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Overview

I Central object of study of quantum information and computation theory:
the advantage afforded by quantum resources in information-processing tasks.

I A range of examples are known and have been studied . . . but a systematic understanding of
the scope and structure of quantum advantage is lacking.

I This is related to non-classical features of quantum mechancics.

I In this talk, we focus on non-local and contextual behaviours as quantum resources.

I Contextuality is a feature of empirical data that is a key signature of non-classicality.
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Contextuality



Non-local games
Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information,

but cannot communicate once game starts

Alice

Alice

Bob

Bob

Alice Bob

VerifierVerifier

iA ∈ {0, 1} iB ∈ {0, 1}

oA ∈ {0, 1} oB ∈ {0, 1}

Verifier:
oA ⊕ oB =
iA ∧ iB ?
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier.

They may share prior information, but cannot communicate once game starts

Alice Bob

iA ∈ {0, 1} iB ∈ {0, 1}

oA ∈ {0, 1} oB ∈ {0, 1}

They win a play if oA ⊕ oB = iA ∧ iB .

A strategy is described by the probabilities P( oA, oB | iA, iB ).
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Non-local games

I Classically, Alice and Bob’s optimal winning probability is 0.75.

I Sharing a pair of qubits and performing quantum measurements, Alice and Bob can realise:

A B (0, 0) (0, 1) (1, 0) (1, 1)
a0 b0

1/2 0 0 1/2

a0 b1
3/8 1/8 1/8 3/8

a1 b0
3/8 1/8 1/8 3/8

a1 b1
1/8 3/8 3/8 1/8

This gives a winning probability 3.25/4 ≈ 0.81 !

This quantum advantage is related to the fact that these probabilities do not arise from
a probability distribution on global assignments in {a0, a1, b0, b1} −→ {0, 1}.
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The essence of contextuality

I Not all properties may be observed at once.

I Jointly observable properties provide partial snapshots.

Local consistency but Global inconsistency
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Local consistency but Global inconsistency
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Formalising empirical data

A measurement scenario X = 〈X ,Σ,O〉:
I X – a finite set of measurements

I Σ – a simplicial complex on X
faces are called the measurement contexts

I O = (Ox)x∈X – for each x ∈ X a non-empty
set of possible outcomes Ox

An empirical model e = {eσ}σ∈Σ on X:

I each eσ ∈ Prob
(∏

x∈σ Ox

)
is a probability

distribution over joint outcomes for σ.

I generalised no-signalling holds: for any
σ, τ ∈ Σ, if τ ⊆ σ,

eσ|τ = eτ

(i.e. marginals are well-defined)

A B (0, 0) (0, 1) (1, 0) (1, 1)

a0 b0
1/2 0 0 1/2

a0 b1
1/2 0 0 1/2

a1 b0
1/2 0 0 1/2

a1 b1 0 1/2 1/2 0

X = {a0, a1, b0, b1}, Ox = {0, 1}

Σ = ↓ { {a0, b0}, {a0, b1}, {a1, b0}, {a1, b1} }.

•a • b
• a′

•b′

•0
•1

•
•

• 0
• 1

•
•
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Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d |σ = eσ.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Kochen–Spekker’s theorems is that there are behaviours arising from
quantum mechanics that are contextual.
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Contextuality as a resource



Contextuality and advantage in quantum computation

I Measurement-based quantum computation (MBQC)

‘Contextuality in measurement-based quantum computation’
Raussendorf, Physical Review A, 2013.

‘Contextual fraction as a measure of contextuality ’
Abramsky, B, Mansfield, Physical Review Letters, 2017.

I Magic state distillation

‘Contextuality supplies the ‘magic’ for quantum computation’
Howard, Wallman, Veitch, Emerson, Nature, 2014.

I Shallow circuits

‘Quantum advantage with shallow circuits’
Bravyi, Gossett, Koenig, Science, 2018.

I Contextuality analysis: Aasnæss, Forthcoming, 2019.
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Overview: Contextuality as a resource

I Our focus is on contextuality as a resource:
I how can we use it, what can we do with it?

I From this perspective, we want to compare contextual behaviours:
I When is one a more powerful resource than another?
I When are two behaviours essentially the same?

Example

‘Popescu-Rohrlich correlations as a unit of nonlocality ’
Barrett, Pironio, Physical Review Letters, 2005.

I PR boxes simulate all 2-outcome bipartite boxes
I A tripartite quantum box that cannot be simulated from PR boxes
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Structure of resources

Two perspectives:

1. Resource theories (coming from Physics):
Algebraic theory of ‘free operations’ that do not introduce more of the resource in question.

Resource B can be obtained from resource A if it can be built from A using free operations.

‘Contextual fraction as a measure of contextuality ’, Abramsky, B, Mansfield, PRL, 2017.

‘Noncontextual wirings’, Amaral, Cabello, Terra Cunha, Aolita, PRL, 2018.

2. Simulations or reducibility (coming from Computer Science):
Notion of simulation between behaviours of systems.

One resource can be reduced to another if it can be simulated by it.
Cf. (in)computability, degrees of unsolvability, complexity classes.

‘Categories of empirical models’, Karvonen, QPL 2018.
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Morphisms between empirical models

We have defined our mathematical objects of interest:
Empirical models describe behaviours that may be used as resources.

What are the morphisms?

The idea is to capture convertibility of resources.

Given e : 〈X ,Σ,O〉 and d : 〈Y ,∆,P〉, a morphism d → e is:

I a way of transforming d into e using free operations.

I a way of simulating e using d .
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Free operations

I Zero model z: unique empirical model on the empty measurement scenario

〈∅,∆0 = {∅}, ()〉 .

I Singleton model u: unique empirical model on the 1-outcome 1-measurement scenario

〈1 = {?},∆1 = {∅, 1}, (O? = 1)〉 .

I Probabilistic mixing: Given empirical models e and d in 〈X ,Σ,O〉 and λ ∈ [0, 1], the
model e +λ d : 〈X ,Σ,O〉 is given by the mixture λe + (1− λ)d .
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Free operations

I Tensor: Let e : 〈X ,Σ,O〉 and d : 〈Y ,∆,P〉. Then

e ⊗ d : 〈X t Y ,Σ ∗∆, [O,P]〉

where Σ ∗Θ := {σ ∪ τ |σ ∈ Σ, τ ∈ ∆}. Runs e and d independently and in parallel.

I Coarse-graining: Given e : 〈X ,Σ,O〉 and a family of functions h = (hx : Ox −→ O ′x)x∈X ,
get a coarse-grained model

e/h : 〈X ,Σ,O ′〉

.

I Measurement translation: Given e : 〈X ,Σ,O〉 and a simplicial map f : Σ′ −→ Σ, the
model f ∗e : 〈X ′,Σ′,O〉 is defined by pulling e back along the map f .
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New free operation

I Conditioning on a measurement: Given e : 〈X ,Σ,O〉, x ∈ X and a family of
measurements (yo)o∈Ox

with yo ∈ Vert(lkxΣ). Consider a new measurement x?(yo)o∈Ox
,

abbreviated x?y . Get

e[x?y ] : 〈X ∪ {x?y},Σ[x?y ],O[x?y 7→ Ox?y ]〉

that results from adding x?y to e.

If Σ is a simplicial complex and a σ ∈ Σ is a face, the link of σ in Σ is the subcomplex
of Σ whose faces are

lkσΣ := {τ ∈ Σ | σ ∩ τ = ∅, σ ∪ τ ∈ Σ} .

What contexts are still available once the measurements in σ have been performed.
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Free operations

Free operations generate terms typed by measurement scenarios:

Terms 3 t ::= v ∈ Var | z | u | f ∗t | t/h
| t +λ t | t ⊗ t | t[x?y ]

Terms without variables represent noncontextual empirical models.

Conversely, every noncontextual model can be represented by a term without variables.

Can d be transformed to e?

Formally: is there a typed term v : 〈Y ,∆,P〉 ` t : 〈X ,Σ,O〉 such that t[d/v ] = e ?
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Basic simulations

A

. . .

. . .

B

. . .

. . .

To simulate B using A:

I map inputs of B (measurements) to inputs of A

I map outputs of A (measurement outcomes) to outputs of B
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Basic simulations

This is a simple notion of simulation, but already covers several things:

I It allows for relabelling of measurements and outcomes (isomorphisms).

I Since the map on measurements needn’t be surjective, it allows for simulating B using only
part of A (restrictions).

I Since the map on outcomes needn’t be injective, it allows for coarse-graining of outcomes.

Note that mappings of inputs go backward, of outputs forward:

I Akin to the Hom functor being contravariant in its first argument, covariant in its second.

I Logically, to reduce one implication to another, one must weaken the antecedent and
strengthen the consequent.
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Formalising simulations

A morphism of scenarios (π, h) : 〈X ,Σ,O〉 → 〈Y ,∆,P〉 is given by:

I A simplicial map π : ∆→ Σ.

I For each y ∈ Y , a map hy : Oπ(y) → Py .

Simpliciality of π means that contexts in ∆ are mapped to contexts in Σ.
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Basic simulations

A morphism of scenarios induces a natural action on empirical models:

Gien e : 〈X ,Σ,O〉, then (π, h)∗e : 〈Y ,∆,P〉 is given by, for τ ∈ ∆:

((π, h)∗e)τ = Prob(γ)(eπ(τ))

the push-forward of the probability measure eπ(τ) along the map

γ :
∏

x∈π(τ)

Ox −→
∏
y∈τ

Py

given by γ(s)y = hy
(
sπ(y)

)
.

This gives a category Emp, with:

I objects are empirical models e : 〈X ,Σ,O〉,
I morphisms e → e′ are simulations (π, h) : 〈X ,Σ,O〉 → 〈Y ,∆,P〉 such that (π, h)∗e = e′.
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Beyond deterministic simulations

Basic simulations are useful, but limited.

To allow adaptive use of the resource, we introduce measurement protocols.

These protocols proceed iteratively by first performing a measurement over the given scenario,
and then conditioning their further measurements on the observed outcome.

Note that different paths can lead into different, incompatible contexts.

Thus they incorporate adaptive classical processing, of the kind used e.g. in Measurement-Based
Quantum Computing.

Previously considered in:

‘A combinatorial approach to nonlocality and contextuality ’
Acin, Fritz, Leverrier, Sainz, Communications in Mathematical Physics, 2015.

Formally, we construct a comonad MP on the category of empirical models, where MP(e : 〈X ,Σ,O〉)
is the model obtained by taking all measurement protocols over the given scenario.
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The MP construction
Given a scenario X = 〈X ,Σ,O〉 we build a new scenario MP(X), where:

I measurements are the measurement protocols on X

MP(〈X ,Σ,O〉) ::= ∅ | (x , f ) where x ∈ X and f : Ox → MP(〈X \ {x}, lkxΣ,O〉).

I outcomes are the joint outcomes observed during a run of the protocol

I measurement protocols are compatible if they can be combined consistently

I A run is a sequence x̄ = (xi , oi )
l
i=1 with xi ∈ X , oi ∈ Oxi

I σx̄ = {x1, x2, . . . , xl} ∈ Σ.

I Two runs (of different protocols) are consistent if they agree on common measurements

I Protocols {Q1, . . . ,Qn} are compatible if for any choice of pairwise consistent runs x̄i from Qi ,
we have

⋃
i σx̄i ∈ Σ
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The MP construction

Empirical models in X are then naturally lifted to this scenario MP(X).

Proposition
MP defines a comonoidal comonad on the category Emp of empirical models.

Roughly: comultiplication MP(X)→ MP2(X) by “flattening”, unit MP(X)→ X,
and MP(X⊗ Y)→ MP(X)⊗MP(Y)
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General simulations

Given empirical models e and d , a simulation of e by d is a map

d ⊗ c → e

in EmpMP, the coKleisli category of MP, i.e. a map

MP(d ⊗ c)→ e

in Emp, for some noncontextual model c .

The use of the noncontextual model c is to allow for classical randomness in the simulation.

We denote the existence of a simulation of e by d as d  e, read “d simulates e”.
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We denote the existence of a simulation of e by d as d  e, read “d simulates e”.
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Results

Theorem [Viewpoints agree]
Let e : X and d : Y be empirical models. Then d  e if and only if there is a typed term
a : Y ` t : X such that t[d/a] ' e.

Roughly: We develop the equational theory of free operations, and use this to obtain normal
forms. These provide a means of decomposing morphisms into operations.

Theorem [Generalised no-cloning]
e  e ⊗ e if and only if e is noncontextual.

Roughly: Use the monotonicity properties of the contextual fraction under free operations
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Some directions

I ’ ’ defines a preorder on empirical models. How rich is this order?

I Existing results in the non-locality literature can be leveraged to prove that it contains both
infinite strict chains and infinite antichains.

I ”Relative” forms of contextuality
I Noncontextuality can be equivalently formulated as the existence of a simulation by the

empirical model over the empty scenario. (N.B. MP(0) = 1).
I This suggests that much of contextuality theory can be generalized to a “relative” form.
I E.g. Vorob'ev’s theorem

I Graded versions of simulability
I e.g. by width or depth of adaptivity, auxiliary classical randomness, numbers of copies of

resource, approximate simulations, . . .
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Questions...

?
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