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The essence of contextuality

I Not all properties may be observed at once.

I Jointly observable properties provide partial snapshots.

Local consistency but Global inconsistency
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A recurring theme

I Non-locality and contextuality

I Relational databases

I Contraint satisfaction

I . . .
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Vorob'ev’s theorem
Vorob'ev (1962)
‘Consistent families of measures and their extensions’

I In the context of game theory.

I Consider a collection of variables

I and distributions on the joint values of some variables.

I These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is
a global probability distribution for any prescribed pairwise
consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any
no-signalling (no-disturbing) behaviour is non-contextual?

I Necessary and sufficient condition: regularity!

R S Barbosa Acyclicity and Vorob'ev’s theorem 3/25



Vorob'ev’s theorem
Vorob'ev (1962)
‘Consistent families of measures and their extensions’

I In the context of game theory.

I Consider a collection of variables

I and distributions on the joint values of some variables.

I These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is
a global probability distribution for any prescribed pairwise
consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any
no-signalling (no-disturbing) behaviour is non-contextual?

I Necessary and sufficient condition: regularity!

R S Barbosa Acyclicity and Vorob'ev’s theorem 3/25



Vorob'ev’s theorem
Vorob'ev (1962)
‘Consistent families of measures and their extensions’

I In the context of game theory.

I Consider a collection of variables

I and distributions on the joint values of some variables.

I These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is
a global probability distribution for any prescribed pairwise
consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any
no-signalling (no-disturbing) behaviour is non-contextual?

I Necessary and sufficient condition: regularity!

R S Barbosa Acyclicity and Vorob'ev’s theorem 3/25



Vorob'ev’s theorem
Vorob'ev (1962)
‘Consistent families of measures and their extensions’

I In the context of game theory.

I Consider a collection of variables

I and distributions on the joint values of some variables.

I These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is
a global probability distribution for any prescribed pairwise
consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any
no-signalling (no-disturbing) behaviour is non-contextual?

I Necessary and sufficient condition: regularity!

R S Barbosa Acyclicity and Vorob'ev’s theorem 3/25



Relational databases

Codd (1970): Relational model of data

I Information is organised into tables (relations).

I Columns of each table are labelled by attributes

I Entries: a row with a value for each attribute of a table

I A database consists of a set of such tables, each with different
attributes

I Database schema: blueprint of a database specifying attributes of each
table and type of information: S = {A1, . . . ,An}

I Database instance: snapshot of the contents of a database at a certain
time, consisting of a relation instance (i.e. a set of entries) for each
table: {RA}A∈S .
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Relational databases

I Given a relation instance R with set of attributes A and B ⊆ A,

R|A := {t|B | t ∈ R}

I A database instance {RA}A∈S is projection consistent if

∀A,A′ ∈ S. RA|A∩A′ = RA′ |A∩A′

I It is totally consistent if it has a universal relation instance: T on
attributes

⋃
S with ∀A ∈ S. T |A = RA
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Dictionary

Databases Empirical models

attributes measurements

domain of attribute outcome value of measurement

relation schema set of compatible measurements

database schema measurement scenario

tuple / entry joint outcome
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Dictionary

relation instance distribution on joint outcomes

database instance empirical model

projection marginalisation

projection consistency no-signalling condition

universal instance global distribution

total consistency locality / non-contextuality

R S Barbosa Acyclicity and Vorob'ev’s theorem 7/25



An analogous question

For which database schemata does pairwise projection con-
sistency imply total consistency?

I Necessary and sufficient condition: acyclicity.

I Acyclic database schemes extensively studied in late 70s / early 80s

I Many equivalent characterisations . . .

I Turns out to be equivalent to Vorob'ev’s condition!
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Commonalities

I In both instances, the same condition characterises situations where
local consistency implies global consistency (LC =⇒ GC)

I i.e. situations in which contextuality cannot arise.

I What are the essential ingredients for such a characterisation to hold?
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Overview of the talk

I Setting the stage

I The condition: acyclicity

I Sufficiency: acyclicity implies (LC =⇒ GC)

I Necessity: (LC =⇒ GC) implies acyclicity

I Acyclicity and topology

I Comparison with other work

I An interesting application
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Setting the stage



Abstract simplicial complexes

I Combinatorial objects describing a particularly simple kind of space

I We use them to express the compatibility structure
of measurements / variables / observations / attributes

An abstract simplicial complex on a set of vertices V is a
family Σ of finite subsets of V such that:

I it contains all the singletons: ∀v ∈ V . {v} ∈ Σ.

I it is downwards closed: σ ∈ Σ and τ ⊆ σ implies τ ∈ Σ .
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Data over simplicial complexes

We consider a functor F : P(V )op −→ Set:

I for each α ⊆ V , a set F(α).
Elements s ∈ F(α) are called (local) sections.
Elements g ∈ F(V ) are the global sections.

I whenever β ⊆ α, a restriction map

F(α) −→ F(β)

s 7−→ s|β

We think of F(α) as specifying the kind of information that can be asso-
ciated to the set of variables/measurements/attributes α ⊆ V .

E.g. F(α) = {0, 1}α (deterministic assignments, functions α −→ {0, 1})
F(α) = Distr({0, 1}α) (prob. distr. on joint assignments)
F(α) = P({0, 1}α) (subsets joint assignments)
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Data over simplicial complexes

I A compatible family of F for Σ is {sσ}σ∈Σ s.t. ∀τ ⊆ σ. sσ|τ = sτ .

I It is extendable if ∃ global section g ∈ F(V ) s.t. ∀σ ∈ Σ. g |σ = sσ.

For which simplicial complexes Σ is any compatible family
extendable to a global section?

We want to know under which conditions acyclicity is the answer:

Σ is acyclic

every compatible family of F for Σ is extendable
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The condition: acyclicity



Acyclicity I
Generalising from graphs.

I A näıve approach (cycles as closed paths) does not capture the
appropriate notion

I Instead, use the definition in terms of biconnectedness:
I A graph G is biconnected if it is connected and removing any vertex

does not disconnect it.
I A cycle in G forms a nontrivial biconnected subgraph of G .
I G has no cycles iff it has no nontrivial biconnected (induced)

subgraphs.

I For simplicial complexes:
I An articulation set for Σ is a set A = σ1 ∩ σ2 for σ1 6= σ2 ∈ Σ s.t.

Σ|V\A has more connected components than Σ.
I Σ is biconnected if it is connected and has no articulation set
I Σ is acyclic if it has no induced subcomplex that is nontrivial and

biconnected
I Equivalently, if every nontrivial, connected, induced subcomplex has an

articulation set.
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Acyclicity II
An easier, more algorithmic description.

I Graham reduction step: delete a vertex that belongs to only one
maximal face.

I Σ acyclic when it is Graham reducible to the empty simplex.
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I Σ not acyclic: Graham reduction fails.
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Sufficiency:
acyclicity implies (LC =⇒ GC)



Glueing two sections

I Let s1 ∈ F(α1) and s2 ∈ F(α2).
I s1 and s2 are compatible if

s1|α1∪α2 = s2|α1∪α2

I s1 and s2 are strongly compatible if there is a t ∈ F(α1∪α2) such that

t|α1 = s1 and t|α2 = s2

I F is glueable if any two compatible sections are strongly compatible
Glueing map:

gα1α2 : F(α1)×F(α1∩α2) F(α2) −→ F(α1 ∪ α2)

(cf. Flori–Fritz’s gleaves)

R S Barbosa Acyclicity and Vorob'ev’s theorem 16/25



Examples

I Probability distributions F (α) = Distr(Oα)
I Given compatible distributions pα1 and pα2

I Take A := α1\α2, B := α1 ∩ α2, C := α2\α1.
I So we have pAB and pBC with∑

x∈OA

PA,B(A,B 7→ x, y) =
∑

z∈OC

PB,C (B,C 7→ y, z)

=: PB(B 7→ y)

I Define an extension

P(A,B,C 7→ x, y, z) :=

{
PA,B (A,B 7→x,y) PB,C (B,C 7→y,z)

PB (B 7→y)
ifPB(B 7→ y) 6= 0

0 otherwise
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Examples
I Relational databases:

I R1 on attributes A1, R2 on attributes A2

I Define the natural join R1 ./ R2 on A1 ∪ A2:

R1 ./ R2 :=
{
t ∈ DA∪B | t|A1 ∈ R1, t|A2 ∈ R2

}

I More generally:
I Both of these are examples of distributions
I 〈R≥0,+, ·, 0, 1〉: probability
I 〈B,∨,∧, 0, 1〉: possibility distributions, i.e. relation instances
I The same definition works for any semifield.
I In fact, for any normalisable semiring

e.g. 〈N, gcd, ·, 0, 1〉, for which a distribution is a choice of coprime
numbers.

I Flori–Fritz: metric spaces

I Logic: Robinson Joint Consistency Theorem
I Let Ti be a theory over the language Li , with i ∈ {1, 2}. If there is no

sentence φ in L1 ∩ L2 with T1 ` φ and T2 ` ¬φ, then T1 ∪ T2 is
consistent.
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Vorob'ev’s theorem: sufficiency of acyclicity

Let F : P(V )op −→ Set be gluable and Σ a simplicial
complex on vertices V . If Σ is acyclic, then any compatible
family of F for Σ is extendable to a global section.
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then construct a global distribution by glueing
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Acyclicity and topology



Acyclicity and topology
I Graham reductions are simplicial collapses

I Thus, acyclicity implies contractibility (in fact, collapsibility).

I But acyclicity is not a topological property: Σ ' sd(Σ) (board).

Does it have ‘topologically-flavoured’ characterisation?

I The link of a face σ ∈ Σ is the subcomplex

lkΣ(σ) = {τ ∈ Σ | σ ∩ τ = ∅, σ ∪ τ ∈ Σ}

I We can interpret this as the measurement scenario that is left after the
measurements in σ have been performed.

Σ is acyclic if and only if for all σ ∈ Σ lkΣ(σ) is contractible
to a disjoint union of points.
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Comparison



Related work in quantum literature

I Cf. Budroni–Morchio
‘The extension problem for partial Boolean structures in Quantum
Mechanics’

I Chordality?

Graphs

ι

>
>>

Kl

> !!
ASC

sk1oo

I ι(G) is acyclic iff G is a tree

I Kl(G) is acyclic iff G is chordal
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An interesting consequence



Monogamy and average macroscopic locality

I Average macro correlations from micro models are local
(Ramanathan, Paterek, Kay, Kurzyński & Kaszlikowski 2011:

multipartite quantum models)

I Monogamy of violation of Bell inequalities
(Paw lowski & Brukner 2009: bipartite no-signalling models)

I connect and generalise the results above

I a structural explanation related to Vorob'ev’s theorem

I Let us look at a simple illustrative example.

R S Barbosa Acyclicity and Vorob'ev’s theorem 22/25



Monogamy and average macroscopic locality

I Average macro correlations from micro models are local
(Ramanathan, Paterek, Kay, Kurzyński & Kaszlikowski 2011:
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Monogamy of non-locality

Given a Bell inequality B(−,−, ) ≤ R,

Alice

Bob

Charlie

a1, a2

b1, b2

c1, c2

Monogamy relation: B(A,B) + B(A,C ) ≤ 2R
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Macroscopic average behaviour: tripartite example

I We regard sites B and C as forming one ‘macroscopic’ site, M, and
site A as forming another.

I In order to be ‘lumped together’, B and C must be symmetric/of the
same type: the symmetry identifies the measurements b1 ∼ c1 and
b2 ∼ c2, giving rise to ‘macroscopic’ measurements m1 and m2.

I Given an empirical model p(ai , bj , ck = x , y , z), the ‘macroscopic’
average behaviour is a bipartite model (with two macro sites A and M)
given by the following average of probabilities of the partial models:

pai ,mj (x , y) =
pai ,bj (x , y) + pai ,cj (x , y)

2

The average model pai ,mj satisfies a bipartite Bell inequality
if and only if in the microscopic model Alice is monogamous
with respect to violating it with Bob and Charlie.
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Structural Reason

a1 a2

b1

b2

c1

c2

I Measurement scenario: simplicial complex D2 ∗D2 ∗D2.
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Structural Reason

a1 a2

m1

m2

I This quotient complex is acyclic.

I Therefore, no matter from which micro model pai ,bj ,ck we start, the
averaged macro correlations pai ,mj are local.

I In particular, they satisfy any Bell inequality.

I Hence, the original tripartite model also satisfies a monogamy relation
for any Bell inequality.
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Questions...

?
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