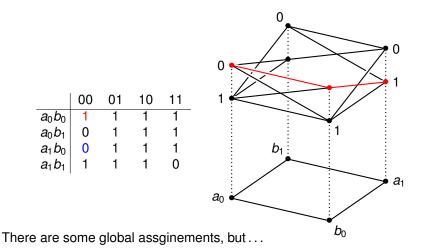


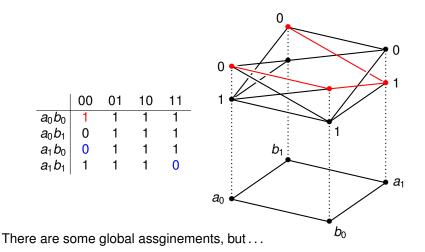


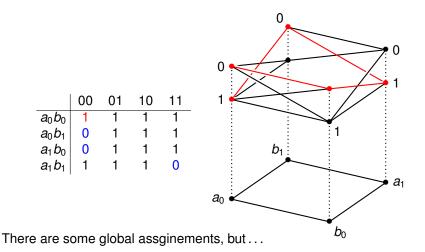


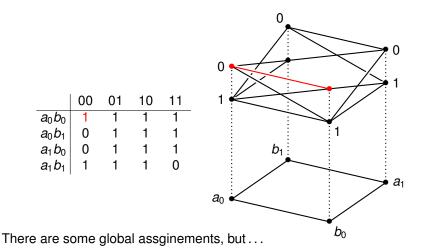
There are some global assginements,

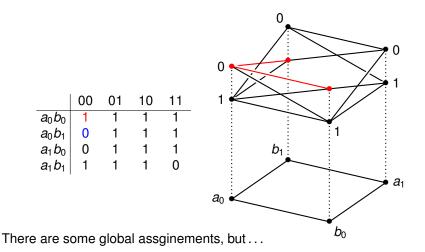


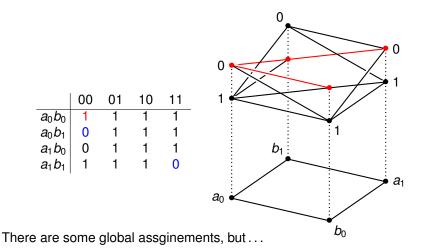


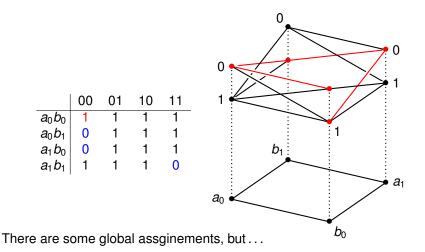


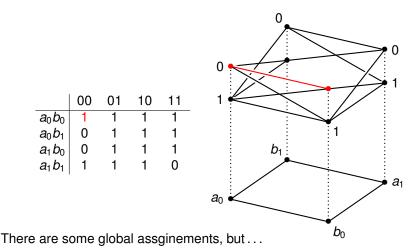












Logical contextuality: Not all assignments extend to global ones.

Strong contextuality

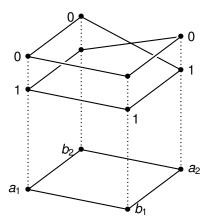
Strong Contextuality: **no** event can be extended to a global assignment.

Strong contextuality

Strong Contextuality: **no** event can be extended to a global assignment.

E.g. K–S, GHZ, the PR box:

А	В	(0,0)	(0,1)	(1,0)	(1,1)
a_1	b_1	1	0	0	1
a_1	b_2	1	0	0	1
a_2	b ₂ b ₁ b ₂	1	0	0	1
a_2	b ₂	0	1	1	0

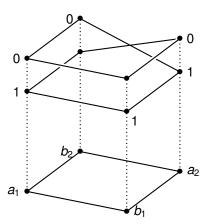


Strong contextuality

Strong Contextuality: **no** event can be extended to a global assignment.

E.g. K-S, GHZ, the PR box:

А	В	(0,0)	(0,1)	(1,0)	(1,1)
			0	0	1
a_1	b_2	1	0	0	1
a_2	b_1	1	0	0	1
a_2	b_2	0	1	1	0



Cohomological witnesses of contextuality (Abramsky–B–Mansfield, ABM–Kishida–Lal, Carù, Raussendorf et al.)

Measuring Contextuality

The contextual fraction

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

The contextual fraction

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

• General, i.e. applicable to any measurement scenario

The contextual fraction

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios
 0 for non-contextuality ... 1 for strong contextuality

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios
 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios
 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios
 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities
- Monotone wrt operations that don't introduce contextuality ~~ resource theory

We introduce the **contextual fraction** (generalising the notion of non-local fraction)

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios
 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities
- Monotone wrt operations that don't introduce contextuality ~~ resource theory
- Relates to quantifiable advantages in QC and QIP tasks

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C.$$

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C.$$

Which fraction of a model admits a non-contextual explanation?

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C.$$

Which fraction of a model admits a non-contextual explanation?

Consider **subdistributions** $c \in \text{SubProb}(O^{\chi})$ such that:

$$\forall_{C\in\mathcal{M}}. c|_C \leq e_C.$$

Non-contextual fraction: maximum weight of such a subdistribution.

Non-contextuality: global distribution $d \in \text{Prob}(O^{\chi})$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C.$$

Which fraction of a model admits a non-contextual explanation?

Consider **subdistributions** $c \in \text{SubProb}(O^{\chi})$ such that:

 $\forall_{\mathcal{C}\in\mathcal{M}}. \ \mathcal{C}|_{\mathcal{C}} \leq e_{\mathcal{C}}.$

Non-contextual fraction: maximum weight of such a subdistribution. Equivalently, maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda)e^{\prime}$$

where e^{NC} is a non-contextual model.

Non-contextuality: global distribution $d \in \text{Prob}(O^{\chi})$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C.$$

Which fraction of a model admits a non-contextual explanation?

Consider **subdistributions** $c \in \text{SubProb}(O^{\chi})$ such that:

 $\forall_{\mathcal{C}\in\mathcal{M}}. \ \mathcal{C}|_{\mathcal{C}} \leq e_{\mathcal{C}}.$

Non-contextual fraction: maximum weight of such a subdistribution. Equivalently, maximum weight λ over all convex decompositions

$$e = \lambda e^{NC} + (1 - \lambda)e^{\prime}$$

where e^{NC} is a non-contextual model.

Non-contextuality: global distribution $d \in \text{Prob}(O^{\chi})$ such that:

$$\forall_{C\in\mathcal{M}}. d|_C = e_C.$$

Which fraction of a model admits a non-contextual explanation?

Consider **subdistributions** $c \in \text{SubProb}(O^X)$ such that:

$$\forall_{C\in\mathcal{M}}. c|_C \leq e_C.$$

Non-contextual fraction: maximum weight of such a subdistribution. Equivalently, maximum weight λ over all convex decompositions

$$\boldsymbol{e} = \lambda \boldsymbol{e}^{\boldsymbol{N}\boldsymbol{C}} + (1-\lambda)\boldsymbol{e}^{\boldsymbol{S}\boldsymbol{C}}$$

where e^{NC} is a non-contextual model. e^{SC} is strongly contextual!

$$NCF(e) = \lambda$$
 $CF(e) = 1 - \lambda$

(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find
$$\mathbf{d} \in \mathbb{R}^n$$

such that $\mathbf{M}\mathbf{d} = \mathbf{v}^e$
and $\mathbf{d} \ge \mathbf{0}$

.

(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

 $\begin{array}{ll} \mbox{Find} & \mbox{$\mathbf{d}\in\mathbb{R}^n$} \\ \mbox{such that} & \mbox{$\mathbf{M}\,\mathbf{d}=\mathbf{v}^e$} \\ \mbox{and} & \mbox{$\mathbf{d}\geq\mathbf{0}$} \end{array} .$

Computing the non-contextual fraction corresponds to solving the following linear program:

Find	$\mathbf{c} \in \mathbb{R}^n$
maximising	1 · c
subject to	$\mathbf{Mc}\leq\mathbf{v}^{e}$
and	$\mathbf{c} \geq 0$

٠

E.g. Equatorial measurements on GHZ(n)

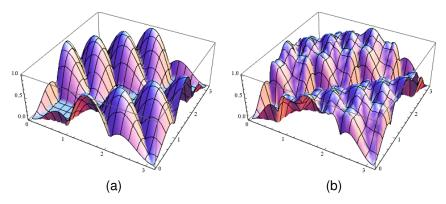


Figure: Contextual fraction of empirical models obtained with equatorial measurements at ϕ_1 and ϕ_2 on each qubit of $|\psi_{\text{GHZ}(n)}\rangle$ with: (a) n = 3; (b) n = 4.

Violations of Bell inequalities

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- ▶ a set of coefficients $\alpha = \{\alpha(C, s)\}_{C \in \mathcal{M}, s \in O^C}$
- a bound R

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- A set of coefficients α = {α(C, s)}_{C∈M,s∈O^C}
- a bound R

For a model *e*, the inequality reads as

$$\mathcal{B}_lpha(oldsymbol{e})\ \leq\ oldsymbol{R}$$
 ,

where

$$\mathcal{B}_{lpha}(m{e}) \ \coloneqq \ \sum_{m{C}\in\mathcal{M},m{s}\in O^{\mathcal{C}}} lpha(m{C},m{s})m{e}_{m{C}}(m{s}) \ .$$

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- ► a set of coefficients \(\alpha\) = \{\(\alpha\)\(C,s\)\}_{C \in \mathcal{M}, s \in O^C}\)
- a bound R

For a model *e*, the inequality reads as

$$\mathcal{B}_lpha(oldsymbol{e})\ \leq\ oldsymbol{R}$$
 ,

where

$$\mathcal{B}_{lpha}(oldsymbol{e}) \ \coloneqq \ \sum_{oldsymbol{\mathcal{C}}\in\mathcal{M},oldsymbol{s}\in O^{\mathcal{C}}} lpha(oldsymbol{\mathcal{C}},oldsymbol{s})oldsymbol{e}_{\mathcal{C}}(oldsymbol{s}) \ .$$

Wlog we can take R non-negative (in fact, we can take R = 0).

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- A set of coefficients α = {α(C, s)}_{C∈M,s∈O^C}
- a bound R

For a model *e*, the inequality reads as

$$\mathcal{B}_lpha(oldsymbol{e})\ \leq\ oldsymbol{R}$$
 ,

where

$$\mathcal{B}_{lpha}(oldsymbol{e}) \ \coloneqq \ \sum_{oldsymbol{\mathcal{C}}\in\mathcal{M},oldsymbol{s}\in O^{\mathcal{C}}} lpha(oldsymbol{\mathcal{C}},oldsymbol{s})oldsymbol{e}_{\mathcal{C}}(oldsymbol{s}) \ .$$

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a **Bell inequality** if it is satisfied by every NC model. If it is saturated by some NC model, the Bell inequality is said to be **tight**.

An **inequality** for a scenario $\langle X, \mathcal{M}, O \rangle$ is given by:

- A set of coefficients α = {α(C, s)}_{C∈M,s∈O^C}
- a bound R

For a model *e*, the inequality reads as

$$\mathcal{B}_lpha(oldsymbol{e})\ \leq\ oldsymbol{R}$$
 ,

where

$$\mathcal{B}_{lpha}(oldsymbol{e}) \ \coloneqq \ \sum_{oldsymbol{C}\in\mathcal{M},oldsymbol{s}\in O^{\mathcal{C}}} lpha(oldsymbol{C},oldsymbol{s})oldsymbol{e}_{\mathcal{C}}(oldsymbol{s}) \ .$$

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a **Bell inequality** if it is satisfied by every NC model. If it is saturated by some NC model, the Bell inequality is said to be **tight**.

NB: Complete set of inequalities can be derived from logical consistency.

Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst NC models.

Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

$$\|lpha\| := \sum_{\mathcal{C} \in \mathcal{M}} \max\left\{lpha(\mathcal{C}, \boldsymbol{s}) \mid \boldsymbol{s} \in \mathcal{O}^{\mathcal{C}}
ight\}$$

Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $\mathcal{B}_{\alpha}(e)$ amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

$$\|lpha\| := \sum_{\mathcal{C} \in \mathcal{M}} \max\left\{lpha(\mathcal{C}, \boldsymbol{s}) \mid \boldsymbol{s} \in \mathcal{O}^{\mathcal{C}}
ight\}$$

The **normalised violation** of a Bell inequality $\langle \alpha, R \rangle$ by an empirical model *e* is the value

$$rac{\max\{0,\mathcal{B}_lpha({m e})-{m R}\}}{\|lpha\|-{m R}}\;.$$

Proposition

Let *e* be an empirical model.

Proposition

Let *e* be an empirical model.

The normalised violation by e of any Bell inequality is at most CF(e).

Proposition

Let *e* be an empirical model.

- The normalised violation by e of any Bell inequality is at most CF(e).
- This bound is attained: there exists a Bell inequality whose normalised violation by e is exactly CF(e).

Proposition

Let *e* be an empirical model.

- The normalised violation by e of any Bell inequality is at most CF(e).
- This bound is attained: there exists a Bell inequality whose normalised violation by e is exactly CF(e).
- Moreover, this Bell inequality is tight at "the" non-contextual model e^{NC} and maximally violated by "the" strongly contextual model e^{SC} for any decomposition:

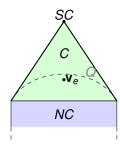
$$e = \mathsf{NCF}(e)e^{\mathsf{NC}} + \mathsf{CF}(e)e^{\mathsf{SC}}$$

.

Quantifying Contextuality LP:

$\mathbf{c} \in \mathbb{R}^n$
1 · c
${f M}{f c}\leq{f v}^{e}$
$\textbf{c} \geq \textbf{0}$

$$\boldsymbol{e} = \lambda \boldsymbol{e}^{NC} + (1 - \lambda) \boldsymbol{e}^{SC}$$
 with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.



Quantifying Contextuality LP:

Find $\mathbf{C} \in \mathbb{R}^n$ maximising $\mathbf{1} \cdot \mathbf{C}$

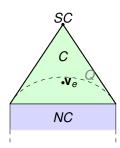
subject to $MC \leq v^e$

and $\mathbf{c} \geq \mathbf{0}$

 $\boldsymbol{e} = \lambda \boldsymbol{e}^{NC} + (1 - \lambda) \boldsymbol{e}^{SC}$ with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.

Dual LP:

Find	$\mathbf{y} \in \mathbb{R}^m$
minimising	y · v ^e
subject to	$\mathbf{M}^{\mathcal{T}}\mathbf{y} \geq 1$
and	$\mathbf{y} \geq 0$



Quantifying Contextuality LP:

Find $\mathbf{C} \in \mathbb{R}^n$ maximising $\mathbf{1} \cdot \mathbf{C}$ subject to $\mathbf{M} \mathbf{C} \leq \mathbf{v}^e$

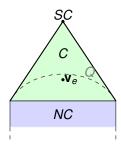
and $\mathbf{c} \geq \mathbf{0}$

$$\boldsymbol{e} = \lambda \boldsymbol{e}^{NC} + (1 - \lambda) \boldsymbol{e}^{SC}$$
 with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.

Dual LP:

Find	$\mathbf{y} \in \mathbb{R}^m$
minimising	y · v ^e
subject to	$\mathbf{M}^T \mathbf{y} \geq 1$
and	$\mathbf{y} \geq 0$

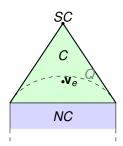
$$\textbf{a} \mathrel{\mathop:}= \textbf{1} - |\mathcal{M}|\textbf{y}|$$



Quantifying Contextuality LP:

Find $\mathbf{C} \in \mathbb{R}^n$ maximising $\mathbf{1} \cdot \mathbf{C}$ subject to $\mathbf{M} \, \mathbf{C} \leq \mathbf{v}^e$ and $\mathbf{C} \geq \mathbf{0}$

$$\boldsymbol{e} = \lambda \boldsymbol{e}^{NC} + (1 - \lambda) \boldsymbol{e}^{SC}$$
 with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.



Dual LP:

Find	$\mathbf{y} \in \mathbb{R}^m$
minimising	y · v ^e
subject to	$\mathbf{M}^{\mathcal{T}}\mathbf{y} \geq 1$
and	$\mathbf{y} \geq 0$

$$\textbf{a} \mathrel{\mathop:}= \textbf{1} - |\mathcal{M}|\textbf{y}|$$

Find	$\mathbf{a} \in \mathbb{R}^m$
maximising	a · v ^e
subject to	M ⁷ a ≤ 0
and	a ≤ 1

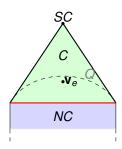
.

.

Quantifying Contextuality LP:

Find	$\mathbf{c} \in \mathbb{R}^n$
maximising	1 · c
subject to	$\textbf{M} \textbf{c} \leq \textbf{v}^{e}$
and	$\textbf{c} \geq \textbf{0}$

$$\boldsymbol{e} = \lambda \boldsymbol{e}^{NC} + (1 - \lambda) \boldsymbol{e}^{SC}$$
 with $\lambda = \mathbf{1} \cdot \mathbf{x}^*$.



Dual LP:

 $\begin{array}{ll} \mbox{Find} & \mbox{$y \in \mathbb{R}^m$} \\ \mbox{minimising} & \mbox{$y \cdot v^e$} \\ \mbox{subject to} & \mbox{$M^T y \geq 1$} \\ \mbox{and} & \mbox{$y \geq 0$} \end{array} .$

$\textbf{a} \mathrel{\mathop:}= \textbf{1} - |\mathcal{M}|\textbf{y}$

Find	$\mathbf{a} \in \mathbb{R}^m$
maximising	a · v ^e
subject to	M ⁷ a ≤ 0
and	a ≤ 1

.

computes tight Bell inequality (separating hyperplane)

Operations on empirical models

Contextuality as a resource

Contextuality as a resource

- More than one possible measure of contextuality.
- What properties should a good measure satisfy?

Contextuality as a resource

- More than one possible measure of contextuality.
- What properties should a good measure satisfy?

- Monotonicity wrt operations that do not introduce contextuality
- Towards a resource theory as for entanglement (e.g. LOCC), non-locality, ...

Algebra of empirical models

Think of empirical models as black boxes

Algebra of empirical models

Think of empirical models as black boxes

What operations can we perform (non-contextually) on them?

Algebra of empirical models

Think of empirical models as black boxes

- What operations can we perform (non-contextually) on them?
- We write type statements

 $e:\langle X,\mathcal{M},\mathcal{O}
angle$

to mean that *e* is a (compatible) emprical model on $\langle X, \mathcal{M}, O \rangle$.

Algebra of empirical models

Think of empirical models as black boxes

- What operations can we perform (non-contextually) on them?
- We write type statements

 $e:\langle X,\mathcal{M},\mathcal{O}
angle$

to mean that *e* is a (compatible) emprical model on $\langle X, \mathcal{M}, O \rangle$.

The operations remind one of process algebras.

Relabelling

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X},\mathcal{M},\boldsymbol{O}\rangle\\ \alpha:(\boldsymbol{X},\mathcal{M})\cong(\boldsymbol{X}',\boldsymbol{M}') & \rightsquigarrow \boldsymbol{e}[\alpha]:\langle \boldsymbol{X}',\mathcal{M}',\boldsymbol{O}\rangle\end{array}$$

Relabelling

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \\ \alpha:(\boldsymbol{X}, \mathcal{M}) \cong (\boldsymbol{X}', \boldsymbol{M}') & \rightsquigarrow \boldsymbol{e}[\alpha]:\langle \boldsymbol{X}', \mathcal{M}', \boldsymbol{O} \rangle \end{array}$$

For
$$C \in \mathcal{M}, s : \alpha(C) \longrightarrow O, e[\alpha]_{\alpha(C)}(s) := e_C(s \circ \alpha^{-1})$$

Relabelling

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \\ \alpha: (\boldsymbol{X}, \mathcal{M}) \cong (\boldsymbol{X}', \boldsymbol{M}') & \rightsquigarrow \boldsymbol{e}[\alpha]: \langle \boldsymbol{X}', \mathcal{M}', \boldsymbol{O} \rangle \end{array}$$

For $C \in \mathcal{M}, s : \alpha(C) \longrightarrow O, e[\alpha]_{\alpha(C)}(s) := e_C(s \circ \alpha^{-1})$

Restriction

$$egin{aligned} egin{aligned} egi$$

Relabelling

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \\ \alpha: (\boldsymbol{X}, \mathcal{M}) \cong (\boldsymbol{X}', \boldsymbol{M}') & \rightsquigarrow \boldsymbol{e}[\alpha]: \langle \boldsymbol{X}', \mathcal{M}', \boldsymbol{O} \rangle \end{array}$$

For $C \in \mathcal{M}, s : \alpha(C) \longrightarrow O, e[\alpha]_{\alpha(C)}(s) := e_C(s \circ \alpha^{-1})$

Restriction

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \\ (\boldsymbol{X}', \mathcal{M}') \leq (\boldsymbol{X}, \boldsymbol{M}) \end{array} \rightsquigarrow \boldsymbol{e} \upharpoonright \mathcal{M}': \langle \boldsymbol{X}', \mathcal{M}', \boldsymbol{O} \rangle \end{array}$$

Relabelling

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \\ \alpha: (\boldsymbol{X}, \mathcal{M}) \cong (\boldsymbol{X}', \boldsymbol{M}') & \rightsquigarrow \boldsymbol{e}[\alpha]: \langle \boldsymbol{X}', \mathcal{M}', \boldsymbol{O} \rangle \end{array}$$

 $\mathsf{For}\; \mathcal{C} \in \mathcal{M}, \boldsymbol{s} : \alpha(\mathcal{C}) \longrightarrow \mathcal{O}, \, \boldsymbol{e}[\alpha]_{\alpha(\mathcal{C})}(\boldsymbol{s}) := \boldsymbol{e}_{\mathcal{C}}(\boldsymbol{s} \circ \alpha^{-1})$

Restriction

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O}\rangle \\ (\boldsymbol{X}', \mathcal{M}') \leq (\boldsymbol{X}, \boldsymbol{M}) \end{array} \rightsquigarrow \boldsymbol{e} \upharpoonright \mathcal{M}': \langle \boldsymbol{X}', \mathcal{M}', \boldsymbol{O}\rangle \end{array}$$

Coarse-graining

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \\ \boldsymbol{f}: \boldsymbol{O} \longrightarrow \boldsymbol{O}' & \rightsquigarrow \boldsymbol{e}/\boldsymbol{f}:\langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O}' \rangle \end{array}$$

Relabelling

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \\ \alpha: (\boldsymbol{X}, \mathcal{M}) \cong (\boldsymbol{X}', \boldsymbol{M}') & \rightsquigarrow \boldsymbol{e}[\alpha]: \langle \boldsymbol{X}', \mathcal{M}', \boldsymbol{O} \rangle \end{array}$$

 $\mathsf{For}\; \mathcal{C} \in \mathcal{M}, \boldsymbol{s} : \alpha(\mathcal{C}) \longrightarrow \mathcal{O}, \, \boldsymbol{e}[\alpha]_{\alpha(\mathcal{C})}(\boldsymbol{s}) := \boldsymbol{e}_{\mathcal{C}}(\boldsymbol{s} \circ \alpha^{-1})$

Restriction

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \boldsymbol{\mathcal{M}}, \boldsymbol{\mathcal{O}} \rangle \\ (\boldsymbol{X}', \boldsymbol{\mathcal{M}}') \leq (\boldsymbol{X}, \boldsymbol{\mathcal{M}}) \end{array} \rightsquigarrow \boldsymbol{e} \upharpoonright \boldsymbol{\mathcal{M}}': \langle \boldsymbol{X}', \boldsymbol{\mathcal{M}}', \boldsymbol{\mathcal{O}} \rangle \end{array}$$

$$\begin{array}{l} \text{For } C' \in \textit{M}', \textit{s} : \textit{C}' \longrightarrow \textit{O}, (\textit{e} \upharpoonright \mathcal{M}')_{\textit{C}'}(\textit{s}) := \textit{e}_{\textit{C}}|_{\textit{C}'}(\textit{s}) \\ \text{with any } \textit{C} \in \mathcal{M} \text{ s.t. } \textit{C}' \subseteq \textit{C} \end{array}$$

Coarse-graining

1

$$\begin{array}{ll} e: \langle X, \mathcal{M}, O \rangle \\ f: O \longrightarrow O' & \rightsquigarrow e/f: \langle X, \mathcal{M}, O' \rangle \end{array}$$

For
$$C \in M, s : C \longrightarrow O', (e/f)_C(s) := \sum_{t:C \longrightarrow O, f \circ t = s} e_C(t)$$

$$\begin{array}{ll} \text{Mixing} & \begin{array}{c} \boldsymbol{e}, \boldsymbol{e}' : \langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \\ \lambda \in [0, 1] \end{array} \quad \rightsquigarrow \quad \boldsymbol{e} +_{\lambda} \boldsymbol{e}' : \langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \end{array}$$

Operations Mixing

$$\begin{array}{ll} \boldsymbol{e}, \boldsymbol{e}' : \langle \boldsymbol{X}, \boldsymbol{\mathcal{M}}, \boldsymbol{O} \rangle \\ \lambda \in [0, 1] \end{array} \quad \rightsquigarrow \quad \boldsymbol{e} +_{\lambda} \boldsymbol{e}' : \langle \boldsymbol{X}, \boldsymbol{\mathcal{M}}, \boldsymbol{O} \rangle \end{array}$$

$$\begin{array}{l} \mathsf{For}\; {\pmb{C}} \in {\pmb{M}}, {\pmb{s}}: {\pmb{C}} \longrightarrow {\pmb{O}}', \\ ({\pmb{e}}+_{\lambda} \; {\pmb{e}}')_{{\pmb{C}}}({\pmb{s}}) := \lambda {\pmb{e}}_{{\pmb{C}}}({\pmb{s}}) + (1-\lambda) {\pmb{e}}'_{{\pmb{C}}}({\pmb{s}}) \end{array}$$

Mixing

$$\begin{array}{ll} \boldsymbol{e}, \boldsymbol{e}' : \langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \\ \lambda \in [0, 1] \end{array} \quad \rightsquigarrow \quad \boldsymbol{e} +_{\lambda} \boldsymbol{e}' : \langle \boldsymbol{X}, \mathcal{M}, \boldsymbol{O} \rangle \end{array}$$

$$\begin{array}{l} \mathsf{For}\; C \in \mathit{M}, \mathit{s}: C \longrightarrow O', \\ (\mathit{e}_{+\lambda} \; \mathit{e}')_{\mathit{C}}(\mathit{s}) := \lambda \mathit{e}_{\mathit{C}}(\mathit{s}) + (1 - \lambda) \mathit{e}_{\mathit{C}}'(\mathit{s}) \end{array}$$

Choice

$$egin{array}{lll} e:\langle X,\mathcal{M},\mathcal{O}
angle \ e':\langle X\sqcup X',\mathcal{M}\sqcup \mathcal{M}',\mathcal{O}
angle \ e':\langle X\sqcup X',\mathcal{M}\sqcup \mathcal{M}',\mathcal{O}
angle \end{array}$$

Mixing

$$egin{aligned} egin{aligned} egi$$

$$\begin{array}{l} \mathsf{For}\; {\mathcal C} \in {\mathcal M}, {\boldsymbol s} : {\mathcal C} \longrightarrow {\mathcal O}', \\ ({\boldsymbol e} +_\lambda \; {\boldsymbol e}')_{\mathcal C}({\boldsymbol s}) := \lambda {\boldsymbol e}_{\mathcal C}({\boldsymbol s}) + (1-\lambda) {\boldsymbol e}_{\mathcal C}'({\boldsymbol s}) \end{array}$$

Choice

$$\begin{array}{ll} e: \langle X, \mathcal{M}, O \rangle \\ e': \langle X', \mathcal{M}', O \rangle \end{array} \rightsquigarrow e \& e': \langle X \sqcup X', \mathcal{M} \sqcup \mathcal{M}', O \rangle \end{array}$$

For $C \in M$, $(e \& e')_C := e_C$ For $D \in M'$, $(e \& e')_D := e'_D$

Mixing

$$egin{aligned} egin{aligned} egi$$

$$\begin{array}{l} \mathsf{For}\; C \in \mathit{M}, \mathit{s}: C \longrightarrow O', \\ (\mathit{e}_{+\lambda}\; \mathit{e}')_{\mathit{C}}(\mathit{s}) := \lambda \mathit{e}_{\mathit{C}}(\mathit{s}) + (1-\lambda) \mathit{e}_{\mathit{C}}'(\mathit{s}) \end{array}$$

Choice

$$egin{aligned} egin{aligned} eta:\langle X,\mathcal{M},\mathcal{O}
angle\ ⅇ:\langle X',\mathcal{M}',\mathcal{O}
angle \end{aligned} & eta:\langle X\sqcup X',\mathcal{M}\sqcup\mathcal{M}',\mathcal{O}
angle \end{aligned}$$

For
$$C \in M$$
, $(e \& e')_C := e_C$
For $D \in M'$, $(e \& e')_D := e'_D$

1

Tensor

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X},\mathcal{M},\boldsymbol{O}\rangle\\ \boldsymbol{e}':\langle \boldsymbol{X}',\mathcal{M}',\boldsymbol{O}\rangle \end{array} \rightsquigarrow \boldsymbol{e}\otimes \boldsymbol{e}':\langle \boldsymbol{X}\sqcup \boldsymbol{X}',\mathcal{M}\star\mathcal{M}',\boldsymbol{O}\rangle \end{array}$$

Mixing

$$egin{aligned} egin{aligned} egi$$

$$\begin{array}{l} \mathsf{For}\; C \in \mathit{M}, \mathit{s}: C \longrightarrow O', \\ (\mathit{e}_{+\lambda}\; \mathit{e}')_{\mathit{C}}(\mathit{s}) := \lambda \mathit{e}_{\mathit{C}}(\mathit{s}) + (1-\lambda) \mathit{e}_{\mathit{C}}'(\mathit{s}) \end{array}$$

Choice

$$egin{aligned} egin{aligned} eta:\langle X,\mathcal{M},\mathcal{O}
angle\ ⅇ:\langle X',\mathcal{M}',\mathcal{O}
angle \end{aligned} & eta:\langle X\sqcup X',\mathcal{M}\sqcup\mathcal{M}',\mathcal{O}
angle \end{aligned}$$

For
$$C \in M$$
, $(e \& e')_C := e_C$
For $D \in M'$, $(e \& e')_D := e'_D$

Tensor

$$\begin{array}{ll} e:\langle X,\mathcal{M},\mathcal{O}\rangle\\ e':\langle X',\mathcal{M}',\mathcal{O}\rangle \end{array} \quad \rightsquigarrow \quad e\otimes e':\langle X\sqcup X',\mathcal{M}\star\mathcal{M}',\mathcal{O}\rangle\end{array}$$

$$\mathcal{M}\star\mathcal{M}':=\{\mathcal{C}\sqcup\mathcal{D}\mid\mathcal{C}\in\mathcal{M},\mathcal{D}\in\mathcal{M}'\}$$

Mixing

$$egin{aligned} egin{aligned} egi$$

$$\begin{array}{l} \mathsf{For}\; \mathcal{C} \in \mathcal{M}, \mathcal{s}: \mathcal{C} \longrightarrow \mathcal{O}', \\ (\mathcal{e} +_{\lambda} \; \mathcal{e}')_{\mathcal{C}}(\mathcal{s}) := \lambda \mathcal{e}_{\mathcal{C}}(\mathcal{s}) + (1 - \lambda) \mathcal{e}_{\mathcal{C}}'(\mathcal{s}) \end{array}$$

Choice

$$egin{aligned} egin{aligned} eta:\langle X,\mathcal{M},\mathcal{O}
angle\ ⅇ\langle X',\mathcal{M}',\mathcal{O}
angle \end{aligned} & eta:\langle X\sqcup X',\mathcal{M}\sqcup\mathcal{M}',\mathcal{O}
angle \end{aligned}$$

For
$$C \in M$$
, $(e \& e')_C := e_C$
For $D \in M'$, $(e \& e')_D := e'_D$

Tensor

$$\begin{array}{ll} \boldsymbol{e}:\langle \boldsymbol{X}, \boldsymbol{\mathcal{M}}, \boldsymbol{\mathcal{O}} \rangle \\ \boldsymbol{e}':\langle \boldsymbol{X}', \boldsymbol{\mathcal{M}}', \boldsymbol{\mathcal{O}} \rangle \end{array} \quad \rightsquigarrow \quad \boldsymbol{e} \otimes \boldsymbol{e}':\langle \boldsymbol{X} \sqcup \boldsymbol{X}', \boldsymbol{\mathcal{M}} \star \boldsymbol{\mathcal{M}}', \boldsymbol{\mathcal{O}} \rangle \end{array}$$

$$\begin{array}{l} \mathcal{M} \star \mathcal{M}' := \{ C \sqcup D \mid C \in \mathcal{M}, D \in \mathcal{M}' \} \\ \mathsf{For} \; C \in \mathcal{M}, D \in \mathcal{M}', s = \langle s_1, s_2 \rangle : C \sqcup D \longrightarrow O, \\ (e \otimes e')_{C \sqcup D} \langle s_1, s_2 \rangle := e_C(s_1) \, e'_D(s_2) \end{array}$$

Relabelling $e[\alpha]$

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Coarse-graining e/f

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Coarse-graining e/f

Mixing $\lambda e + (1 - \lambda)e'$

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Coarse-graining e/f

Mixing $\lambda e + (1 - \lambda)e'$

Choice e & e'

R S Barbosa Contextuality as a resource yielding quantum advantage 28/34

Relabelling $e[\alpha]$

Restriction $e \upharpoonright \mathcal{M}'$

Coarse-graining e/f

Mixing $\lambda e + (1 - \lambda)e'$ Choice e & e'

Tensor $e_1 \otimes e_2$

Relabelling $e[\alpha]$

Restriction $e \restriction \mathcal{M}'$

Coarse-graining e/f

Mixing $\lambda e + (1 - \lambda)e'$

Choice e&e'

Tensor $e_1 \otimes e_2$

Relabelling $CF(e[\alpha]) = CF(e)$

Restriction $e \restriction \mathcal{M}'$

Coarse-graining e/f

 $\lambda e + (1 - \lambda)e'$ Mixing

Choice e&e'

Tensor $e_1 \otimes e_2$

 $CF(e[\alpha]) = CF(e)$ Relabelling

Restriction $\mathsf{CF}(e \upharpoonright \mathcal{M}') \leq \mathsf{CF}(e)$

Coarse-graining e/f

Mixing $\lambda e + (1 - \lambda)e'$

Choice e&e'

Tensor $e_1 \otimes e_2$

Relabelling $CF(e[\alpha]) = CF(e)$

Restriction $CF(e \upharpoonright M') \leq CF(e)$

Coarse-graining $CF(e/f) \leq CF(e)$

Mixing $\lambda e + (1 - \lambda)e'$

Choice e & e'

Tensor $e_1 \otimes e_2$

Sequencing $e_1; e_2$

 $CF(e[\alpha]) = CF(e)$ Relabelling

 $\mathsf{CF}(e \upharpoonright \mathcal{M}') \leq \mathsf{CF}(e)$ Restriction

Coarse-graining CF(e/f) < CF(e)

Mixing $CF(\lambda e + (1 - \lambda)e') < \lambda CF(e) + (1 - \lambda)CF(e')$

Choice e& e'

Tensor $e_1 \otimes e_2$

Relabelling $CF(e[\alpha]) = CF(e)$

Restriction $CF(e \upharpoonright M') \leq CF(e)$

Coarse-graining $CF(e/f) \leq CF(e)$

Mixing $CF(\lambda e + (1 - \lambda)e') \le \lambda CF(e) + (1 - \lambda)CF(e')$

Choice $CF(e \& e') = max\{CF(e), CF(e')\}$

Tensor $e_1 \otimes e_2$

 $NCF(e_1 \otimes e_2) = NCF(e_1) NCF(e_2)$

Sequencing $e_1; e_2$

 $CF(e[\alpha]) = CF(e)$ Relabelling

 $CF(e \upharpoonright \mathcal{M}') < CF(e)$ Restriction

Coarse-graining $CF(e/f) \leq CF(e)$

Mixina $CF(\lambda e + (1 - \lambda)e') \leq \lambda CF(e) + (1 - \lambda)CF(e')$

Choice $CF(e\&e') = max\{CF(e), CF(e')\}$

 $CF(e_1 \otimes e_2) = CF(e_1) + CF(e_2) - CF(e_1)CF(e_2)$ Tensor

 $NCF(e_1 \otimes e_2) = NCF(e_1) NCF(e_2)$

Sequencing

01: 02

Relabelling $CF(e[\alpha]) = CF(e)$

Restriction $CF(e \upharpoonright M') \leq CF(e)$

Coarse-graining $CF(e/f) \leq CF(e)$

Mixing $CF(\lambda e + (1 - \lambda)e') \le \lambda CF(e) + (1 - \lambda)CF(e')$

Choice $CF(e \& e') = max\{CF(e), CF(e')\}$

Tensor $CF(e_1 \otimes e_2) = CF(e_1) + CF(e_2) - CF(e_1)CF(e_2)$

 $\mathsf{NCF}(e_1 \otimes e_2) = \mathsf{NCF}(e_1) \, \mathsf{NCF}(e_2)$

Sequencing

 $\begin{aligned} \mathsf{CF}(e_1 \otimes e_2) &\leq \mathsf{CF}(e_1) + \mathsf{CF}(e_2) - \mathsf{CF}(e_1)\mathsf{CF}(e_2) \\ \mathsf{NCF}(e_1; e_2) &\geq \mathsf{NCF}(e_1) \,\mathsf{NCF}(e_2) \end{aligned}$

(some work in progress)

(some work in progress)

 Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)

(some work in progress)

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes

(some work in progress)

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra

(some work in progress)

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus:

operational semantics by (probabilistic) transitions

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus: operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus: operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes

(some work in progress)

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus: operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes

Sequencing:

(some work in progress)

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus: operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes

Sequencing:

so far, it hides middle steps

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus: operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes
- Sequencing:
 - so far, it hides middle steps
 - not doing so leads to notion of causal empirical models.

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus: operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes
- Sequencing:
 - so far, it hides middle steps
 - not doing so leads to notion of causal empirical models.
- Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus: operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes
- Sequencing:
 - so far, it hides middle steps
 - not doing so leads to notion of causal empirical models.
- Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:
 - One can measure a non-maximal context (face σ of complex)

- Resource theory a la Coecke–Fritz–Spekkens. (resource theory of combinable processes)
- Device-independent processes
 - Operations remind one of process algebra
 - Process calculus: operational semantics by (probabilistic) transitions
 - bissimulation, metric / approximation
 - (modal) logic for device-independent processes
- Sequencing:
 - so far, it hides middle steps
 - not doing so leads to notion of causal empirical models.
- Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:
 - One can measure a non-maximal context (face σ of complex)
 - leaving a model on scenario $lk_{\sigma}M$

Contextual fraction and quantum advantages

Contextual fraction and advantages

 Contextuality has been associated with quantum advantage in information-processing and computational tasks.

Contextual fraction and advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
- ► Measure of contextuality ~→ quantify such advantages.

Contextual fraction and cooperative games

- ► Game described by *n* formulae (one for each allowed input).
- These describe the winning condition that the corresponding outputs must satisfy.

Contextual fraction and cooperative games

- ► Game described by *n* formulae (one for each allowed input).
- These describe the winning condition that the corresponding outputs must satisfy.
- If the formulae are k-consistent (at most k are jointly satisfiable), hardness of the task is n-k/n. (cf. Abramsky & Hardy, "Logical Bell inequalities")

Contextual fraction and cooperative games

- ► Game described by *n* formulae (one for each allowed input).
- These describe the winning condition that the corresponding outputs must satisfy.
- If the formulae are k-consistent (at most k are jointly satisfiable), hardness of the task is n-k/n.
 (cf. Abramsky & Hardy, "Logical Bell inequalities")

We have

$$1-\bar{p}_S \geq \text{NCF} \frac{n-k}{n}$$

Contextuality and MBQC E.g. Raussendorf (2013) *l*2-MBQC

- E.g. Raussendorf (2013) ℓ2-MBQC
 - measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)

E.g. Raussendorf (2013) ℓ2-MBQC

 measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)

classical control:

- pre-processes input
- determines the flow of measurements
- post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

E.g. Raussendorf (2013) ℓ2-MBQC

- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

 additional power to compute non-linear functions resides in certain resource empirical models.

E.g. Raussendorf (2013) ℓ2-MBQC

- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- additional power to compute non-linear functions resides in certain resource empirical models.
- ► Raussendorf (2013): If an ℓ2-MBQC deterministically computes a non-linear Boolean function f : 2^m → 2^l then the resource must be strongly contextual.

E.g. Raussendorf (2013) ℓ2-MBQC

- measurement-based quantum computing scheme (*m* input bits, *l* output bits, *n* parties)
- classical control:
 - pre-processes input
 - determines the flow of measurements
 - post-processes to produce the output

only \mathbb{Z}_2 -linear computations.

- additional power to compute non-linear functions resides in certain resource empirical models.
- ► Raussendorf (2013): If an ℓ2-MBQC deterministically computes a non-linear Boolean function f : 2^m → 2^l then the resource must be strongly contextual.
- Probabilistic version: non-linear function computed with sufficently large probability of success implies contextuality.

▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using l2-MBQC

▶ **Goal**: Compute Boolean function $f : 2^m \longrightarrow 2^l$ using l2-MBQC

Hardness of the problem

 $\nu(f) := \min \{ d(f,g) \mid g \text{ is } \mathbb{Z}_2 \text{-linear} \}$

(average distance between *f* and closest \mathbb{Z}_2 -linear function)

where for Boolean functions *f* and *g*, $d(f,g) := 2^{-m} | \{i \in 2^m | f(i) \neq g(i)\}$.

▶ **Goal**: Compute Boolean function $f : 2^m \rightarrow 2^l$ using l2-MBQC

Hardness of the problem

 $\nu(f) := \min \left\{ d(f,g) \mid g \text{ is } \mathbb{Z}_2 \text{-linear} \right\}$

(average distance between *f* and closest \mathbb{Z}_2 -linear function)

where for Boolean functions *f* and *g*, $d(f, g) := 2^{-m} | \{i \in 2^m | f(i) \neq g(i)\}$.

Average probability of success computing f (over all 2^m possible inputs): p
_S.

▶ **Goal**: Compute Boolean function $f : 2^m \rightarrow 2^l$ using l2-MBQC

Hardness of the problem

 $\nu(f) := \min \left\{ d(f,g) \mid g \text{ is } \mathbb{Z}_2 \text{-linear} \right\}$

(average distance between *f* and closest \mathbb{Z}_2 -linear function)

where for Boolean functions *f* and *g*, $d(f, g) := 2^{-m} | \{i \in 2^m | f(i) \neq g(i)\}$.

Average probability of success computing f (over all 2^m possible inputs): p
_S.

▶ Then,

$$1 - \bar{p}_S \geq \operatorname{NCF}(e) \nu(f)$$

Questions...

"The contextual fraction as a measure of contextuality" Samson Abramsky, RSB, Shane Mansfield PRL 119:050504 (2017), arXiv:1705.07918[quant-ph]